BACKGROUND OF THE INVENTION
[0001] This invention relates to security systems, in particular those that monitor whether
an opening is opened or secured. A switch is maintained at each opening in the closed
position when the opening is secured and opens when the door or window is opened.
Wireless systems, such as that described in U.S. Patent No. 4,367,458 (Hackett), assigned
to the same assignee as the present invention, must overcome problems caused by interference
from other communication systems and multipath. Ultrasonic systems, in particular,
are confronted with acoustical interference and are restricted in speed by the relatively
slow speed of sound. A wired alarm system avoids these problems. Furthermore, many
facilities are already wired, facilitating installation of a wired alarm system, such
as the present invention.
[0002] It is a common practice in wired alarm systems to connect the switch contacts at
the openings in series so that if one or more of the contacts opens, the circuit is
broken. The interruption in the current, causes an alarm. Also, an alarm would result
if the interconnecting wire is cut.
[0003] Prior to arming such an alarm system, all the openings must be secured, If an attempt
is made to arm the system while a window or door is open, an immediate alarm would
result. Usually the system will have an indicator to inform the user that one or more
of the openings has not been secured. If. that is the case, the alarm user would have
to search the premises to find which of the openings are not secured. In a large system
this can be a time consuming task.
[0004] A more serious problem encountered by users of alarm systems occurs when there is
a false alarm due to an intermittent contact. It is almost impossible to find the
faulty contact until its performance deteriorates to the point where it has become
continuous. By then the aggravation has often reached the point where the user has
asked the alarm company to remove the system.
[0005] To minimize this problem, systems exist which have been arranged in a zoned system,
the contacts are grouped together, each group returning through a separate input to
the control panel via its own separate wire.
[0006] If an opening has not been secured or there is an intermittent contact, the search
can be confined to the particular zone. The ideal system would have one zone per contact.
There are times when this could be done, but in general it would be very expensive
since it would require a wire to be run from each protected point back to an input
of the control. Besides requiring a large amount of wire, one input to the control
would be required for each monitored opening.
[0007] An example of a wired alarm system is found in U.S. Patent No. 4 203 096 (Farley
et al). In this system, the control unit provides power and synchronization to the
remote unit sensors. This system also makes use of double tone multifrequency signalling
techniques.
SUMMARY OF THE INVENTION
[0008] The present invention is directed to a multiplexed alarm system which can individually
monitor the status of a plurality of contacts wired along a single pair of wires to
a single input in the control unit. A microcomputer in the control unit may be used
to store and display the information obtained from the transponders at each contact.
This advantageously enables the user of this system to determine which contacts are
presently open and which contacts caused an alarm even though those contacts may be
secure at present.
[0009] The present invention accomplishes its multiplexing along a single line by sending
out a synchronizing signal to all of the transponders on the line. Each transponder
is assigned its own particular time delay before responding to the control unit. The
control unit will expect an acknowledgement signal from each transponder within an
allotted time slot at its assigned predetermined time delay. If an acknowledgement
signal is not received during a time slot, the control unit would indicate which contact
is not secure according to the time delay of the slot which lacked an acknowledgement
signal. Thus, using the present invention a single pair of wires may be used for a
plurality of contacts and the control unit may still provide an indication of the
individual contact which is open.
BRIEF DESCRIPTION OF THE DRAWINGS
[0010]
FIG. 1 is a diagrammatic representation of the signals sent out by the control unit
and the transponders as a function of time.
FIG. 2 is a diagrammatic representation of the control unit of the present invention.
FIG. 3 is a diagrammatic representation of a transponder for use in the present invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
[0011] The multiplexed alarm system of the present invention includes a control unit operated
by a microcomputer 10 and a plurality of transponders connected in parallel to constitute
a single zone of transponders. It is possible to expand the system of the present
invention to operate a plurality of zones of parallel connected transponders 20 with
a single microcomputer 10. The control unit supplies the transponders 20 in a zone
with power, a DC voltage and a synchronizing signal over a single pair of wires. A
transponder 20 is located at each protected opening where it connects to a contact
30. The contact 30 is opened whenever the protected opening, usually a window or door,
is likewise opened. Each transponder 20 is encoded with a unique identity number,
corresponding to a particular predetermined time delay.
[0012] The communication between the control unit and the transponders 20 is accomplished
in a time division multiplexing format. Referring now to FIG. 1 the control unit initiates
a scan of the transponders by sending a synchronizing signal over the pair of wires.
The synchronizing signal starts a programmable timer in each of transponders 20. The
synchronizing signal is a sequence of tone bursts. The identity number programmed
into each transponder 20 establishes the time slot in which it is to respond to the
control unit. If the corresponding contact 30 is closed, the transponder 20 will respond
with an acknowledgement signal after its preprogrammed time delay. If the contact
30 is open, the transponder will not respond. The control unit will interpret the
lack of an expected response as an open contact or a broken line.
[0013] The control unit may send alternative synchronizing signals to check upon the status
of other inputs that might be added to the circuitry. One such signal that is used
in the preferred embodiment is a troubleshooting signal. This signal checks whether
each of the transponders 20 is functioning and that the line is intact. The troubleshooting
signal is useful while the system is disarmed, since the user can be informed of a
malfunction before closing the premises and arming the alarm system. The troubleshooting
signal initiates a scan which causes each of the transponders 20 to respond regardless
of the state of the contact 30 connected to it. Thus, even if a door is left open
during the day while the system is disarmed, a troubleshooting scan would continuously
verify that the transponder is functioning and is properly connected to the system.
