(19)
(11) EP 0 076 700 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
08.03.1989 Bulletin 1989/10

(21) Application number: 82305305.3

(22) Date of filing: 05.10.1982
(51) International Patent Classification (IPC)4H04N 1/04

(54)

Input/output scanner for document processing

Eingabe-Ausgabe-Abtastanlage für die Verarbeitung von Dokumenten

Dispositif d'analyse d'entrée-sortie pour le traitement de documents


(84) Designated Contracting States:
DE FR GB

(30) Priority: 05.10.1981 US 308301

(43) Date of publication of application:
13.04.1983 Bulletin 1983/15

(73) Proprietor: XEROX CORPORATION
Rochester New York 14644 (US)

(72) Inventors:
  • Turner, William D.
    San Marino California 91108 (US)
  • Sprague, Robert A.
    Saratoga California 95070 (US)

(74) Representative: Weatherald, Keith Baynes et al
Rank Xerox Ltd Patent Department Parkway
Marlow Buckinghamshire SL7 1YL
Marlow Buckinghamshire SL7 1YL (GB)


(56) References cited: : 
EP-A- 0 048 595
US-A- 4 281 904
US-A- 4 060 319
US-A- 4 288 822
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] This invention relates to input/output scanners and, more particularly, to integrated input/output scanners for electronic document processors and the like.

    [0002] Substantial effort and expense have been devoted to the development of electronic document processors which are capable of performing various document-processing functions, including facsimile transmission and reception, computing printing, and document editing and storage. One of the basic goals has been to combine such an electronic document processing capability efficiently and economically with a conventional photocopying capability.

    [0003] As is known, an electro-optic element having a plurality of individually addressable electrodes may be employed as a multigate light valve for electro-optic line printing. See US―A―4 281 904; "Light Gates Give Data Recorder Improved Hardcopy Resolution," Electronic Design, July 19, 1979, pp. 31-32; "Polarizing Filters Plot Analog Waveforms" Machine Desgin, Vol. 51, No. 17, July 26, 1979, p. 62; and "Data Recorder Eliminates Problem of Linearity," Design News, February 4, 1980, pp. 56-57. The above US patent discloses using individually-addressed electrodes to modulate a beam of radiation passing through an electro-optic element and totally internally reflected from a face of the element.

    [0004] Indeed, significant progress has been made in developing such light valves and in applying them to electro-optic line printing. For example, an image represented by a serial input data stream may be printed on a standard photosensitive record medium through the use of a multigate light valve that is illuminated by a more or less conventional light source. That disclosure is of interest primarily because it teaches input data sample-and-hold techniques for minimizing the output power required of the light source. Furthermore, the electrodes and the electro-optic element of a multigate light valve may be physically distinct components which are pressed or otherwise firmly held together to achieve "proximity coupling". It is relatively easy to make the necessary electrical connections to the many electrodes of a typical proximity-coupled multi- gate light valve if the electrodes are formed by suitably patterning a metallization layer of, way, a VLSI silicon electrode driver circuit. The number of electrodes required of a multigate light valve for line printing at a given resolution is reduced by a factor of two if the input data are differentially encoded.

    [0005] In accordance with the present invention, a multi-gate light valve of the foregoing type is configured to provide an integrated input/output scanner for electronic document processing and the like. To that end, the input/output scanner comprises a photodetector array and an array of individually-addressable electrodes which are supported on a suitable substrate, such as a silicon integrated circuit, and held closely adjacent a longitudinal surface of an optically transparent electro-optic element. For output scanning, a sheet-like light beam is transmitted through the electro-optic element in a generally longitudinal direction and is spatially modulated in accordance with data applied to the electrodes. Readout optics convert the spatial phase front or polarization modulation of the light beam into a correspondingly modulated intensity profile to expose a record medium. On the other hand, for input scanning, a subject copy is imaged onto the photo detector array independently of or via the electro-optic element. The input imaging axis is selected to avoid any significant mixing between the input image and the output scanning beam so that there is little, if any, interference between the input scanning and output scanning functions. Moreover, if the input imaging is performed via the electro-optic element, the input imaging axis is aligned to be substantially normal to the intervening surfaces of the electro-optic element to avoid unwanted distortion of the image detected by the photodetector array.

