(19)
(11) EP 0 273 307 A2

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
06.07.1988  Patentblatt  1988/27

(21) Anmeldenummer: 87118714.2

(22) Anmeldetag:  17.12.1987
(51) Internationale Patentklassifikation (IPC)4B41M 5/26
(84) Benannte Vertragsstaaten:
CH DE FR GB IT LI SE

(30) Priorität: 24.12.1986 DE 3644369

(71) Anmelder: BASF Aktiengesellschaft
67063 Ludwigshafen (DE)

(72) Erfinder:
  • Dix, Johannes Peter, Dr.
    D-6708 Neuhofen (DE)
  • Etzbach, Karl-Heinz, Dr.
    D-6710 Frankenthal (DE)
  • Mayer, Udo, Dr.
    D-6710 Frankenthal (DE)
  • Sens, Ruediger, Dr.
    D-6800 Mannheim 1 (DE)


(56) Entgegenhaltungen: : 
   
       


    (54) Verfahren zur Übertragung von kationischen Farbstoffen in ihrer deprotonierten, elektrisch neutralen Form


    (57) Verfahren zur Übertragung von Farbstoffen von einem Träger auf einen Acceptor durch Sublimation oder Verdampfung der Farbstoffe mit Hilfe eines Thermokopfs, wobei man einen Träger verwendet, auf dem sich kationische Farbstoffe mit Cyaninchromophor, die mindestens eine N-H-Gruppierung aufweisen, die Bestandteil des Cyaninchromophors ist, in ihrer an der N-H-Gruppierung deprotonierten, elektrisch neutralen Form befinden und diese deprotonierten Farbstoffe auf ein beschichtetes Papier überträgt.


    Beschreibung


    [0001] Die vorliegende Erfindung betrifft ein neues Verfahren zur Übertragung von kationischen Farbstoffen mit Cyaninchromophor, in ihrer deprotonierten, elektrisch neutralen Form von einem Träger auf ein beschichtetes Papier.

    [0002] Beim Sublimations-Transferverfahren wird ein Transferblatt, welches einen sublimierbaren Farbstoff, gegebenenfalls zusammen mit einem Bindemittel, auf einem Träger enthält, mit einem Heizkopf durch kurze Heizimpulse von der Rückseite her erhitzt, wobei der Farbstoff sublimiert oder verdampft und auf ein als Aufnahmemedium dienendes Papier transferiert wird. Der wesentliche Vorteil dieses Verfahrens besteht darin, daß die Steuerung der zu übertragenden Farbstoffmenge (und damit die Farbabstufung) durch Einstellung der an den Heizkopf abzugebenden Energie leicht möglich ist.

    [0003] Allgemein wird die Farbaufzeichnung unter Verwendung der drei subtraktiven Grundfarben Gelb, Magenta und Cyan (und gegebenenfalls Schwarz) durchge­führt. Um eine optimale Farbaufzeichnung zu ermöglichen, sollten die dabei verwendeten Farbstoff folgende Eingenschaften besitzen:
    - leichte Sublimier- oder Verdampfbarkeit (im allgemeinen ist diese Anforderung bei den Cyanfarbstoffen am schwierigsten zu erfüllen);
    - hohe thermische und photochemische Stabilität sowie Resistenz gegen Feuchtigkeit und chemische Stoffe;
    - geeignete Farbtöne für die subtraktive Farbmischung aufweisen;
    - einen hohen molekularen Absorptionskoeffizienten aufweisen
    - leicht technisch zugänglich sein.

    [0004] Die meisten der bekannten, für den thermischen Transferdruck verwendeten Farbstoffe erfüllen diese Forderungen jedoch nicht in ausreichendem Maße.

    [0005] So wird in der DE-A-2 359 515 ein Verfahren zum Färben und Bedrucken von Polyacrylnitrilgewebe vorgeschlagen, wobei Salze kationischer Farbstoffe unter Wärmeeinwirkung von einem Träger auf das Polyacrylnitrilmaterial transferiert werden. Die Salze sollen sich dabei von Säuren ableiten, deren pKA-Wert größer als 3 ist. Es hat sich jedoch gezeigt, daß der Thermotransfer dieser Salze nur zu ungenügenden Ausfärbungen führt, da man eine hohe Energie benötigt, um diese Farbsalze durch Verdampfung oder Sublimation in die Gasphase überzuführen. Außerdem werden die Farbstoffe unter diesen Bedingungen teilweise zersetzt.

    [0006] Die EP-A-178 832 beschreibt den Thermotransfer von Salzen kationischer Farbstoffe mit weichen anionischen Basen auf Polyester.

