(19) |
 |
|
(11) |
EP 0 175 533 B1 |
(12) |
EUROPEAN PATENT SPECIFICATION |
(45) |
Mention of the grant of the patent: |
|
14.12.1988 Bulletin 1988/50 |
(22) |
Date of filing: 09.09.1985 |
|
|
(54) |
Multi-bladed propeller and shaft assembly
Montage einer Welle und eines Propellers mit mehreren Flügeln
Assemblage d'un arbre et d'une hélice à plusieurs pales
|
(84) |
Designated Contracting States: |
|
DE FR NL SE |
(30) |
Priority: |
17.09.1984 GB 8423433 15.02.1985 GB 8503934
|
(43) |
Date of publication of application: |
|
26.03.1986 Bulletin 1986/13 |
(73) |
Proprietor: VICKERS PLC |
|
London SW1P 4RA (GB) |
|
(72) |
Inventor: |
|
- May, Eric Raymond
Altrincham
Cheshire (GB)
|
(74) |
Representative: Cole, Paul Gilbert et al |
|
Hughes Clark Byrne & Parker
63 Lincoln's Inn Fields
P.O. Box 22 London WC2A 3JU London WC2A 3JU (GB) |
(56) |
References cited: :
FR-A- 2 403 478 US-A- 4 188 906
|
GB-A- 2 050 278
|
|
|
|
|
- MARINE ENGINEERS REVIEW, July 1972, pages 19-24, London, GB; H. MEIER-PETER: "Contra-rotating
propulsion systems"
|
|
|
|
Note: Within nine months from the publication of the mention of the grant of the European
patent, any person may give notice to the European Patent Office of opposition to
the European patent
granted. Notice of opposition shall be filed in a written reasoned statement. It shall
not be deemed to
have been filed until the opposition fee has been paid. (Art. 99(1) European Patent
Convention).
|
[0001] This invention relates to a multi-bladed propeller and shaft assembly in which air
can be fed to the propeller blades to suppress cavitation.
[0002] Cavitation at a rotating marine propeller is undesirable because it produces undesirable
effects; the two principal ones being noise that is transmitted through the water
and erosion of the blade material. In many ships it has been the conventional practice
to pump air down the drive shaft for the propeller and to discharge it from holes
around the blade at a controlled pressure and flow rate. The air has traditionally
been fed from an inboard compressor through a slip ring and down the whole length
of the shaft, but this arrangement suffers from a number of disadvantages. The air
feed arrangements require a multiplicity of inter-section joints, all of which , have
to be sealed. Hydraulic systems may also pass down the shaft, and a loss of integrity
of the air supply can give rise to problems with these systems. It has therefore been
desired to deliver the air at a slip ring located outside the ship's hull, possibly
in a space between the propeller and the aftmost shaft bearing, with the air delivered
through a bearing support bracket such as a so- called A-bracket by a route well separated
from other vital systems, thereby resulting in a more economic installation having
fewer serviceability problems.
[0003] A solution to this problem described in GB-A-2050278 is to locate a split slip-ring
about the shaft with two annular sealing rings in the aft face thereof wiping against
the forward face of the propeller assembly. The sealing rings are made of a composition
comprising a phenolic resin and asbestos and a passage in the propeller hub leading
to the propeller blades rotates in the annulus between the sealing rings, thereby
giving a seal that is air-tight and maintains its integrity upon radial and axial
movement of the propeller. But the arrangement described is relatively complex, and
it is an object of this invention to provide a similar air delivery facility that
is less complex in construction but is at least equally effective.
[0004] Broadly stated the invention provides an assembly in accordance with claim 1 or 10,
and thus viewed from one aspect provides a multi-bladed propeller and shaft assembly
in which air can be fed to the propeller blades to suppress the effects of cavitation
including:
[0005] a shaft leading to the multi-bladed propeller;
[0006] a sleeve on the shaft formed with radial and axial passages leading to the respective
blades;
[0007] slip ring means supported in an anti-rotation device allowing the shaft sleeve to
rotate within axially spaced bearings in the slip ring and provided with axially spaced
air seals together defining with a body of said slip ring means an annular space within
which said radial passages rotate, said seals being formed as a multiplicity of arcuate
segments resiliently biased towards the sleeve and having overlapping or otherwise
movably sealed end face portions to maintain pressure-tightness, and said body having
a radial flow passage for admission of air under pressure to said annular space; and
[0008] a flexible fluid connector connecting the radial flow passage to an air supply line
leading from the hull structure.