[0014] The control unit expects a response from each transponder 20 that is within the system.
Any break in a wire or malfunction of a transponder 20 will be noticed immediately.
There are also blank periods during which responses are not expected. The responses
during a typical scan in which units 1-5, 8 and N are on the line, are shown in FIG.
1. Responses were properly received from units, I, 2, 3, 5, 8 and N. There was no
response from unit 4. If this is a standard contact status scan, then unit 4 is logged
as an open contact. If this is a troubleshooting scan, unit 4 would be logged as a
nonfunctioning transponder. In the example shown in FIG. 1, units 6, and 9 through
N-1 are not being used, so the control unit is not expecting responses during their
respective time periods. If a signal was received when not expected or in a blank
period between signals, an alarm would result. This prevents someone from connecting
a signal generator to the line and feeding the control unit with a continuous response
tone in the hope of supplementing any missing responses when an opening is breached.
[0015] Referring now to FIG. 2, a diagram of the control unit is shown. A power supply 12
supplies a DC voltage, preferably 12 to 15 volts, to the internal circuitry of the
control unit as well as to the line connected to the transponders 20. A rechargeable
battery 14 is provided in the event that the power supply should be disabled or there
is a power outage. An overload protector 16 is used to prevent any damage to the system
that might be caused if the wires to the transponders 20 were shorted.
[0016] To maximize the performance from the system in the presence of noise, tone signaling
is used. Pulse signaling has been used in multiplexing applications in the past, but
these signals are vulnerable to impulse noise. Narrow band tone signaling is substantially
immune from noise since any noise energy would have to be confined within the narrow
band of the tone to have an adverse effect.
[0017] A tone generator produces a signaling frequency, typically 6 kilohertz. The microcomputer
10 generates a synchronizing pattern to key the tone on and off in bursts. The synchronizing
pattern from the microcomputer and the tone from the generator 18 are combined in
an AND gate 22 to produce a synchronizing signal. As shown in FIG. 1, a driver 24
then feeds the primary of transformer 26 via line 25. The secondary of transformer
26 is connected in series with line 27 so that the tone bursts are superimposed on
the DC power supply voltage.
[0018] The transponders respond to the synchronizing signal with an AC current acknowledgement
signal. Its frequency is typically the same as that used for the synchronizing signal,
6 kilohertz. The line from the transponders is terminated at the control unit in a
low impedance. The AC current from the transponders is sensed by a balanced current
transformer 28. The transformer is connected in the balanced configuration to advantageously
attenuate the amount of common mode noise which is picked up on the pair of wires
before the signal is presented to the discriminator.
[0019] The acknowledgement signal from the sense winding of the transformer 28 is filtered
in filter 32 and amplified by amplifier 34. The resulting signal is then fed to a
frequency discriminator 36 to determine if the receive signal is of the correct frequency.
While a correct frequency is being received, the frequency discriminator 36 feeds
pulses to the input of the microcomputer 10. The microcomputer 10 determines which
transponder is responding by checking the time slot in which the response is occuring.
This information is routed into the appropriate memory location for that transponder
in its internal random access memory, RAM.
[0020] Alarms can be fed to a central station via a telephone dialer or modem 42 and/or
fed to a local bell 44.
[0021] A user of this system interacts through a console 40 including a keyboard 41 and
a display 43. The keyboard 41 is used to program the system. The information input
into the system would include which transponder identity numbers are being used, the
length of entry/exit delay times, and the length of time the bell is allowed to ring.
The information is stored in the non-volatile memory 38 so that it will not be lost
after a long power outage if the standby battery 14 should run down.
[0022] The system shown in FIG. 2 indicates a single zone of transponders. The number of
transponders which may be connected in a single zone are only limited by the number
of time slots which are made available by the programmed microcomputer 10. In this
example, FIG. 1 shows that the time slots are limited to 40. The system of the present
invention may be expanded to include additional wire runs, current transformers 28
and frequency discriminators 36 to provide additional zones of transponders. A single
microcomputer 10 can be used to process all the signals providing that it has a large
enough memory capacity.
[0023] Referring now to FIG. 3, a transponder 20 will be described. The transponder 20 derives
its power from the DC voltage on the line 45. A bridge rectifier 46 allows either
polarity from the line 45 to be used. This simplifies installation since the installer
need not concern himself with the polarity. The bridge 46 is used only for correcting
the polarity of the input power not for rectifying the signal tone. Because of the
DC voltage the tone appears intact at the output of the bridge 46.
[0024] A voltage regulator 48 regulates the voltage down to a low voltage to operate the
internal circuitry of the transponder 20. This allows the line voltage to vary widely
due to line loss and a discharging battery during standby without affecting the operation
of the circuitry. A typical line votage is 12 volts DC and a typical voltage from
the regulator 48 is 4 volts DC.
[0025] A crystal oscillator 50 is connected to a frequency divider 52 to produce the signalling
frequency, 6 kilohertz. Using a divider 52 reduces the cost of the frequency generators
since high frequency crystals are much less expensive than those crystals producing
frequencies as low as 6 kilohertz. The divider 52 is also used to drive a programmmable
timer 54.