    [0006] Still other features and advantages of this invention will become apparent when the following detailed description is read in conjunction with the attached drawings, in which:

    Figure 1 is a simplified schematic side view of an electronic document processor having an integrated input/output scanner constructed in accordance with the present invention;

    Figure is an enlarged side view of the input/ output scanner shown in Figure 1;

    Figure 3 is a partial plan view of the document processor of Figure 1 to illustrate the readout optics for the scanner;

    Figure 4 is a schematic block diagram showing a photodetector array and a electrode array for input scanning and output scanning, respectively and typical image processors, and

    Figure 5 is a simplified block diagram of a system for applying differentially-encoded input data samples to the electrodes of the input/output scanner shown in Figure 4.



    [0007] Turning now to the drawings, and at this point especially to figures 1 and 2, there is an electronic document processor 11 (shown only in relevant part) having an integrated input/output scanner 12. In keeping with the present invention, the scanner 12 comprises an optically transparent electro-optic element 13, a linear photodetector array 14 or equivalent, and an array 15 of individually-addressable electrodes 15a-15i (the arrays 14 and 15 can be seen in Figure 4). Preferably, the photodetector array 14 and the electrode array 15 are supported on a separate substrate 16, such as a VLSI silicon circuit, and are held closely adjacent a longitudinal surface 17 of the electro-optic element 13. For example, the substrate 16 may be pressed against the electro-optic element 13, as indicated by the arrows 18 and 19, essentially to butt the photodetector array 14 and the electrode array 15 against the surface 17.

    [0008] For input scanning. the document processor 11 includes a transparent platen 21 for supporting a subject copy 22, such as an original document, which in operation is illuminated (by means not shown) and advanced (by means also not shown) is a cross line or scan pitch direction relative to the linear photodetector array 14 (i.e., longitudinally of the electro-optic element 13), as indicated by the arrow 23. Furthermore, there is an imaging lens 24 for imaging successive lines of the subject copy 22 onto the photodetector array 14 via the electro-optic element 13, thereby causing the photodetector 14a-14i (Figure 4) to generate data samples representing the information content of the subject copy 22. As will be seen, the optical axis 25 of the input scanner is aligned perpendicularly to the intervening pair of parallel opposed longitudinal surfaces 17 and 26 of the electro-optic element 13 to minimize the image distorting effects of the electro-optic element 13.

    [0009] In keeping with accepted practices for output scanning or printing, a sheet-like collimated light beam 31 is transmitted in a generally-longitudinal direction through the electro-optic element 13. The light beam 31 is supplied by a suitable source (not shown), such as a laser, and is laterally expanded to illuminate substantially the full width of the electro-optic element 13 (Figure 3). Data applied to the electrodes 15a-15i create localized variations in the refractive index of the electro-optic element 13, thereby spatially modulating the phase front or polarization of the light beam 31 in accordance with such data. Accordingly, the input/output scanner 12 includes readout optics 32 for converting the phase or polarity modulation of the light beam 31 into a correspondingly- modulated intensity profile, thereby providing an intensity-modulated light beam 33 which is focused onto a photosensitive record medium 34. In operation, the record medium 34 is advanced in a cross-line or line-pitch direction relative to the light beam 33, as indicated by the arrow 35, and data sample sets, representing picture elements for successive lines of an image, are sequentially applied to the electrodes 15a-15i. Thus, the output scanner functions as a line printer.

    [0010] The electro-optic element 13 may be formed from any one of a variety of optically transparent electro-optic materials. As of now, the most promising electro-optic materials appear to be LiNb03 and LiTa03, but there are others which warrant consideration, including BSN, KDP, KD"P, Ba2NaNbsOlr, and PLZT. In the illustrated embodiment the input/output scanner 12 is operated in a total internal relection (TIR) mode for output scanning. Consequently, the electro-optic element 13 suitably is a y-cut crystal of, say, LiNb03 having opposed, optically-polished, input and output faces 38 and 39, respectively, and opposed, optically-polished longitudinal surfaces 17 and 25, respectively. As will be seen, the longitudinal surface 17 of the crystal internally reflects the light beam 31 to achieve a TIR mode of operation.