[0009] Various embodiments of the invention will now be described, by way of example only,
with reference to the accompanying drawings, in which:
Figure 1 is a side section of parts of an A-bracket, tailshaft and propeller hub assembly
showing an air supply slip-ring according to the invention in association with a controllable
pitch propeller;
Figure 2 is another section of a part of the arrangement shown in Figure 1 showing
the slip ring device of Figure 1 held by an anti-rotation device;
Figure 3 is a horizontal section adjacent the periphery of a propeller blade showing
an air delivery mouthpiece;
Figures 4a-4c are respectively side, end and sectional views of the slip ring assembly,
the section being taken on the line A-A of Figure 4b; and
Figures 5, 6 and 7 show a second embodiment of the invention, being respectively a
side section of an A-bracket, fixed pitch propeller and slip ring device, a section
of the slip ring device showing the water supply thereto, and a section showing the
axial clamping thereof.
[0010] In Figures 1-3 a tailshaft 10 having an inner sleeve 11 thereon is supported beneath
the hull of a vessel by means of an A-bracket 12 that supports a shaft bearing 13.
The tailshaft 10 extends aft of the bearing 13 and terminates in a tail flange 14
that is attached to a propeller hub body by means of fixing bolts (not shown) and
by means of driving dowels 16 that transmit the driving torque from the flange 14
to the hub body 15. The propeller is of variable pitch and has blades 17 mounted for
rotation in the hub body 15 so that the angle of each blade may be varied. On the
sleeve 11 there is mounted an outer sleeve 18 terminating in a flange 19 that is fastened
to the forward face of the tail flange 14. Radial inlet passages in the cylindrical
side surface of the sleeve 18 lead to axial flow passages 21 sealed at their ends
by forward and aft seals 22, 23 let into the inner sleeve 11. The passages 21 lead
to radial passages 24 drilled in the flange 19 and closed at their outer ends by means
of plugs. Fluid from the radial passages 24 is discharged through outlet passages
26 in the aft face of the flange 19 into liners 27 that lead through the flange 14,
through the driving dowels 16 which are annular in section, and into the hub body
15. The forward end of each liner 27 is flanged at 28 to mate with a recess in the
aft face of the flange 19 about the passage 26 and is fluid-tightly sealed by means
of an O-ring 29 let into the face of the flange 28. The aft end of the liner 27 is
sealed to hhe hub body 15 by means of an 0-ring 30.
[0011] ' The hub body 15 is formed with a forward bore into which the dowel 16 and liner
27 fit that is separated from an aft bore leading to the blade periphery by means
of a shoulder 31. In the aft bore a mouthpiece 32 is urged by compression spring 33
against the periphery of the blade 17, the shoulder 31 serving to provide an abutment
for the spring 33. The mouth 34 of the mouthpiece 32 is generally rectangular in end
view with its major direction parallel to the direction of rotation of the blade 17
in the hub body 15 whereby fluid communication between the hub bore and a bore 35
in the blade 17 is maintained over the relatively small range of pitch angles at which
air fed to the blades gives desirable results. Thus when the blades 17 are in the
working pitch range air or other fluid fed into the inlet 20 passes along passages
21,24,26, through the hollow dowels 16 into the hub body 15 from which it is fed via
mouthpieces 32 into the channels 35 and thence to the blades. An O-ring 36 in the
blade periphery seals against the hub body 15 to prevent seawater ingress to the interface
between the mouthpiece 32 and the blade periphery, thereby obviating marine growth.
An outer ring 40 on the flange 14 provides both protection against sea-water ingress
to the flange 14 and a smooth external profile between the flange 19 and the hub body
15 and has 0-rings 41, 42 in its end faces to prevent seawater ingress.
[0012] A slip ring assembly generally indicated by the reference numeral 45 is supported
for rotation on the outer sleeve 18 by means of fore and aft split bearings 46, 47
in a housing 48. A pair of axially spaced air seals 49, 50 are also supported in the
housing 48 for wiping contact with the sleeve 18, and they define therewith an annular
space 51 within which the inlet passage 20 rotates. The air seals are segmented and
the segments are urged into contact with the sleeve 18 by means of garter springs
52. The inner faces of the seals 49, 50 are sealed to the housing 48 by means of O-rings
53. Anti-rotation pins 44 prevent the individual segments of the seals 49, 50 from
rotating in the housing 48. Air is fed down the A-bracket through feed pipe 54 that
leads through elbow 55 to a coupling or "bellows" 56 of resiliently flexible material
that is bolted to the housing 48, whereby air can be fed down the A-bracket into the
bellows 56 and thence via radial bore 57 in the housing 48 to the annular space 51.