    [0007] Schließlich lehrt die DE-A-2 521 988 das Färben und Bedrucken von Polyacrylnitril durch Thermotransfer elektroneutraler, deprotonierter kationischer Farbstoffe in Gegenwart eines zusätzlichen Indikatorfarbstoffs. Die Anwesenheit eines Indikatorfarbstoffs ist notwendig, um die Bildung von fehlerhaften Drucken zu vermeiden. Der Thermotransfer erfolgt bei einer Temperatur von 195°C. Es ist aber bekannt, daß viele kationische Farbstoffe in Form ihrer freien Farbbase nicht hitzestabil sind, d.h., während der Hitzeeinwirkung tritt häufig eine partielle Zersetzung der neutralen Farbbase ein.

    [0008] Aufgabe der vorliegenden Erfindung war es nun, ein Verfahren zur Übertragung von Farbstoffen bereitzustellen, wobei die Farbstoffe unter den Anwendungsbedingungen eines Thermokopfes leicht sublimier- oder verdampfbar, keine thermische und photochemische Zersetzung erleiden, sich zu Druckfarben verarbeiten lassen und den koloristischen Anforderungen genügen sollten. Außerdem sollten sie technisch leicht zugänglich sein.

    [0009] Es wurde gefunden, daß die Übertragung von Farbstoffen von einem Träger auf einen Acceptor durch Sublimation oder Verdampfung der Farbstoffe mit Hilfe eines Thermokopfs vorteilhaft gelingt, wenn man einen Träger verwendet, auf dem sich kationische Farbstoffe mit Cyaninchromophor, die mindestens eine N-H-Gruppierung aufweisen, die Bestandteil des Cyaninchromophors ist, in ihrer an der N-H-Gruppierung deprotonierten, elektrisch neutralen Form befinden, und diese deprotonierten Farbstoffe auf ein beschichtetes Papier überträgt.

    [0010] Unter kationischen Farbstoffen mit Cyaninchromophor sind solche Farbstoffe zu verstehen, die konjugierte Doppelbindungen aufweisen, wobei sich an mindestens einem Ende des konjugierten Systems ein Stickstoffatom befindet, und bei denen die Delokalisierung der positiven Ladung in alternierender Weise entlang des konjugierten Systems (Chromophorkette) erfolgt.

    [0011] Die graphische Darstellung der Delokalisierung der positiven Ladung erfolgt nach an sich bekannter Weise durch eine punktierte Linie entlang des konjugierten Systems, wobei in diesem Fall in den Formeln jeweils nur die Einfachbindung gezeichnet wird.

    [0012] Vorzugsweise überträgt man kationische Farbstoffe, deren Kation die Formel I aufweist

    in der
        R¹ R² und R7 gleich oder verschieden sind und unabhängig voneinander jeweils Wasserstoff, C₁-C₄-Alkyl, das gegebenenfalls durch C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, Halogen, Cyano, Hydroxy oder Phenyl substituiert ist oder C₅-C₇-Cycloalkyl oder R¹ und R² zusammen mit dem sie verbindenden Stickstoffatom einen 5- oder 6-gliedrigen, gesättigten heterocyclischen Rest,
        R³ und R⁵ gleich oder verschieden sind und unabhängig voneinander jeweils Wasserstoff, C₁-C₄-Alkyl, C₁-C₄-Alkoxy oder Halogen,
        R⁴ Wasserstoff oder zusammen mit R⁵ einen anellierten Benzoring,
        R⁶ Wasserstoff, C₁-C₄-Alkyl, das gegebenenfalls durch C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, Halogen, Cyano, Hydroxy oder Phenyl substituiert ist, C₅-C₇-Cycloalkyl oder den Rest

    in dem R⁸, R⁹ und R¹⁰ gleich oder verschieden sind und unabhängig voneinander jeweils für Wasserstoff, C₁-C₄-Alkyl, C₁-C₄-Alkoxy oder Halogen stehen, und
        A Sauerstoff oder Schwefel bedeuten, in ihrer deprotonierten, elektrisch neutralen Form.