[0026] The operation of a transponder 20 begins in the standby mode. In this mode, the transponder
20 is awaiting a synchronizing signal from the control. The received signal is band
limited by a filter 56. This minimizes out of band noise components. The received
signal is then fed to a frequency discriminator 58 to determine if the frequency of
each synchronizing code burst is correct. While the correct frequency is being received,
the discriminator 58 feeds a series of pulses to a synchronizing decoder 60. If the
received signal is identified as a correct signal, the programmable timer 54 is started,
establishing to of FIG. 1. The timers 54 and each of the transponders will start at
the same time in response to this synchronizing signal.
[0027] Each of the transponders has a different identity which determines a different predetermined
time delay before it sends its acknowledgement signal. The identity is programmed
by cutting appropriate encoding jumpers 62. A jumper 62 holds the corresponding programming
input to the timer 54 low. Cutting a jumper releases that input allowing it to rise
to the supply voltage via its pullup resistor 64. The combination of cut and intact
jumpers determines a binary code identifying the time delay for each particular transponder
20. The programmable timer 54 is connected to a pulse generator. The generator 66
applies a pulse during the appropriate time slot. The pulse is sent through an AND
gate 68. Whether an acknowledgement signal will be sent out during the pulse is determined
by the status of the contact switch 30 and the type of synchronizing signal received.
[0028] An alarm latch 70 is provided to receive the status information from the contact
switch 30. If the contact 30 remains closed, the alarm latch output remains low. Under
this condition, the transponder 20 responds during its predetermined time slot. The
low output from the alarm latch is inverted in inverter 72 and fed through the OR
gate 74. When the pulse generator 66 applies a pulse, the signalling tone from frequency
divider 52 is gated through the AND gate 68 since the OR gate 74 is supplying a high
signal. A current driver 76 then places the signal current onto the line 45 at tone
frequency.
[0029] If the contact is open, the voltage to the set input of the alarm latch rises. This
input is filtered by a capacitor C1 so spurious noise will not affect the latch. The
response speed is adjustable by the selection of an appropriate capacitor. When the
alarm latch is set, the transponder 20 is prevented from responding to a contact status
synchronizing code. The inverter 72 sends a low input to the OR gate 74 which will
also send a low signal since this is a contact status scan rather than a trouble checking
scan. The low input to the AND gate 68 prevents a signal from being sent during the
time slot indicated by pulse generator 66. The falling edge from the pulse generator
66 triggers pulse generator 78. Pulse generator 78 supplies a reset pulse to the alarm
latch 70 after the time slot in which it would have responded. Since a contact status
scan is still in progress, the output from the synchronizing decoder 60 into AND gate
80 is still high, allowing the pulse from pulse generator 78 to pass through. This
resets the alarm latch 70 if the contact is closed. If the contact remains open, the
alarm latch cannot be reset and the alarm latch will continue to cause missing responses
to contact status synchronizing codes.
[0030] It may be desirable to miss at least a certain number of responses any time the contact
30 is open. A redundancy counter 82 may be inserted in the reset line. This would
prevent resetting latch 70 until the predetermined number of responses has been missed.
Thus, any momentary opening of the contact 30 would cause the predetermined number
of responses to be missed.
[0031] A troubleshooting synchronizing code causes a response regardless of the status of
the alarm latch 70. If the alarm latch is set because of an open contact prior to
a troubleshooting response, the latch remains set after that response. The contact
status output from the synchronizing decoder 60 is low at this time thereby preventing
the reset pulse from passing through AND gate 80. Therefore, if the latch has been
set it will remain in that state to inhibit a response during the next contact status
scan. Thus, according to the present invention a momentary opening of the contact
will be detected even though it occurs in between contact status scans.
[0032] During a troubleshooting scan, the output from the synchronizing decoder 60 into
the OR gate 74 is high enabling AND gate 68 to pass the signalling tone during the
appropriate time slot regardless of the status of latch 70. A transponder could be
provided which would make other responses by adding the necessary logic to the decoder
60 for the different synchronizing codes and approp- riatly latch the status for these
additional inputs.
[0033] In the presently preferred embodiment, the circuitry contained within the broken
line shown in FIG. 3 is incorporated into a single custom integrated circuit. This
reduces the size, cost and power consumption of the circuitry. According to the presently
preferred embodiment the time slot duration is sixty milliseconds and the number of
time slots for each zone of transponders is forty. In accordance with this embodiment,
each scan will last approximately three seconds. The time in each scan which is not
attributed to time slots is provided for the synchronizing codes and for dead time
at the end of each scan.
[0034] A user operates the system through the console 40. The console 40 contains LED's
which display the status of the power supply, the standby battery and an indication
of whether there has been an alarm. A two digit display 43 is provided for reading
out the identity numbers of the protected points. An LED on the console 40 indicates
whether one or more openings is not secured. Prior to arming the system, if that LED
is on, the user would press the appropriate key or keys to request the number of the
opening having an open switch. If there is more than one, the identity numbers of
the transponders will be displayed in sequence. The user may then go to these locations
and secure them. This will turn off the open LED if all of the openings have been
secured. Then the user may enter the arming code setting the system. This erases the
alarm data memory. A predetermined time delay which was entered into the console is
provided for the user to exit through a designated door. If the user exits after the
predetermined time or goes through an opening that is not designated as the exit,
an alarm would result.