It may be desirable to feed water to the seals 49, 50 to act as lubricant, and for
this purpose the A-bracket 12 is further provided with a water feed pipe 58 that communicates
via injection nozzle 59 with the air feed pipe 54. This method of feeding water is,
however, less preferred than a method where water is fed direct to the seals as described
below.
[0013] The slip ring is restrained from rotating about the outer sleeve 18 by means of an
anti-rotation device, and a preferred such device is ilustrated in Figure 2. The housing
48 is provided with one or more radially projecting spigots 60 that are held by rubber
bushes 61 in anti-rotation arms 62 that are bolted to the A-bracket 12.
[0014] The slip ring assembly 45 is shown in more detail in Figures 4a-4c and is seen to
consist of a housing formed in halves 48a, 48b that are flanged at their ends and
are secured together by bolts 70 through the flanges. The housing is formed of three
coaxial rings fastened together by means of bolts 71 with a central ring 72 recessed
at its forward and aft faces to define with outer rings 73, 74 channels that receive
the air seals 49, 50, each outer ring 73, 74 being formed with a channel that receives
one of the bearings 46, 47. Each bearing 46, 47 is formed in two halves that are retained
in its respective half outer ring by end washers 75 that locate against the end faces
of the half ring.
[0015] The individual segments of the seals 49, 50 have overlapping features on either end
to minimise the potential leakage of air to the surrounding water. The outer surfaces
of the segments are recessed to accommodate the garter spring and a number of radial
passages through the segments allow passage of lubricating water.
[0016] A preferred construction of seal housing assembly is shown in Figures 5, 6 and 7
in the context of a fixed pitch propeller. The arrangement is generally similar to
that of Figure 1 except that the tailshaft 10 is not flanged and the hub body 15 is
bolted directly to the outer sleeve flange 19 by means of bolts 90, the radial passages
24 leading direct into passages 35' leading through the hub body 15 to the blades.
An aft extension 92 of the sleeve 18 fits within a recess in the hub 15, being approximately
coextensive with the inner sleeve 11. The water supply from the A-bracket 12 to the
seals 49, 50 is shown in Figure 6. The water feed is through a separate pipe that
enters the housing 48 at a radial position spaced from the bore 57 via an inlet 93
that branches to fore and aft axial channels 94, 95 leading through radial channels
96, 97 to the rear face of respective seals 49, 50, the radial drilling 84 in the
seals serving to lead the water to the working face of the seals.
[0017] It will be appreciated that various modifications may be made to the embodiments
described herein without departing from the invention, the scope of which is defined
in the appended claims.
1. A multi-bladed propeller and shaft assembly in which air can be fed to the propeller
blades to suppress the effects of cavitation, including
a shaft (10) leading to the multi-bladed propeller (15);
a sleeve (18) on the shaft (10) formed with passages (20, 21, 24) leading to the respective
blades (17);
slip ring means (45) supported in an anti- rotation device (62) allowing the shaft
sleeve (18) to rotate within axially spaced bearings (46, 47) in the slip ring means
(45) and provided with axially spaced air seals (49, 50) together defining with a
body (48) of said slip rings means (45) an annular space (51) within which inlets
(20) to said passages (21, 24) rotate, said seals (49, 50) being formed as a multiplicity
of arcuate segments (80) resiliently biased towards the sleeve (18) and having movably
sealed end face portions (81, 82) to maintain pressure-tightness, and said body (48)
having a radial flow passage (57) for admission of air under pressure to said annular
space (51); and
a flexible fluid connector (56) connecting the radial flow passage (57) to an air
supply line (54) leading from the hull structure.
2. An assembly according to Claim 1, further comprising means (58) for supplying water
to the seals (49, 50) and bearings (46, 47) for cooling and/or lubrication thereof.
3. An assembly as claimed in Claim 1, wherein the several segments (80) of each seal
are urged towards the shaft by means of a garter spring (52).
4. An assembly as claimed in claim 1, wherein the slip ring means (45) is restrained
to follow any radial movement of the propeller shaft (10) to maintain alignments irrespective
of shaft attitude or wear-down of main bearings.