    [0013] Eine weitere bevorzugte Verfahrensweise besteht darin, daß man kationische Farbstoffe, deren Kation die Formel II aufweist

    in der
        R¹¹ die heterocyclischen Reste

    in denen R¹⁴ für Wasserstoff, C₁-C₄-Alkyl,
    das gegebenenfalls durch Halogen, Hydroxy oder C₁-C₄-Alkoxy substituiert ist, oder C₁-C₄-Alkoxy, R¹⁵ und R¹⁶ gleich oder verschieden sind und unabhängig voneinander jeweils für Wasserstoff, C₁-C₄-Alkyl, das gegebenenfalls durch Halogen, Hydroxy, C₁-C₄-Alkoxy oder Phenyl substituiert ist, oder gegebenenfalls durch C₁-C₄-Alkyl, C₁-C₄-Alkoxy oder Halogen substituiertes Phenyl, W für Schwefel oder Di-C₁-C₄-Alkylmethylen und T für den Rest CH oder Stickstoff stehen,
        R¹² Wasserstoff, C₁-C₄-Alkyl, das gegebenenfalls durch Halogen oder C₁-C₄-Alkoxy substituiert ist, oder gegebenenfalls durch C₁-C₄-Alkyl, C₁-C₄-Alkoxy oder Halogen substituiertes Phenyl,
        R¹³ Wasserstoff oder C₁-C₄-Alkyl, das gegebenenfalls durch Halogen oder C₁-C₄-Alkoxy substituiert ist,
        X und Y gleich oder verschieden sind und unabhängig voneinander jeweils den Rest CH oder Stickstoff,
        Z den Rest

    und
        m 0 oder 1 bedeuten, oder in der, falls m 1 ist, die Gruppierung

    steht, in denen
    R¹³ und R¹⁵ jeweils die obengenannte Bedeutung besitzen, mit der Maßgabe, daß wenn m 0 ist, X und Y nicht gleichzeitig die Bedeutung von Stickstoff besitzen sollen, in ihrer deprotonierten, elektrisch neutralen Form überträgt.

    [0014] Die in den Formeln I und II auftretenden Alkylreste können sowohl geradkettig als auch verzweigt sein. Als Halogen werden jeweils Fluor, Chlor oder Brom besonders bevorzugt.

    [0015] R¹, R², R⁶ und R⁷ in Formel I stehen beispielsweise für Wasserstoff; Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, sec-Butyl, tert-Butyl; 2-Methoxyethyl, 2-Ethoxyethyl, 2-Propoxyethyl, 2-Isopropoxyethyl, 2-Butoxyethyl, 2-sec-Butoxyethyl, 2-Methoxypropyl, 1-Methoxyprop-2-yl, 2-Methoxybutyl, 2-Ethoxybutyl, 4-Isopropoxybutyl; 2-Methylthioethyl, 2-Ethylthioethyl, 2-Propylthioethyl, 2-Isopropylthioethyl, 2-Butylthioethyl, 2-Isobutylthioethyl, 2-Methylthiopropyl, 2-Ethylthioprop-1-yl, 2-Methylthiobutyl, 2-Ethylthiobutyl, 4-Ethylthiobutyl, 4-Propylthiobutyl; Fluormethyl, Chlormethyl, Difluormethyl, Trifluormethyl, 2-Fluorethyl, 2-Chlorethyl, 2-Bromethyl, Pentafluorethyl, 2-Chlor-1,1,2,2-Tetrafluorethyl, Nonafluorbutyl; Cyanomethyl, 2-Cyanoethyl, 2-Cyanopropyl, 3-Cyanopropyl, 2-Cyanobutyl, 4-Cyanobutyl; 2-Hydroxyethyl, 2-Hydroxypropyl, 1-Hydroxyprop-2-yl, 3-Hydroxypropyl, 2-Hydroxybutyl, 4-Hydroxybutyl; Benzyl, 2-Phenylethyl; Cyclopentyl, Cyclohexyl oder Cycloheptyl.

    [0016] R¹ und R² in Formel I stehen außerdem zusammen mit dem sie verbindenden Stickstoffatom beispielsweise für folgende heterocyclischen Reste: Pyrrolidino, Piperidino, Morpholino, N-Methylpiperazino, N-Ethylpiperazino, N-Propylpiperazino, N-Isopropylpiperazino, N-Butylpiperazino, N-Isobutylpiperazino oder N-sec-Butylpiperazino.

    [0017] R⁶ in Formel I steht außerdem beispielsweise für Phenyl; 2-Methylphenyl, 2-Ethylphenyl, 2-Propylphenyl, 2-Isopropylphenyl, 2-Butylphenyl, 2,6-Dimethylphenyl, 2,6-Diethylphenyl, 2,4,6-Trimethylphenyl; 2-Methoxyphenyl, 2-Ethoxyphenyl, 2-Propoxyphenyl, 2-Isopropoxyphenyl, 2-Butoxyphenyl, 2,4-Dimethoxyphenyl, 2,6-Dimethoxyphenyl; 2-Methoxy-4-Methylphenyl; 2-Fluorphenyl, 2-Chlorphenyl, 2-Bromphenyl, 2,4-Dichlorphenyl oder 2,4,6-Trichlorphenyl.