[0035] If the user ignores the open LED and attempts to arm the system anyway, a warning
tone would sound indicating that arming has been refused. The identity numbers of
the unsecured openings would be displayed in sequence. The openings must be secured
before arming is possible.
[0036] When the user enters in the morning he must use a designated entry/exit door. When
the door opens, the entry timer starts. The user must enter the disarming code into
the console 40 before the time expires or an alarm would result. When the user and
the police arrive in response to a break-in, once again, the transponders in the entry
area will not be read into the memory until the entry delay time has expired. Within
that time the user or the police must disarm the system by pressing the appropriate
buttons on the console. This also stops the acquisition of additional alarm data so
that the break-in can be investigated without adding spurious data to the sequence
of openings stored in memory. The system may be interrogated to obtain a display of
the opening(s) which caused the alarm. The sequence of openings prior to disarming
the system remains in the memory of the system while the break-in is being investigated.
In this manner, the police or user can recheck the identity of the causes of the alarm
later, if they didn't have time when they arrived. While the alarm data is stored
in the console, the system may not be armed. To allow the system to operate normally,
a code must be entered into the console. Preferably, this code is known only to the
alarm company thereby preventing the user from inadvertently discarding the identity
of the transponder which caused the alarm. When an alarm is answered the entry of
the user and police into the premises will not be recorded if the system is disarmed
within the entry delay period.
[0037] An equivalent transponder could be designed in which an open contact causes a low
signal to be latched rather than a high signal. Also, a signal zone of transponders
may include several branches all connected in parallel off a single pair of wires
to the transformer 28.
1) A multiplexed alarm system for monitoring a plurality of openings comprising:
a plurality of contact means (30) each of which is connected to a respective one of
said openings, for indicating whether its respective opening is open or secured;
a zone containing a plurality of transponders connected in parallel by a pair of wires
(45), each transponder (20) being connected with one of said contact means and including:
means (46, 56) for receiving a synchronizing tone signal over said pair of wires;
a precision oscillator (50);
a programmable counter (54) coupled to said oscillator;
means (62) for selectively programming said counter to produce an output at a predetermined
count;
means (52, 66, 68) for generating an acknowledgment signal within a time slot corresponding
to the predetermined count of a particular transponder following the receipt of a
synchronizing tone signal;
a current driver (76) connected to said acknowledgment signal generating means (52,
66, 68) for sending an acknowledgment signal on said pair of wires (45), said current
driver (76) having a high impedance to help minimize the loading on said pair of wires
by said plurality of transponders; and
means (70) for preventing an acknowledgment signal from being sent if the contact
(30) connected to the transponder (20) indicates that an opening is open;
control means including means (10, 18) for sending said tone synchronizing signal
to said zone of transponders and low impedance means (28) connected to said pair of
wires (45) for receiving acknowledgment signals from said zone, said control means
including means (10, 42, 44) for causing an alarm if an acknowledgment signal is not
received within the time slot corresponding to a particular transponder in said zone;
and
display means (40) connected to said control means for providing an identification
of the transponder(s) (20) which caused an alarm.
2) The alarm system of Claim 1 wherein said control means includes means (10, 42,
44) for causing an alarm if an acknowledgment signal is received at a time other than
a time slot corresponding to a transponder (20) in said zone.
3) The alarm system of Claim 1 wherein said control means includes means (10, 18)
for sending a troubleshooting synchronizing signal and each of said transponders (20)
sends an acknowledgment signal during the time slot corresponding to said transponder,
regardless of the status of its respective contact.
4) The alarm system of Claim 1 wherein each of said transponders includes latch means
(70) for storing a high signal if the respective contact (30) is opened and means
(78) for resetting said latch means at the end of the time slot corresponding to said
transponder if the respective contact has been closed.
5) The alarm system of Claim 4, wherein each of said transponders (20) further comprise
redundancy counter means (82), connected between said reset means (78) and said latch
means (70), for preventing said latch means from being reset until a predetermined
number of synchronizing signals are received after said latch means has been set to
a high signal.
6) The alarm system for Claim 1 further comprising memory means (38) for retaining
data identifying each transponder (20) that fails to respond to a synchronizing signal.
7) The alarm system of Claim 1 wherein one or more of said transponders (20) is a
designated exit transponder and said control means (10) includes timer means for counting
a predetermined time period after said alarm system is armed so that an alarm is not
caused if one of said exit transponders fails to respond to a synchronizing signal
during said predetermined time period.
8) The alarm system of Claim 1 wherein one or more of said transponders is designated
an entry transponder and said control means (10) includes timer means for counting
a predetermined time period after one of said entry transponders fails to respond
to a synchronizing signal so that an alarm is caused only if said alarm system is
not disarmed before the end of said predermined time period.
9) The alarm system of Claim 1 wherein each of said transponders includes oscillator
means (50) for producing a narrow band tone signal frequency to be used to generate
said acknowledgment signal.
10) The alarm system of Claim 1 wherein said low impedance means for receiving acknowledgment
signals comprises a balanced current transformer (28) connected between said zone
of transponders (20) and said control means (10) for attenuating the amount of common
mode noise which is picked up by the pair of wires (45).