5. An assembly as claimed in claim 1, wherein antirotation pegs (44) engaged between
the body (48) and the seal segments (49, 50, 80) prevent rotation thereof, each seal
(49, 50) is received in a groove of generally channel-section in the body (48) and
O-rings means (53) in an end face of each seal (49, 50) that is exposed to air under
pressure seals against the channel to prevent escape of air behind the seal (49, 50)
and the bearings (46, 47) engage plain regions of the sleeve (18) so that the sleeve
(18) can move axially through the slip ring (45) as the shaft length alters.
6. An assembly as claimed claim 1, wherein the . sleeve (18) is formed with axial
passages (21) that terminate in radial passages (24) leading to the respective blades
(17), a blade hub (15) of the propeller being connected to the shaft (10) by means
of dowels (16) socketed into the hub (15) and an end flange (14) of the shaft (10),
and the radial passages (24) lead to the blades (17) through said dowels (16).
7. An assembly according to Claim 6, wherein the blades (17) are rotatably supported
in the hub (15), the air passages (26) leading to the blade periphery are connected
thereto by means of spring loaded mouthpieces (32, 33) such that the connection to
the blade (17) is maintained over a range of blade angular positions.
8. An assembly according to claim 7, wherein the periphery of each blade (17) is provided
with an 0-ring (36) that seals against the hub (15) to prevent seawater flow around
the interface between the mouthpiece (32) and the blade periphery.
9. An assembly according to claim 1, wherein the slip ring (45) is resiliently restrained
against rotation at a single point on its circumference. 10. A multi-bladed propeller
and shaft assembly in which air can be fed through passages (20, 21, 24) in the shaft
(10,18) to the propeller blades (17) to suppress the effects of cavitation, wherein
said passages open through the side of the shaft and rotate in an annulus (51) defined
between axially spaced air seals (49, 50) each formed as a multiplicity of arcuate
segments (80) resiliently biased towards the shaft (18) and having lapped or otherwise
movably sealed end face portions (81, 82) to maintain pressure tightness, said air
seals (49, 50) forming part of slip ring means (45) supported on the shaft by an anti-rotation
device (62) and air being fed to said annulus (51) via a flexible fluid connector
(56) betwen the slip ring (45) and air supply line (54) leading from the hull structure.
1. Vorrichtung mit einer Welle und einem Propeller mit mehreren Flügeln, wobei den
Propellerflügeln Luft zu Unterdrückung von Kavitationseffekten zuführbar ist, mit
einer zu dem mehrflügligen Propeller (15) führenden Weil (10),
einer Hülse (18) auf der Welle (10) mit Durchgängen (20, 21, 24), die zu den betreffenden
Flügeln (17) führen,
in einer Antirotationseinrichtung (62) gelagerten Schleifringmitteln (45), welche
ein Rotieren der Wellenhülse (18) innerhalb von axial getrennten Lagern (46, 47) in
den Schleifringmitteln (45) erlauben und mit axial getrennten Luftdichtungen (49,
50) versehen sind, welche zusammen mit einem Körper (48) der Schleifringmittel (45)
einen ringförmigen Raum (51) bilden, innerhalb welchem Öffnungen (20) zu den Durchgängen
(21, 24) rotieren, wobei die Dichtungen (49, 50) von einer Mehrzahl von bogenförmigen
Segmenten (80) gebildet sind, welche elastisch gegen die Hülse (18) gespannt sind
und zur Aufrechterhaltung der Druckabdichtung beweglich dichtende Endbereiche (81,
82) aufweisen, wobei der Körper (48) zur Zuführung von Druckluft in den ringförmigen
Raum (51) einen radialen Durchgang 57) aufweist und
einem flexiblen Fluidverbindungsstück (54), welches den radialen Durchgang (57) mit
einer in den Bootsrumpf führenden Luftzuführleitung (54) verbindet.
2. Vorrichtung nach Anspruch 1 mit Mitteln (58) zu Leitung von Wasser zu den Dichtungen
(49) und lagern (46,47) zur Kühlung und/oder Schmierung derselben.
3. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß einige Segmente (80) jeder
Dichtung mittels einer Ringbandfeder (52) gegen die Welle gedrückt sind.
4. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Schleifringmittel
(45) derart arretiert sind, daß sie jeder radialen Bewegung der Propellerwelle (10)
zur Aufrechterhaltung ihrer Ausrichtungen unabhängig von der Wellenstellung oder einer
Abnutzung der Hauptlager folgen.
5. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß Antirotationsstifte (44)
zwischen dem Körper (48) und den Dichtungssegmenten (49, 50, 80) eine Rotation derselben
verhindern, wobei jede Dichtung (49, 50) in einer Nut eines im wesentlichen kanalartigen
Bereichs im Körper (48) aufgenommen ist und O-Ringe (53) in einem Endbereicht jeder
Dichtung (49, 50), welche der Luft unter Druck ausgesetzt ist, den Kanal zur Verhinderung
des Austretens von Luft hinter die Dichtungen (49, 50) dichten, und wobei die Lager
(46,47) in ebene Bereiche der Hülse (18) derart eingreifen, daß die Hülse (18) axial
beweglich durch den Schleifring (45) ist, wenn sich die Wellenlänge verändert.
6. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Hülse (18) axiale
Durchgänge (21) aufweist, die in radialen Durchgängen (24) enden, welche zu den Betreffenden
Flügeln (17) führen, wobei eine Flügelnabe (15) des Propellers mittels in die Nabe
(15) und einen Endflansch (14) der Welle (10) eingreifenden Keilen mit der Welle (10)
verbunden ist und wobei die radialen Durchgänge (24) zu den Flügeln (17) durch diese
Keile (16) führen.
7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, daß die Flügel (17) drehbar
in der Nabe (15) gelagert sind, wobei die zum Flügelumfang führenden Luftdurchgänge
(26) damit mittels federbelasteter Mundstücke (32, 33) derart verbunden sind, daß
die Verbindung zu dem Flügel (17) über einen Bereich von Winkelpositionen aufrechterhaltbar
ist.
8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, daß der Umfang jedes Flügels
(17) mit einem O-ring (36) versehen ist, welcher gegen die Nabe (15) abdichtet, um
ein Eindringen von Wasser in den Bereich zwischen Mundstück (32) und Flügelumfang
zu verhindern.
9. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der Schleifring (45) an
einem einzigen Punkt seines Umfangs zur Verhinderung einer rotationsbewegung elastisch
arretiert ist.
10. Vorrichtung mit einer Welle und einem Propeller mit mehreren Flügeln, wobei den
Propellerflügeln (17) Luft durch Durchgänge (20, 21, 24) in der Welle (10, 18) zur
Unterdrückung von Kaviationseffekten zuführbar ist, dadurch gekennzeichnet, daß die
Durchgänge sich durch die Seite der Welle öffnen und in einem Ringraum (51) rotieren,
welcher zwischen den axial getrennten Luftdichtungen (49, 50) definiert ist, wobei
jede Dichtung aus einer Mehrzahl von bogenförmigen Segmenten (80) gebildet ist, welche
elastisch gegenüber der Welle (18) gespannt sind und gelappte oder andere beweglich
dichtende Endbereiche (81, 82) zur Aufrechterhaltung der Druckdichtigkeit aufweisen,
wobei die Luftdichtungen (49, 50) einen Teil der Schleifringmittel (45) bilden, welche
mittel einer Antirotationseinrichtung (62) auf der Welle gelagert sind,-wobei die
Luft durch den Ringraum (51) über ein flexibles Verbindungsstück (56) zwischen dem
Schleifring (45) und einer vom Bootsrumpf kommenden Luftzuführleitung (54) zuführbar
ist.
1. Assemblage d'un arbre et d'une hélice à plusieurs pales dans lequel de l'air peut
être amené aux pales de l'hélice pour supprimer les effets de la cavitation, comprenant
un arbre (10) conduisant à l'hélice à plusieurs pales (15);
un manchon (18) placé sur l'arbre (10) et muni de passages (20, 21, 24) conduisant
aux pales respectives (17);
des moyens d'anneau de glissement (45) montés dans un dispositif anti-rotation (62)
permettant au manchon d'arbre (18) de tourner à l'intérieur de coussinets axialement
espacés (46, 47) dans les moyens d'anneau de glissement (45) et comportant des joints
d'étanchéité d'air axialement espacés (49, 50) définissant avec un corps (48) des
moyens d'anneau de glissement (45) un espace annulaire (51) à l'intérieur duquel tournent
les orifices d'entrée (20) aboutissant aux passages (21, 24), ces joints d'étanchéité
(49, 50) étant constitués d'une multiplicité de segments courbes (80) poussés élastiquement
vers le manchon (18) et comportant des parties de faces d'extrémité mobiles étanches
(81, 92) permettant de maintenir l'étanchéite à la pression, et le corps (48) comportent
un passage de débit radial (57) destiné à l'admission d'aire sous pression dans l'espace
annulaire (51); et
un connecteur de fluide flexible (56) reliant le passage de débit radial (57) à une
conduite d'alimentation d'air (54) arrivant de la structure de coque.