    [0018] R³ und R⁵ in Formel I stehen beispielsweise für Wasserstoff; Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, sec-Butyl, tert-Butyl; Methoxy, Ethoxy, Propoxy, Isopropoxy, Butoxy, Isobutoxy oder sec-Butoxy; Fluor, Chlor, Brom oder Iod.

    [0019] R¹², R¹³, R¹⁴, R¹⁵ und R¹⁶ in Formel II stehen beispielsweise für Wasserstoff; Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, sec-Butyl, tert-Butyl; 2-Methoxyethyl, 2-Ethoxyethyl, 2-Propoxyethyl, 2-Isopropoxyethyl, 2-Butoxyethyl, 2-sec-Butoxyethyl, 2-Methoxypropyl, 1-Methoxyprop-2-yl, 2-Methoxybutyl, 2-Ethoxybutyl, 4-Isopropoxybutyl; Chlormethyl, Difluormethyl, Trifluormethyl, 2-Fluorethyl, 2-Chlorethyl, 2-Bromethyl, Pentafluorethyl, 2-Chlor-1,1,2,2-Tetrafluorethyl oder Nonafluorbutyl.

    [0020] R¹² sowie R¹⁵ und R¹⁶ in Formel II stehen weiterhin beispielsweise für Phenyl; 2-Methylphenyl, 4-Methylphenyl, 2-Ethylphenyl, 4-Ethylphenyl, 4-Isopropylphenyl, 4-Butylphenyl, 2,4-Dimethylphenyl, 2,4,6-Trimethylphenyl; 2-Methoxyphenyl, 4-Methoxyphenyl, 4-Ethoxyphenyl, 2,4-Dimethoxyphenyl; 2-Chlorphenyl, 4-Fluorphenyl, 4-Bromphenyl oder 2,6-Dichlorphenyl.

    [0021] R¹⁴ in Formel II kann weiterhin z.B. Methoxy, Ethoxy, Propoxy, Isopropoxy, Butoxy, Isobutoxy oder sec-Butoxy bedeuten.

    [0022] R¹⁴, R¹⁵ und R¹⁶ bedeuten weiterhin beispielsweise 2-Hydroxyethyl, 2-Hydroxypropyl, 3-Hydroxypropyl, 2-Hydroxybutyl oder 4-Hydroxybutyl.

    [0023] R¹⁴ und R¹⁵ können weiterhin auch z.B. Benzyl oder 2-Phenylethyl bedeuten.

    [0024] W in Formel II steht beispielsweise für Schwefel; Prop-2-yliden, But-2-yliden, Pent-3-yliden, Hex-2-yliden, Hept-4-yliden oder Non-5-yliden.

    [0025] Eine besonders bevorzugte Verfahrensweise besteht darin, daß man kationische Farbstoffe, deren Kation die Formel I aufweist, in der R¹, R² und R⁷ gleich oder verschieden sind und unabhängig voneinander jeweils Wasserstoff oder C₁-C₄-Alkyl, das gegebenenfalls durch C₁-C₄-Alkoxy, Halogen, Cyano oder Hydroxy substituiert ist, oder R¹ und R² zusammen mit dem sie verbindenden Stickstoffatom Pyrrolidino, Piperidino oder Morpholino, R³ und R⁵ gleich oder verschieden sind und unabhängig voneinander jeweils Wasserstoff, C₁-C₄-Alkyl oder C₁-C₄-Alkoxy, R⁴ Wasserstoff, R⁶ den Rest

    in dem R⁸ und R⁹ gleich oder verschieden sind und unabhängig voneinander jeweils für Wasserstoff, C₁-C₄-Alkyl oder C₁-C₄-Alkoxy und R¹⁰ für Wasserstoff stehen und A Sauerstoff bedeuten, in ihrer deprotonierten elektrisch neutralen Form überträgt.

    [0026] Eine weitere besonders bevorzugte Verfahrensweise besteht darin, daß man kationische Farbstoffe, deren Kation die Formel I aufweist, in der R¹, R² und R⁷ gleich oder verschieden sind und unabhängig voneinander jeweils Wasserstoff oder C₁-C₄-Alkyl, das gegebenenfalls durch C₁-C₄-Alkoxy, Halogen, Cyano oder Hydroxy subsituiert ist, oder R¹ und R² zusammen mit dem sie verbindenden Stickstoffatom Pyrrolidino, Piperidino oder Morpholino, R³ und R⁵ gleich oder verschieden sind und unabhängig voneinander jeweils Wasserstoff, C₁-C₄-Alkyl oder C₁-C₄-Alkoxy, R⁴ Wasserstoff, R⁶ C₁-C₄-Alkyl, das gegebenenfalls durch C₁-C₄-Alkoxy, Halogen, Cyano oder Hydroxy subsituiert ist, und A Sauerstoff bedeutet, in ihrer deprotonierten elektrisch neutralen Form überträgt.