    [0011] More particularly, for a TIR mode of operation, the light beam 31 is applied to the electro-optic element 13 at a grazing angle of incidence relative to its longitudinal surface 17 (i.e., an angle no greater than the critical angle of incidence for total internal reflectance therefrom) and is brought to a wedge-shaped focus (by means not shown) on the reflecting surface 17 at approximately the longitudinal midline of the electrode array 15 (Figure 4). Consequently, the light beam 31 totally internally reflects from the surface 17 and interacts, both before and after such reflection, with any electric fringe fields that have been coupled into the electro-optic element 13 by the electrodes 15a-15i. As will be appreciated, proximity coupling is relied on in the illustrated embodiment to cause those fields to penetrate into the electro-optic element 13. There is little, if any, interference between the input and output scanning functions of the scanner 12 because (1) the light beam 31 does not mix with the input image and (2) any phase front or polarization modulation of the input image does not affect the image detected by the photodetectors 14a―14i (Figure 4).

    [0012] For the sake of this description it will be assumed that the phase front of the light beam 31 is modulated in accordance with the data applied to the electrodes 15a-15i. Hence, Schlieren central dark field or bright field imaging optics are used to convert the spatial phase front modulation of the light beam 31 into a correspondingly- modulated intensity profile, and to supply any magnification that may be needed to obtain an image of the desired size on the record medium 34. In even more detail, as shown in Figures 1 and 3, the readout optics 32 are central dark field optics comprising a field lens 41, a central stop 42, and an imaging lens 43. The field lens 41 is optically aligned between the output face 39 of the electro-optic element 17 and the stop 42 to focus substantially all the zero-order diffraction components of the modulated light beam 31 onto the stop 42. However, the higher-order diffraction components of the light beam 31 scatter around the stop 42 and are collected by the imaging lens 43 to provide the intensity-modulated light beam 33 for exposing the record medium 34.

    [0013] Of course, if the light beam 31 is polarized (by means not shown) before being applied to the electro-optic element 13, its polarization will be spatially modulated in accordance with the data applied to the electrodes 15a-15i. In that event, a polarization analyzer (also not shown) may be used to provide the intensity-modulated light beam 33.

    [0014] Referring to Figure 4, for increased simplicity and reliability, the photodetector array 14 and the electrode array 15 preferably are components of a VLSI silicon circuit 16. Standard VLSI circuit fabrication techniques may be used to form a plurality of charge-coupled device (CCD) or photodiode cells 14a-14i in adjacent alignment on such a circuit, thereby defining the photodetector array 14. Moreover, the metallization layer of such a circuit may be suitably patterned to define the individually-addressable electrodes 15a-15i. As will be seen, the photodetector array 14 and the electrode array 15 are laid out in parallel spaced alignment on the VLSI circuit 16 to extend across substantially the full width of the electro-optic element 13 (Figure 2). Typically, each of the electrodes 15a-15i, is about 10 11m wide, and the interelectrode gap spacing is about the same. In this particular embodiment, there are equal numbers of photodetector cells 14a-14i and electrodes 15a-15i, and each of the electrodes 15a-15i is individally addressable. Neverther- less, it should be understood that any ratio of photodetector cells to individually-addressable electrodes may be accommodated, even if the document processor 11 is to be used for electronic copying. Moreover, it should be noted that ground plane electrodes (not shown) could be interleaved with the individually addressable electrodes 15a-15i.

    [0015] As will be appreciated, other circuits may be included as a part of the VLSI circuit 16 or connected thereto. For example, as shown, the VLSI circuit 16 comprises an integrated or "on- board" parallel data processor 51 for digitizing the data samples generated by the photodetector cells 14a-14i and for differentially encoding those samples for application to the electrodes 15a-15i, thereby enabling the document processor 11 (Figure 1) to operate in an electronic copier mode. A function generator (not shown) also could be built into the data processor 51 to superimpose an electronic screening function on the differentially-encoded data for half-tone printing. To account for the various image processing functions the data processor 51 may perform, the data samples applied to the electrodes 15a-15i are referred to hereinafter as "processed samples," but that designation is not intended to imply that the data samples have been subjected to any particular transformation. To carry this example even further, there is a separate serial data processor 52 which is connected to receive data samples which are serially shifted out of the photodetector cells 14a―14i and to apply data samples to the electrodes 15a-15i via the processor 51. The serial data processor 52 not only can perform the digitizing, encoding and screening functions of the parallel data processor 51, but also can accommodate communications to and from remote devices (not shown). The details of the data processors 51 and 52 are beyond the scope of the present invention, particularly since a wide variety of implementations will be evident to persons skilled in the image-processing art. Of course, a comprehensive listing of the image-processing functions that the data processors 51 and 52 might be configured to perform is not feasible, but data interpolation merging of real and artificial images, and image enhancement are clearly among them.