2. Assemblage selon la revendication 1, caractérisé en ce qu'il comprend en outre
des moyens (58) destinés à fournir de l'eau aux joints d'étanchéité (49, 50), et des
coussinets (46, 47) destinés à refroidcr et/ou à lubrifier ceux-ci.
3. Assemblage selon la revendication 1, caractérisé en ce que les différents segments
(80) de chaque joint d'étanchéité sont poussés vers l'arbre par un ressort de jarretière.
4. Assemblage selon la revendication 1 caractérisé en ce que les moyens d'anneau de
glissement (45) sont retenus de manière à suivre tout mouvement radial de l'arbre
d'hélice (10) pour maintenir les alignements quelles que soient l'attitude de l'arbre
ou l'usure des paliers principaux.
5. Assemblage selon la revendication 1, caractérisé en ce que les chevilles anti-rotation
(44) engagées entre le corps (48) et les segment de joints d'étanchéité (49, 50, 80)
empêchent la rotation de celui-ci, en ce que chaque joint d'étanchéité (49, 50) est
logé dans une rainure du corps (48) à section en forme générale de passage, en ce
que les moyens de joints toriques (53) formés dans une face d'extrémité de chaque
joint d'étanchéité (49, 50) exposée à l'air sous pression, assurent l'étanchéité contre
le passage pour empêcher l'échappement de l'air derrière le joint d'étanchéité (49,
50), et en ce que des paliers de roulement (46, 47) s'engagent sur les zones lisse
du manchon (18) de façon que ce manchon (18) puisse se déplacer axialement à travers
l'anneau glissant (45) lorsque la longueur de l'arbre varie.
6. Assemblage selon la revendication 1, caractérisé en ce que le manchon (18) est
muni de passages axiaux (21) se terminant par des passages radiaux (24) aboutissant
aux pales respective (17), en ce qu'un moyen de pale (15) de l'hélice est relié à
l'arbre (10) par des goujons (16) logés dans le moyeu (15) et dans un rebord d'extrémité
(14) de l'arbre (10), et en ce que les passages radiaux (24) aboutissent aus pales
(17) par l'intermédiaire des goujons (16).
7. Assemblage selon la revendication 6, caractérisé en ce que les pales (17) sont
montées en rotation sur le moyeu (15), en ce que les passages d'air (26) aboutissant
à la périphérie des pales sont reliés à celle-ci par des embouchures poussées par
des ressorts (32, 33) de façon que la liaison à l'hélice (17) soit maintenue dans
une plage de positions angulaires des pales.
8. Assemblage selon la revendication 7, caractérisé en ce que la périphérie de chaque
pale (17) est munie d'un joint torique (36) assurant l'étanchéité contre le moyeu
(15) pour empêcher l'eau de mer de circuler autour de l'interface entre l'embouchure
(32) et la périphérie des pales.
9. Assemblage selon la revendication 1, caractérisé en ce que la rotation de l'anneau
de glissement (45) est retenue élastiquement en un point unique de sa circonférence.
10. Assemblage d'un arbre et d'un hélice à plusieurs pales, dans lequel de l'air peut
être amené aux pales (17) de l'hélice par des passages (20, 21, 24) de l'arbre (10,
18) pour supprimer les effets de la cavitation, caractérisé en ce que les passages
débouchent par le côté de l'arbre et tournent dans un espace annulaire (51) défini
entre des joints d'étanchéité d'air axialement espacés (49, 50) constitués chacun
d'une multiplicité de segments courbes (80) poussés élastiquement contre l'arbre (18)
et comportant des parties de face d'extrémité (81, 82) en recouvrement ou dont l'étanchéité
en mouvement est assurée de toute autre manière, pour maintenir l'étanchéite à la
pression, ces joints d'étanchéité d'air (49, 50) faisant partie de moyens d'anneau
de glissement (45) montés sur l'arbre par un dispositif anti- rotation (62), et en
ce que de l'air est amené à l'espace annulaire (51) par l'intermédiare d'un connecteur
de fluid flexible (56) entre l'anneau de glisssement (45) et une conduite d'alimentation
d'air (54) arrivant de la structure de coque.