11) The alarm system of Claim 1 wherein said display means (40) further includes means
for displaying which openings are presently open.
12) The alarm system of claim 1 further comprising a plurality of zones, each containing
a plurality of transponders (20) connected in parallel by a pair of wires (45).
13) The alarm system of claim 1 further comprising a bandpass filter (56) for said
synchronizing tone signal and a synchronizing signal decoder (60) responsive to synchronizing
tone signals from said bandpass filter.
14) A multiplexing method for wire alarm system comprising:
sending a synchronizing tone signal;
receiving said synchronizing tone signal in a plurality of transponders wired in parallel
each connected to one of a plurality of contacts which indicate whether an opening
is open or secured;
counting a precision frequency in each of said transponders from the receipt of said
synchronizing signal up to a preprogrammed count corresponding to the particular transponder;
storing a high signal in a transponder if its respective contact indicates an opening
that is open;
resetting the high signal to a low signal at the end of a time slot following the
completion of the preprogrammed count corresponding to the particular transponder
if its respective contact is then secured;
each of said transponders sending an acknowledgment signal upon completion of the
preprogrammed count if it has a low signal stored; and causing an alarm if a transponder
fails to send an acknowledgment signal at its preprogrammed count.
15) The multiplexing method of Claim 14 further comprising:
displaying an identification of the transponder(s) which caused an alarm.
16) The multiplexing method of Claim 14 further comprising:
causing an alarm if an acknowledgment signal is sensed at a time other than the end
of a preprogrammed time delay corresponding to one of said transponders.
17) The multiplexing method of Claim 14 further comprising:
storing the identity of each transponder that fails to respond to a synchronizing
signal.
18) The multiplexing method of Claim 14 further comprising:
counting a predetermined amount of time after said alarm system is armed so that an
alarm is not caused if a designated exit transponder fails to respond to a synchronizing
signal during said predetermined amount of time.
19) The multiplexing method of Claim 14 further comprising:
counting a predetermined amount of time after a designated entry transponder fails
to respond to a synchronizing signal so that an alarm is caused only if said alarm
system is not disarmed before the end of said predetermined amount of time.
20) The multiplexing method of Claim 14 wherein said synchronizing signal is a sequence
of tone bursts.
21) The multiplexing method of Claim 14 wherein said acknowledgment signals comprise
a sequence of tone bursts in the respective time slots of the transponders.
1) Multiplexalarmsystem zur Überwachung einer Mehrzahl von Öffnungen mit
einer Mehrzahl von Kontakten (30), von denen jeder mit jeweils einer der Öffnungen
verbunden ist zur Anzeige, ob die betreffende Öffnung offen oder gesichert ist,
einer eine Mehrzahl von Transpondern enthaltenden Zone, welche durch ein Paar Drahte
(45) parallelgeschaltet sind und von welchen jeder Transponder (20) mit einem der
Kontakte verbunden ist und folgendes enthält:
einen Empfänger (46, 56) zum Empfang eines Synchronisiertonsignals über das Leitungspaar,
einen Präzisionsoszillator (50),
einen mit dem Oszillator gekoppelten programmierbaren Zähler (54),
eine Programmiereinheit (62) zur selektiven Programmierung des Zählers zwecks Erzeugung
eines Ausgangssignals bei einem vorbestimmten Zählwert,
einen Quittungssignalgenerator (52, 66, 68), der nach Empfang des Synchronisiertonsignals
ein Quittungssignal innerhalb eines Zeitfensters erzeugt, welcher dem vorbestimmten
Zählwerf eines bestimmten Transponders entspricht,
einen mit dem Ouittungssignalgenerator (52, 66, 68) verbundenen Stromtreiber (76)
zur Aussendung eines Quittungssignals auf das Leiterpaar (45), welcher zur Minimalisierung
der Belastung des Leiterpaares durch die Mehrzahl von Transpondern eine hohe Impedanz
(76) aufweist und
eine Unterdrückungsschaltung (70) zur Verhinderung der Aussendung des Quittungssignals,
wenn der mit dem Transponder (20) verbundene Kontakt (30) anzeigt, daß die Öffnung
offen ist,
ferner mit einer Steuerschaltung, die einen Sender (10, 18) zum Aussenden des Tonsynchronisiersignals
an die Zone von Transpondern und eine mit dem Leitungspaar (45) verbundene niedrige
Impedanz (28) zur Zuführung der Quittungssignale von der Zone sowie einen Alarmgeber
(10, 42, 44) enthält, welcher einen Alarm gibt, wenn das Quittungssignal nicht innerhalb
des einen bestimmten Transponder in der Zone entsprechenden Zeitfensters auftritt,
und
mit einem mit der Steuerschaltung verbundenen Display (40) zur Anzeige einer Identifizierung
des oder der Transponder (20), welcher bzw. welche den Alarm verursacht haben.
2) Alarmsystem nach Anspruch 1, bei dem die Steuerschaltung einen Alarmgeber (10,
42, 44) enthält, welcher einen Alarm gibt, wenn ein Quittungssignal zu einem anderen
Zeitpunkt empfangen wird, als zu dem einem Transponder (20) in der Zone entsprechenden
Zeitfenster.