    [0027] Ganz besonders hervorzuheben ist die Übertragung kationischer Farbstoffe, deren Kation die Formel I aufweist, in der R¹, R² und R⁷ gleich oder verschieden sind und unabhängig voneinander jeweils Wasserstoff oder C₁-C₄-Alkyl, R³ und R⁵ jeweils Wasserstoff, oder C₁-C₄-Alkyl, R⁴ Wasserstoff, R⁶ Wasserstoff, C₁-C₄-Alkyl oder den Rest

    in dem R8 und R⁹ gleich oder verschieden sind und unabhängig voneinander jeweils für Wasserstoff, C₁-C₄-Alkyl oder C₁-C₄-Alkoxy und R¹⁰ für Wasserstoff stehen, und A Sauerstoff bedeuten.

    [0028] Eine weitere besonders bevorzugte Verfahrensweise besteht darin, daß man kationische Farbstoffe, deren Kation die Formel II aufweist, in der R¹¹ den heterocyclischen Rest

    in dem R¹⁴ für Wasserstoff, R¹⁵ für C₁-C₄-Alkyl und W für Di-C₁-C₄-Alkylmethylen stehen, R¹² durch C₁-C₄-Alkyl oder C₁-C₄-Alkoxy substituiertes Phenyl, R¹³ Wasserstoff, X und Y jeweils den Rest CH und m 0 bedeuten, in ihrer deprotonierten, elektrisch neutralen Form überträgt.

    [0029] Weitere für das erfindungsgemäße Verfahren geeignete kationische Farbstoffe, die in ihrer deprotonierten, elektrisch neutralen Form übertragen werden, sind solche deren Kationen die Formeln III und IV aufweisen

    in denen R¹⁷ jeweils C₁-C₄-Alkyl bedeutet.

    [0030] In den bisherigen Ausführungen wurden von den genannten kationischen Farbstoffen jeweils nur deren Kationen (Formeln I bis IV) genannt. Es ist jedoch selbstverständlich, daß die betreffenden kationischen Farbstoffe in Salzform vorliegen und jeweils noch ein Anion aufweisen. Als Anionen kommen alle gebräuchlichen Anionen in Betracht, insbesondere zu nennen sind Fluorid, Chlorid, Bromid, Iodid, Sulfat, Methosulfat, Ethosulfat, Carbonat, Perchlorat, Borat, Tetrafluoroborat, Tetrachlorozinkat, Phosphat, Methylsulfonat, Phenylsulfonat, 4-Methylphenylsulfonat oder Carboxylate wie Formiat, Acetat, Propionat, Butyrat, 2-Ethylhexanoat, Benzoat oder 4-Methylbenzoat. Die Verwendung von Tetrachlorozinkat-Salzen zur Erzeugung der deprotonierten, elektrisch neutralen Farbstoff-Form ist dabei bevorzugt.

    [0031] Die Farbstoffe, deren Kationen den Formeln I bis IV entsprechen, sind an sich bekannt oder können nach an sich bekannten Methoden erhalten werden.

    [0032] So erhält man beispielsweise diejenigen Farbstoffe, deren Kation der Formel I, in der A für Sauerstoff steht, entspricht, nach den in der DE-A-2 158 121, DE-A-3 011 154, EP-A-5451, EP-A-38736 oder GB-A-1 018 797 angegebenen Herstellmethoden. Die entsprechenden Thiazinderivate (A = Schwefel) können durch oxidative Kupplung geeigneter 1,4-Diamino­benzolderivate mit Anilinderivaten und anschließender Umsetzung mit Schwefelwasserstoff oder mit Thiosulfat hergestellt werden.

    [0033] Die anderen kationischen Farbstoffe, die im erfindungsgemäßen Verfahren in ihrer deprotonierten, elektrisch neutralen Form übertragen werden, können ebenfalls nach an sich bekannten Verfahren hergestellt werden, wie sie z.B. in K. Venkataraman "The Chemistry of Synthetic Dyes", Band IV, S. 161; Ullmanns Encyklopädie der Technischen Chemie, 4. Auflage, Band 13, S. 571; oder Rev. Prog. Coloration, Vol. 5, S. 65, 1974, beschrieben sind.