    [0016] Turning to Figure 5, to supply the differentially-encoded data samples for the electrodes 15a-15i in response to a serial stream of data samples, there is a differential encoder 61 for differentially encoding the input samples on a line-by-line basis, and a multiplexer 62 for rippling the encoded data samples onto the electrodes 15a-15i. A controller 63 synchronizes the encoder 61 and the multiplexer 62 to match the encoding rate and the ripple rate to the data rate of the serial data stream. Alternatively, data buffers (not shown) could by provided to allow for variations in those rates.

    [0017] As a matter of definition, each differentially-encoded data sample, other than the first sample for each line of the image, has a magnitude which differs from the magnitude of the previous differentially-encoded sample by an amount corresponding to the magnitude of a particular imput data sample. The first differentially-encoded sample for each line of the image is referenced to a predetermined potential, such as ground. Thus, when the differentially-encoded data samples for any given line of an image are applied to the electrodes 15a-15i, all picture elements for that line are faithfully represented by the magnitude of the voltage drops appearing between respective pairs of neighboring electrodes. Preferably, the differentially-encoded data samples are binary digital data, but analog data may also be differentially encoded for application to the electrodes 15a-15i.

    [0018] It will be evident that there are many variations to the present invention. For example, the electrodes 15a-15i could be tilted at the Bragg angle relative to the optical axis of the output scanner. Another possibility is that the electrodes 15a-15i could be convergent on the entrance pupil of the imaging lens 43, thereby allowing for the use of non-telecentric imaging optics.


    Claims

    1. An integrated input/output scanner (12) for generating a first group of data samples to represent the information content of an original (22) and for exposing a photosensitive record medium (34) in accordance with a second group of data samples representing picture elements of an image; the scanner comprising

    an optically transparent electro-optic element (13);

    an array of photodetectors (14);

    an array of individually-addressable electrodes (15) spaced-apart laterally of the electro-optic element adjacent a major surface (17) thereof;

    a substrate (16) for supporting the photodetector and electrode arrays, the substrate being an integrated circuit maintained closely adjacent the major surface of the electro-optic element;

    means for transmitting a beam of radiation through the electro-optic element in a generally longitudinal direction, the beam being collimated laterally of the electro-optic element;

    means (24) for imaging an original onto the photodetector array without any appreciable mixing with the beam, whereby the photodetectors generate a first group of data samples;

    means (51) for applying a second group of data samples to the integrated circuit to couple electric fields into the electro-optic element for modulating the beam in accordance with the second group of data samples, and

    means (32) for focusing the modulated beam on the record medium to expose it in accordance with the image.


     
    2. The input/output scanner of claim 1, wherein the major surface is one of a pair of parallel major surfaces of the electro-optic element, and
    the original is imaged onto the photodetector array via the electro-optic element on an axis which is substantially normal to the major surfaces.
     
    3. The input/output scanner of claim 1 or 2, further including

    means (52, 51) for feeding processed data samples from the photodetectors to the electrodes to copy the original contemporaneously.


     
    4. The input/output scanner of any preceding claim, further including
    means for transmitting the first group of data samples to a remote device, and for receiving the second of samples from a remote device for a communicating mode of operation.
     
    5. The input/output scanner of any preceding claim, wherein

    the major surface of the electro-optic element is an optically polished, reflecting surface, and

    the beam is applied internally of the electro-optic element at a grazing angle of incidence relative to the major surface for total internal reflection therefrom.