3) Alarmsystem nach Anspruch 1, bei dem die Steuerschaltung einen prüfsender (10,
18) zum Senden eines Prüfsynchronisiersignals enthält, und daß jeder Transponder (20)
ein Quittungssignal während des dem Transponder entsprechenden Zeitfensters unabhängig
vom Zustand seines jeweiligen Kontaktes sendet.
4) Alarmsystem nach Anspruch 1, bei dem jeder der Transponder eine Verriegelungsschaltung
(70) zur Speicherung eines hohen Signalwertes bei geöffnetem jeweiligen Kontakt (30)
und eine Rücksetzschaltung (78) zum Rücksetzen der Verriegelungsschaltung am Ende
des dem Transponder entsprechenden Zeitfensters, wenn der betreffende Kontakt geschlossen
ist, enthält.
5) Alarmsystem nach Anspruch 4, bei dem jeder der Transponder (20) ferner einen zwischen
die Rücksetzschaltung (78) und die Verriegelungsschaltung (70) geschalteten Redundanzzähler
(82) enthält, welcher ein Rücksetzen der Verriegelungsschaltung verhindert, bis eine
vorbestimmte Anzahl von Synchronisiersignalen nach dem Setzen der Verriegelungsschaltung
auf einen hohen Signalwert empfangen worden ist.
6) Alarmsystem nach Anspruch 1, das ferner einen Speicher (38) für Daten enthält,
welche jeden Transponder (20), der nicht auf ein Synchronisiersignal reagiert, identifizieren.
7) Alarmsystem nach Anspruch 1, bei dem einer oder mehrere der Transponder (20) ein
bezeichneter Ausgangstransponder ist und bei dem die Steuerschaltung (10) einen Zeitgeber
zum Auszählen eines vorbestimmten Zeitraums nach Aktivierung des Alarmsystems enthält,
derart, daß kein Alarm gegeben wird, wenn einer der Ausgangstransponder während des
vorbestimmten Zeitraums nicht auf ein Synchronisiersignal reagiert.
8) Alarmsystem nach Anspruch 1, bei dem einer oder mehrere der Transponder ein Eingangstransponder
ist und die Steuerschaltung (10) einen Zeitgeber zum Auszählen eines vorbestimmten
Zeitraums enthält, nach welchem einer der Eingangstransponder nicht auf ein Synchronisiersignal
reagiert, derart, daß ein Alarm nur dann gegeben wird, wenn das Alarmsystem nicht
vor Ende des vorbestimmten Zeitraums abgeschaltet wird.
9) Alarmsystem nach Anspruch 1, bei dem jeder der Transponder einen Oszillator (50)
zur Erzeugung eines schmalbandigen Tonfrequenzsignals enthält, welches zur Erzeugung
des Quittungssignals verwendbar ist.
10) Alarmsystem nach Anspruch 1, bei dem die niedrige Impedanz, welcher die Quittungssignale
zugeführt werden, einen zwischen die Zone von Transpondern (20) und die Steuerschaltung
(10) geschalteten symmetrierten Stromtransformator (28) aufweist zur Dämpfung des
durch das Leitungspaar (45) aufgenommenen Gleichtaktrauschens.
11) Alarmsystem nach Anspruch 1, bei dem das Display (40) ferner eine Vorrichtung
zur Anzeige, welche Öffnungen momentan offen sind, enthält.
12) Alarmsystem nach Anspruch 1, welches weiterhin eine Mehrzahl von Zonen aufweist,
von denen jede eine Mehrzahl von durch das Leiterpaar (45) parallelgeschalteten Transpondern
(20) enthält.
13) Alarmsystem nach Anspruch 1, bei dem ferner ein Bandpaßfilter (56) für das Synchronisiertonsignal
und ein Synchronisiersignaldecoder (60), welcher auf die Synchronisiertonsignale von
dem Bandpaßfilter reagiert, vorgesehen sind.
14) Multiplexverfahren für ein verdrahtetes Alarmsystem mit folgenden Merkmalen:
Aussenden eines Synchronisiertonsignals,
Empfang des Synchronisiertonsignals mit einer Mehrzahl von parallelgeschalteten Transpondern,
von denen je einer mit einem von einer Mehrzahl von Kontakten verbunden ist und anzeigt,
ob eine Öffnung offen oder gesichert ist,
Auszählen einer Präzisionsfrequenz in jedem der Transponder vom Empfang des Synchronisiersignals
bis zu einem vorprogrammierten Zählwert, welcher dem betreffenden Transponder entspricht,
Speichern eines hohen Signalwertes in einem Transponder, wenn sein zugehöriger Kontakt
anzeigt, daß die Öffnung offen ist,
Rücksetzen des hohen Signalwertes auf einen niedrigen Signalwert am Ende eines Zeitfensters,
welcher sich an das Erreichen eines vorprogrammierten Zählwertes anschließt, der dem
jeweiligen Zähler entspricht, falls sein zugehöriger Kontakt dann gesichert ist,
Aussenden eines Quittungssignals durch jeden der Transponder nach Erreichen des vorprogrammierten
Zählwertes, wenn er einen hohen Signalwert gespeichert hatte, und
Auslösen eines Alarms, wenn ein Transponder bei seinem vorprogrammierten Zählwert
kein Quittungssignal aussendet.