    [0034] Zur Herstellung der für das erfindungsgemäße Verfahren benötigten Farbstoffträger werden zweckmäßig zunächst Lösungen der kationischen Farbstoffe, zweckmäßig in Form des Tetrachlorozinkat-Salzes, bereitet. Geeignete Lösungsmittel sind inerte organische Lösungsmittel, z.B. Isobutanol, Toluol, Xylol oder Chlorbenzol. Diese Lösungen werden dann mit überschüssigem Alkalialkanolat, z.B. Natriummethanolat oder Natrium­ethanolat versetzt, um den kationischen Farbstoff in seine deprotonierte, elektrisch neutrale Form überzuführen. Es hat sich als vorteilhaft erwiesen, mit einem 1,1- bis 1,3-fachen molaren Überschuß, bezogen auf den kationischen Farbstoff, an Alkalialkanolat zu arbeiten.

    [0035] Die resultierende, den deprotonierten, elektrisch neutralen Farbstoff enthaltende Lösung wird mit einem Bindemittel zu einer Druckfarbe verarbeitet. Diese enthält den deprotonierten Farbstoff in gelöster oder dispergierter Form. Die Druckfarbe wird mittels einer Rakel auf den inerten Träger aufgetragen und die Färbung an der Luft getrocknet.

    [0036] Als Bindemittel kommen z.B. Ethylcellulose, Polysulfone oder Poly­ethersulfone in Betracht. Inerte Träger sind z.B. Seidenpapier, Lösch­papier oder Pergaminpapier sowie Kunststoffolien mit guter Wärmebe­ständigkeit, z.B. gegebenenfalls metallbeschichteter Polyester, Polyamid oder Polyimid. Die Dicke des Trägers beträgt vorzugsweise 3 bis 30µm. Weitere für das erfindungsgemäße Verfahren geeignete Trägermaterialien, Bindemittel sowie Lösungsmittel zur Herstellung der Druckfarben sind in der DE-A-3 524 519 beschrieben.

    [0037] Acceptoren im erfindungsgemäßen Verfahren sind beschichtete Papiere, insbesondere solche mit sauer modifizierter Beschichtung. Als Beschichtungsmaterialien dienen entsprechende organische oder anorganische Materialien, die ausreichend thermostabil sind.

    [0038] Geeignete organische Beschichtungsmaterialien sind z.B. sauer modifizier­tes Polyacrylnitril, Kondensationsprodukte auf der Basis Phenol /Form­aldehyd (s. z.B. US-A-4 082 713), spezielle Salicylsäurederivate (s. z.B. DE-A-2 631 832) oder sauer modifizierte Polyester, wobei letztere bevorzugt sind.

    [0039] Als anorganische Beschichtungsmaterialien kommen z.B. sauer aktivierte Clays in Betracht, wie sie in chemischen Durchschreibepapieren Verwendung finden (s. z.B. Wochenblatt für Papierfabrikation, Band 21, Seite 767, 1982).

    [0040] Die Übertragung des deprotonierten Farbstoffs vom Träger auf den Acceptor erfolgt mittels eines Thermokopfs der genügend Heizleistung an den Träger abgeben muß, so daß der deprotonierte Farbstoff innerhalb einiger Millisekunden verdampft oder sublimiert und dabei auf das mit Kunststoff beschichtete, sauer modifizierte Papier transferiert wird. Der Transfer erfolgt bei einer Temperatur von 100 bis 400°C, vorzugsweise 150 bis 300°C.

    [0041] In manchen Fällen, insbesondere bei Verwendung von Papier mit nicht sauer modifiziertem Beschichtungsmaterial, kann es von Vorteil sein, nach dem Transfer das als Acceptor dienende Papier noch einer sauren Nachbehand­lung, z.B. mit gasförmigen Chlorwasserstoff oder mit verdünnter Essig­säure, zu unterwerfen.

    [0042] Nachdem die Thermolabilität von elektrisch neutralen Farbbasen bekannt ist, war es überraschend, daß im erfindungsgemäßen Verfahren die kationi­schen Farbstoffe in ihrer deprotonierten, elektrisch neutralen Form unter den genannten Transferbedingungen keinen thermischen Zersetzungs- oder Umwandlungsreaktionen unterliegen, sondern in schneller und problemloser Weise auf den Acceptor übertragen werden können.

    [0043] Die Erfindung soll durch die folgenden Beispiele näher erläutert werden:

    [0044] Um das Transferverhalten der deprotonierten Farbstoffe quantitativ und in einfacher Weise prüfen zu können, wurde der Thermotransfer mit großflächigen Heizbacken anstelle eines Thermokopfes durchgeführt. Bei der Herstellung der zu prüfenden Farbstoffträger wurde auf ein Bindemittel verzichtet.