     
    6. The input/output scanner of any precding claim, wherein

    the imaging means sequentially images successive lines of the original onto the photodetectors to scan the original on a line-by-line basis, and

    data samples representing picture elements for successive lines of the image are sequentially applied to the electrodes to replicate the image line-by-line.


     
    7. The input/output scanner of any precding claim, wherein
    each of the electrodes is individually addressable, and further including means for differentially encoding the second group of data samples for application to the electrodes.
     


    Ansprüche

    1. Integrierter Eingabe-Ausgabe-Abtaster (12) zum Erzeugen einer ersten Gruppe Datenabtastwerte, um den Informationsinhalt einer Vorlage (22) darzustellen und ein photoempfindliches Aufzeichnungsmedium (34) in übereinstimmung mit einer zweiten Gruppe Datenabtastwerte, die Bildelemente eines Abbildes darstellen, zu belichten, enthaltend:

    ein optisch tranparentes elektrooptisches Element (13);

    eine Gruppe von Photodetektoren (14);

    eine Gruppe von einzeln adressierbaren Element benachbart einer Hauptfläche (17) desselben angeordnet sind;

    ein Substrat (16) zum Halten der Photodetektor-und Elektrodengruppen, wobei das Substrat eine integrierte Schaltung ist, die in dichten Abstand zur Hauptfläche des elektrooptischen Elements gehalten ist;

    eine Einrichtung zum Aussenden eines Strahlungsstrahles durch das elektrooptische Element in einer im wesentlichen längsgerichteten Richtung, wobei der Strahl seitlich des elektrooptischen Elementes parallelgerichtet wird;

    eine Einrichtung (24) zum Abbilden einer Vorlage auf die Photodektorgruppe ohne merkliche Mischung mit dem Strahl, wodurch die Photodetektoren eine erste Gruppe Datenabtastwerte erzeugen;

    eine Einrichtung (51) zum Zuführen einer zweiten Gruppe Datenabtastwerte zu der integrierten Schaltung, um elektrische Felder in das elektrooptische Element zu koppeln, um den Strahl in übereinstimmung mit der zweiten Gruppe Datenabtastwerte zu modulieren, und

    eine Einrichtung (32) zum Fokussieren des modulierten Strahls auf das Aufzeichnungsmedium, um dieses in übereinstimmung mit dem Abbild zu belichten.


     
    2. Eingabe-Ausgabe-Abtaster nach Anspruch 1, bei dem die Hauptfläche eine von einem Paar paralleler Hauptflächen des elektrooptischen Elements ist und
    die Vorlage auf die Photodetektorgruppe über das elektrooptische Element auf einer Achse abgebildet wird, die im wesentlichen senktrecht zu den Hauptflächen verläuft.
     
    3. Eingabe-Ausgabe-Abtaster nach Anspruch 1 oder 2, weiterhin enthalten eine Einrichtung (52, 51) zum Zuführen verarbeiteter Datenabtastwerte von den Photodetektoren zu den Elektroden, um die Vorlage gleichzeitig stattfindend zu kopieren.
     
    4. Eingabe-Ausgabe-Abtaster nach einem der vorhergehenden Ansprüche, weiterhin enthaltend eine Einrichtung zum Aussenden der ersten Gruppe Datenabtastwerte an eine entfernte Einrichtung und zum Empfangen der zweiten Gruppe Abtastwerte von einer entfernten Einrichtung für eine übertragungsbetriebsart.
     
    5. Eingabe-Ausgabe-Abtaster nach einem der vorhergehenden Ansprüche, bei dem die Hauptfläche des elektrooptischen Elements eine optisch polierte, reflektierende Oberfläche ist und der Strahl im Innern des elektrooptischen Elementes unter einem flachen Einfallswinkel relativ zur Hauptfläche zum Zwecke einer inneren Tolalreflexion daraus zugeführt wird.
     
    6. Eingabe-Ausgabe-Abtaster nach einem der vorhergehenden Ansprüche, bei dem die Abbildungseinrichtung sequentiell aufeinanderflo- gende Zeilen der Vorlage auf die Photodetektoren abbildet, umd die Vorlage auf Zeilenbasis abzutasten, und die Datenabtastwerte, die Bildelemente aufeinanderfolgender Zeilen des Abbildes darstellen, sequentiell den Elektroden zugeführt werden, um das Abbild zeilenweise wiederzugeben.
     