15) Multiplexverfahren nach Anspruch 14, bei dem eine eine Identifizierung des oder derjenigen Transponder
angezeigt wird, welcher bzw. welche den Alarm ausgelöst haben.
16) Multiplexverfahren nach Anspruch 14, bei dem ein Alarm gegeben wird, wenn ein
Quittungssignal zu einem anderen Zeitpunkt als der einem der Transponder entsprechenden
vorprogrammierten Zeitverzögerung festgestellt wird.
17) Multiplexverfahren nach Anspruch 14, bei dem die Identität jedes Transponders,
welcher nicht auf ein Synchronisiersignal reagiert, gespeichert wird.
18) Multiplexverfahren nach Anspruch 14, bei dem ein vorbestimmtes Zeitintervall nach
der Aktivierung des Alarmsystems ausgezählt wird, derart, daß kein Alarm gegeben wird,
wenn ein bezeichneter Ausgangstransponder während des vorbestimmten Zeitintervalls
nicht auf das Synchronisiersignal reagiert.
19) Multiplexverfahren nach Anspruch 14, bei dem nach fehlender Reaktion eines bezeichneten
Eingangstransponders auf ein Synchronisiersignal ein vorbestimmtes Zeitintervall ausgezählt
wird, derart, daß ein Alarm nur dann gegeben wird, wenn das Alarmsystem nicht vor
Ende des vorbestimmten Zeitintervalls ausgeschaltet wird.
20) Multiplexverfahren nach Anspruch 14, bei dem das Synchronisiersignal eine Folge
von Tonbursts ist.
21) Multiplexverfahren nach Anspruch 14, bei dem die Quittungssignale eine Folge von
Tonbursts in den jeweiligen Zeitschlitzen der Transponder aufweisen.
1) Un système d'alarme multiplexé pour contrôler des ouvertures multiples comprenant:
des moyens (30) multiples de contact dont chacun est connecté à une des ouvertures
respectives, pour indiquer si son ouverture respective est ouverte ou assurée;
une zone contenant des transpondeurs multiples reliés en parallèle par une paire de
fils (45), chaque transpondeur (20) étant relié avec un desdits moyens de contact
et comprenant:
des moyens (46, 56) pour recevoir un signal de tonalité de synchronisation par ladite
paire de fils;
un oscillateur de précision (50);
un compteur programmable (54) couplé au dit oscillateur;
des moyens (62) pour programmer sélectivement ledit compteur pour produire une sortie
à un comptage prédéterminé;
des moyens (52, 66, 68) destinés à engendrer un signal d'accusé de réception à l'intérieur
d'une intervalle de temps correspondant audit comptage prédéterminé d'un transpondeur
particulier suivant la réception d'un signal de tonalité de synchronisation;
un excitateur de courant (76) relié auxdits moyens (52, 66, 68) destinés à engendrer
un signal d'accusé de réception sur ladite paire de fils (45), ledit excitateur de
courant (76) possédant une impédance élevée pour aider à minimiser la charge sur ladite
paire de fils par lesdits transpondeurs multiples; et
des moyens (70) destinés à empêcher l'envoi d'un signal d'accusé de réception si le
contact (30) relié au transpondeur (20) indique que l'ouverture est ouverte;
des moyens de commande comprenant des moyens (10, 18) pour émettre ledit signal de
tonalité de synchronisation à ladite zone de transpondeurs et des moyens de faible
impédance (28) reliés à ladite paire de fils (45) pour recevoir lesdits signaux d'accusé
de réception de ladite zone, lesdits moyens de commande comprenant des moyens (10,
42, 44) pour provoquer une alarme si un signal d'accusé de réception n'est pas reçu
à l'intérieur de l'intervalle de temps correpondant à un transpondeur particulier
dans ladite zone; et
des moyens d'affichage (40) reliés auxdits moyens de commande pour fournir une identification
du ou des transpondeur(s) (20) ayant provoqué l'alarme.
2) Le système d'alarme de la revendication 1 dans lequel lesdits moyens de commande
comprennent des moyens (10, 42, 44) pour provoquer une alarme si un signal d'accusé
de réception est reçu à un temps autre que l'intervalle de temps correspondant à un
transpondeur (20) dans ladite zone.
3) Le système d'alarme de la revendication 1 dans lequel lesdits moyens de commande
comprennent des moyens (10, 18) pour envoyer un signal de synchronisation de dépistage
des pannes et chacun desdits transpondeurs (20) émet un signal d'accusé de réception
pendant l'intervalle de temps correspondant audit transpondeur, quel que soit l'état
de son contact respectif.
4) Le système d'alarme de la revendication 1 dans lequel chacun desdits transpondeurs
comprend des moyens de verrouillage (70) pour mémoriser un signal élevé si le contact
respectif (30) est ouvert et des moyens (78) pour réenclencher lesdits moyens de verrouillage
à la fin de l'intervalle de temps correspondant audit transpondeur si le contact respectif
a été fermé.
5) Le système d'alarme de la revendication 4, dans lequel chacun desdits transpondeurs
(20) comprend en plus des moyens de comptage redondants (82), reliés entre lesdits
moyens de réénclenchement (78) et lesdits moyens de verrouillage (70), pour empêcher
lesdits moyens de verrouillage d'être réenclenchés jusqu'à ce qu'un nombre prédéterminé
de signaux de synchronisation soient reçus après que lesdits moyens de verrouillage
aient été portés à un signal élevé.