    A) Allgemeines Rezept für die Beschichtung der Träger mit derotoniertem Farbstoff



    [0045] Zunächst wird eine gesättigte Lösung des kationischen Farbstoffs in Form des Tetrachlorozinkats in einem Gemisch aus Isobutanol und Chlorbenzol (1:1 v/v) hergestellt. Diese Lösung wird mit einem 1,2-molaren Überschuß, bezogen auf den kationischen Farbstoff, an Natriummethanolat versetzt, wobei sich dei deprotonierte, elektrische neutrale Form des Farbstoffs bildet. Die Bildung der Farbbase ist leicht zu erkennen an der resul­tierenden Farbänderung des Reaktionsgemisches. Danach wird das Gemisch abfiltriert und das Filtrat mit einer 20µm-Rakel ein- bis fünfmal auf Trägerpapier abgezogen und an der Luft getrocknet. Gegebenenfalls kann das Trägerpapier auch mit Filtrat besprüht werden.

    B) Prüfung auf Sublimations- oder Verdampfungs-Verhalten



    [0046] Die mit dem zu prüfenden Farbstoff beschichtete Papierschicht (Geber) wird mit derjenigen Seite auf der sich die Farbstoffschicht befindet, auf ein beschichtetes Papier (Acceptor) gelegt und angedrückt. Geber/Acceptor werden dann mit Aluminiumfolie umwickelt und zwischen zwei beheizten Platten 30 sec lang erhitzt. (Der relativ lange Zeitraum von 30 sec wird aus meßtechnischen Gründen gewählt. Damit ist nämlich gewährleistet, daß der Acceptor nach erfolgtem Transfer in optimaler Weise photometrisch vermessen werden kann). Bei Verwendung eines mit Polyester beschichteten Papiers als Acceptor wird das Papier nach dem Transfer kurzzeitig mit gasförmigem Chlorwasserstoff behandelt.

    [0047] Die in das Papier übergewanderte Farbstoffmenge wird photometrisch bestimmt. Dabei werden die aus den Remissionsmessungen erhaltenen Transmissionswerte "Tra" nach der Beziehung: A = -log Tra in Extinktionswerte umgerechnet. Trägt man dann den Logarithmus der bei verschiedenen Temperaturen (Bereich: 100 bis 200°C) gemessenen Extinktion A des jeweils angefärbten Papiers gegen die zugehörige reziproke absolute Temperatur T auf, so erhält man Geraden, aus deren Steigung die Aktivierungsenergie ΔET für das Transferexperiment berechnet wird:



    [0048] Zur vollständigen Charakterisierung wird aus den Auftragungen zusätzlich die Temperatur T* [°C] entnommen, bei der die Extinktion A des angefärbten Papiers den Wert 1 erreicht.

    [0049] In den folgenden Tabellen werden jeweils nur die kationischen Formen der Farbstoffe aufgeführt. Als Anion diente, wie oben bereits genannt, in allen Fällen Tetrachlorozinkat. Me und Et in den Formeln stehen für Methyl und Ethyl.

    [0050] Die in den nachfolgenden Tabellen 1 und 2 genannten kationischen Farbstoffe wurden nach Methode A) in ihre deprotonierte, elektrisch neutrale Form übergeführt und auf einen Träger gebracht, dieser wurde nach Methode B) auf das Sublimations- oder Verdampfungsverhalten geprüft. Als Acceptor diente mit Polyester beschichtetes Papier. In den Tabellen sind jeweils der resultierende Farbton sowie die Thermotransferparameter T* und ΔET aufgeführt.









    [0051] Die in den nachfolgenden Tabellen 3 und 4 genannten kationischen Farbstoffe wurden nach Methode A) in ihre deprotonierte, elektrisch neutrale Form übergeführt und auf einen Träger gebracht, dieser wurde nach Methode B) auf das Sublimations- oder Verdampfungsverhalten geprüft. Als Acceptor diente ein Papier mit sauer aktiviertem Clay als Beschichtungs­material. Der Transfer erfolgte hier während 30 sec bei einer Temperatur von 130°C.

    [0052] Der in den Tabellen 3 und 4 aufgeführte Ausdruck "Abs" steht für Absorption. Die Absorption ist mit der Transmission Tra durch folgende Gleichung verknüpft: Abs = 1-Tra.