    7. Eingabe-Ausgabe-Abtaster nach einem der vorhergehenden Ansprüche, bei dem jede der Electroden einzeln adressierbar ist, und weiterhin enthaltend eine Einrichtung zum unterschiedlichen Kodieren der zweiten Guppe Datenabtastwerte zur Zuführung zu den Elektroden.
     


    Revendications

    1. Dispositif de balayage intégré (12) d'entrée/ sortie pour produire un premier groupe d'échantillons de données et représenter le contenu en information d'un original (22) et pour exposer un support d'enregistrement photosensible (34) en conformité avec un second groupe d'échantillons de données représentant des éléments d'une image, le dispositif de balayage comprenant:

    -un élément électro-optique (13) transparent sur le plan optique;

    -une matrice de photodétecteurs (14);

    -une matrice d'électrodes (15) adressables indivduellement, espacées les unes des autres latéralement à l'élément électro-optique près de sa surface principale (17);

    -un substrat (16) pour supporter les matrices de photodétecteurs et d'électrodes, le substrat étant un circuit intégré maintenu en étant étroitement contigu à la surface principale de l'élément électro-optique;

    -des moyens pour transmettre un faisceau de rayonnement par l'intermédiaire de l'élément électro-optique dans une direction généralement longitudinale, le faisceau étant collimaté latéralement à l'élément électro-optique;

    -un moyen (24) pour faire une image d'un original sur la matrice de photodétecteurs sans mélange appréciable avec le faisceau, d'où il résulte que les photdétecteurs produisent un premier groupe d'échantillons de données;

    -un moyen (51) pour appliquer un second groupe d'é.chantillons de données au circuit intégré afin de coupler des champs électriques dans l'élément électro-optique pour moduler le faisceau en conformité avec le second groupe d'échantillons de données, et

    -un moyen (32) pour focaliser le faisceau modulé sur le support d'enregistrement afin de l'exposer en conformité avec l'image.


     
    2. Dispositif de balayage d'entrée/sortie selon la revendication 1, dans lequel la surface principale est l'une d'une paire de surfaces principales parallèles de l'élément électro-optique, et

    -l'original fait l'objet d'une image sur la matrice de photodétecteurs via l'élément électro-optique sur un axe qui est pratiquement perpendiculaire aux surfaces principales.


     
    3. Dispositif de balayage d'entrée/sortie selon la revendication 1 ou la revendication 2, comprenant en outre:

    -des moyens (52, 51) pour introduire les échantillons traités des données des photodétecteurs aux électrodes afin de reproduire l'original au même moment.


     
    4. Dispositif de balayage d'entrée/sortie selon l'une quelconque des revendications précédentes, comprenant en outre:

    -un moyen pour transmettre le premier groupe d'échantillons de données à un dispositif situé à distance, et pour recevoir la second groupe d'échantillons à partir d'un dispositif situé à distance pour un mode de fonctionnement par communication.


     
    5. Dispositif de balayage d'entrée/sortie selon l'une quelconque des revendications précédentes, dans lequel:

    -la surface principule de l'élément électro-optique est une surface réfléchissante, polie sur le plan optique, et

    -le faisceau est appliqué à l'intérieur de l'élément électro-optique suivant un angle d'incidence rasant par rapport à la surface principale pour qu'il y ait réflexion interne totale.


     
    6. Dispositif de balayage d'entrée/sortie selon. l'une quelconque des revendications précédentes, dans lequel:

    -le moyen d'imagerie procède séquentiellement à l'imagerie de lignes successives de l'original sur les photodétecteurs de manière à balayer l'original sur la base ligne par ligne, et

    -des échantillons de données représentant des éléments d'imag pour des lignes successives de l'image sont séquentiellement appliqués aux électrodes pour faire un reproduction de l'image ligne par ligne.


     
    7. Dispositif de balayage d'entrée/sortie selon l'une quelconque des revendications précédentes, dans lequel;

    -chacune des électrodes peut être adressée individuellement, et comprenant en outre un moyen pour coder différentiellement le second groupe d'échantillons de données pour application aux électrodes.


     




    Drawing