6) Le système d'alarme de la revendication 1 comprenant de plus des moyens de mémoire
(38) pour retenir des données identifiant chaque transpondeur (20) qui laisse sans
réponse un signal de synchronisation.
7) Le système d'alarme de la revendication 1 dans lequel un des transpondeurs (20)
ou plusieurs est un transpondeur de sortie désigné et lesdits moyens de commande (10)
comprennent des moyens d'horloge pour compter une période de temps prédéterminée après
que ledit système d'alarme est armé de façon à ne pas provoquer d'alarme si l'un des
transpondeurs de sortie ne répond pas à un signal de synchronisation pendant ladite
période de temps prédéterminée.
8) Le système d'alarme de la revendication 1 dans lequel un desdits transpondeurs
ou plus est désigné comme transpondeur d'entrée et lesdits moyens de commande (10)
comprennent des moyens d'horloge pour compter une période de temps prédéterminée après
que l'un desdits transpondeurs d'entrée a laissé sans réponse un signal de synchronisation
de sorte qu'une alarme n'est provoquée que si ledit système d'alarme n'est pas désarmé
avant la fin de ladite période de temps prédéterminée.
9) Le système d'alarme de la revendication 1 dans lequel chacun des transpondeurs
comprend des moyens d'oscillateur (50) pour produire une fréquence de signal de tonalité
de bande étroite à utiliser pour engendrer ledit signal d'accusé de réception.
10) Le système d'alarme de la revendication 1 dans lequel lesdits moyens à faible
impédance pour recevoir des signaux d'accusé de réception comprennent un transformateur
(28) de courant équilibré relié entre ladite zone des transpondeurs (20) et lesdits
moyens de commande (10) pour atténuer la quantité de bruit de mode commun qui est
capté par la paire de fils (45).
11) Le système d'alarme de la revendication 1 dans lequel lesdits moyens d'affichage
(40) comprennent de plus des moyens pour afficher les ouvertures qui sont actuellement
ouvertes.
12) Le système d'alarme de la revendication 1 comprenant de plus des zones multiples,
chacune contenant des transpondeurs (20) multiples reliés en parallèle par une paire
de fils (45).
13) Le système d'alarme de la revendication 1 comprenant de plus un filtre (56) passe-bande
pour ledit signal de tonalité de synchronisation et un décodeur (60) de signal de
synchronisation sensible aux signaux de tonalité de synchronisation en provenance
dudit filtre passe-bande.
14) Un procédé de multiplexage pour un système d'alarme comprenant:
envoyer un signal de tonalité de synchronisation;
recevoir ledit signal de tonalité de synchronisation dans de multiples transpondeurs
câblés en parallèle reliés chacun à l'un des multiples contacts qui indiquent si une
ouverture est ouverte ou assurée;
compter une fréquence de précision dans chacun desdits transpondeurs à partir de la
réception dudit signal de synchronisation jusqu'à un comptage préprogrammé correspondant
au transpondeur particulier;
mémoriser un signal élevé dans un transpondeur si son contact respectif indique une
ouverture qui est ouverte;
réenclencher le signal élevé en un signal bas à la fin d'un intervalle de temps suivant
l'achèvement du comptage préprogrammé correspondant au transpondeur particulier si
son contact respectif est ensuite assuré;
chacun desdits transpondeurs émettant un signal d'accusé de réception lors de l'achèvement
du comptage préprogrammé s'il possède une signal bas mémorisé; et
provoquer une alarme si un transpondeur n'émet pas de signal d'accusé de réception
à son comptage préprogrammé.
15) Le procédé de multiplexage de la revendication 14 comprenant de plus:
afficher une identification du ou des transpondeurs qui ont provoqué une alarme.
16) Le procédé de multiplexage de la revendication 14 comprenant de plus:
provoquer une alarme si un signal d'accusé de réception est capté à un temps autre
que la fin d'un décalage de temps préprogrammé correspondant à l'un desdits transpondeurs.
17) Le procédé de multiplexage de la revendication 14 comprenant de plus.
mémoriser l'identité de chaque transpondeur qui laisse sans réponse un signal de synchronisation.
18) Le procédé de multiplexage de la revendication 14 comprenant de plus:
compter une quantité de temps prédéterminée après que ledit système d'alarme est armé
de sorte qu'une alarme n'est pas provoquée si un transpondeur de sortie désigné laisse
sans réponse un signal de synchronisation pendant ladite quantité de temps prédéterminée.
19) Le procédé de multiplexage de la revendication 14 comprenant de plus:
compter une quantité de temps prédéteminée après qu'un transpondeur d'entrée désigné
a laissé sans réponse un signal de synchronisation de sorte qu'une alarme n'est pas
provoquée si ledit système d'alarme n'est pas désarmé avant la fin de ladite quantité
de temps prédéterminée.
20) Le procédé de multiplexage de la revendication 14 dans lequel ledit signal de
synchronisation est une séquence de rafales de tonalités.
21) Le procédé de multiplexage de la revendication 14 dans lequel les dits signaux
d'accusé de réception comprennent une séquence de rafales de tonalités dans les intervalles
de temps respectifs des transpondeurs.