    [0053] Die in der folgenden Tabelle 5 aufgeführten kationischen Farbstoffe wurden in ihrer deprotonierten, elektrisch neutralen Form unter den für Tabelle 1 gültigen Bedingungen übertragen.



    [0054] Änhliche Resultate wurden mit den in den Tabellen 6 und 7 genannten kationischen Farbstoffen bei Übertragung ihrer deprotonierten, elektrisch neutralen Form auf mit sauer aktiviertem Clay beschichtes Papier erzielt. Der resultierende Farbton ist jeweils angegeben.










    Ansprüche

    1. Verfahren zur Übertragung von Farbstoffen von einem Träger auf einen Acceptor durch Sublimation oder Verdampfung der Farbstoffe mit Hilfe eines Thermokopfs, dadurch gekennzeichnet, daß man einen Träger verwendet, auf dem sich kationische Farbstoffe mit Cyaninchromophor, die mindestens eine N-H-Gruppierung aufweisen, die Bestandteil des Cyaninchromophors ist, in ihrer an der N-H-Gruppierung deprotonierten, elektrisch neutralen Form befinden, und diese deprotonierten Farb­stoffe auf ein beschichtetes Papier überträgt.
     
    2. Verfahren gemäß Anspruch 1, dadurch gekennzeichet, daß man kationische Farbstoffe, deren Kation die Formel I aufweist

    in der
          R¹, R² und R⁷ gleich oder verschieden sind und unabhängig voneinander jeweils Wasserstoff, C₁-C₄-Alkyl, das gegebenenfalls durch C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, Halogen, Cyano, Hydroxy oder Phenyl substituiert ist, oder C₅-C₇-Cycloalkyl oder R¹ und R² zusammen mit dem sie verbindenden Stickstoffatom einen 5- oder 6-gliedrigen, gesättigten heterocyclischen Rest,
          R³ und R⁵ gleich oder verschieden sind und unabhängig voneinander jeweils Wasserstoff, C₁-C₄-Alkyl, C₁-C₄-Alkoxy oder Halogen,
          R⁴ Wasserstoff oder zusammen mit R⁵ einen anellierten Benzoring,
          R⁶ Wasserstoff, C₁-C₄-Alkyl, das gegebenenfalls durch C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, Halogen, Cyano, Hydroxy oder Phenyl substituiert ist, C₅-C₇-Cycloalkyl oder den Rest

    in dem R⁸, R⁹ und R¹⁰ gleich oder verschieden sind und unabhängig voneinander jeweils für Wasserstoff, C₁-C₄-Alkyl, C₁-C₄-Alkoxy oder Halogen stehen, und
          A Sauerstoff oder Schwefel bedeuten, in ihrer deprotonierten, elektrisch neutralen Form überträgt.
     
    3. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß man kationische Farbstoffe, deren Kation die Formel II aufweist

    in denen R¹⁴ für Wasserstoff, C₁-C₄-Alkyl,
    das gegebenenfalls durch Halogen, Hydroxy oder C₁-C₄-Alkoxy substituiert ist, oder C₁-C₄-Alkoxy, R¹⁵ und R¹⁶ gleich oder ver­schieden sind und unabhängig voneinander jeweils für Wasserstoff, C₁-C₄-Alkyl, das gegebenenfalls durch Halogen, Hydroxy, C₁-C₄-Alkoxy oder Phenyl substituiert ist, oder gegebenenfalls durch C₁-C₄-Alkyl, C₁-C₄-Alkoxy oder Halogen substituiertes Phenyl, W für Schwefel oder Di-C₁-C₄-Alkylmethylen und T für den Rest CH oder Stickstoff stehen,
          R¹² Wasserstoff, C₁-C₄-Alkyl, das gegebenenfalls durch Halogen oder C₁-C₄-Alkoxy substituiert ist, oder gegebenenfalls durch C₁-C₄-Alkyl, C₁-C₄-Alkoxy oder Halogen substituiertes Phenyl,
          R¹³ Wasserstoff oder C₁-C₄-Alkyl, das gegebenenfalls durch Halogen oder C₁-C₄-Alkoxy substituiert ist,
          X und Y gleich oder verschieden sind und unabhängig voneinander jeweils den Rest CH oder Stickstoff,
          Z den Rest

    und
          m 0 oder 1 bedeuten, oder in der, falls m 1 ist,
    die Gruppierung

    steht, in denen
    R¹³ und R¹⁵ jeweils die obengenannte Bedeutung besitzen, mit der Maßgabe, daß wenn m 0 ist, X und Y nicht gleichzeitig die Bedeutung von Stickstoff besitzen sollen, in ihrer deprotonierten, elektrisch neutralen Form überträgt.