[0001] This invention concerns a method and a steel alloy for the production of high-strength
hot forgings, the billets being cold sheared from cast or hot-rolled steel and the
finished forging being immediately quenched from the forging temperature, machined
and used without tempering. The forgings can also be assembled by fusion welding a
number of parts together.
[0002] Existing methods of producing hot forgings involve immediate heat treatment of the
forging (quenching from forging temperature in water, for instance). Such a method
is presented, for example, in European Patent Application EP 52308. Existing methods
involve using, for the forgings, a steel of the following composition:

[0003] With existing methods, too, the forgings can be immediately heat treated by quenching
in water, machined and used without tempering.
[0004] The weaknesses of existing methods relate to the compositions of the steel used,
the high upper limit of the carbon content and the high manganese content. With existing
methods it is necessary, in the case of forgings with a large cross-section, such
as front axle beams of lorries, to use steel with a carbon content above 0.15% and
with a manganese content of about 1.5% in order to obtain the necessary strength.
Any lack of hardenability in the steel used has to be compensated by increasing the
carbon content for thick forgings. This gives rise to various problems, the more serious
being that:
1. a high carbon and manganese content increases the hardness of bar billets so that
they are too hard for cold shearing;
2. the high manganese content results-on account of the tendency of segregation of
manganese-in a banded structure which reduces fatigue strength and machinability;
3. the high manganese content also results in more pronounced consumption of refractories
in the melting process of steel, and is liable to cause non metallic inclusions in
the steel;
4. the use of manganese alone as an additive to increase hardness causes not only
martensite but also an upper bainitic microstructure to form in large-cross-section
forgings. The softness and brittleness of low-carbon upper bainite reduce the fatigue
strength and increase the risk of brittle fracture;
5. if the carbon content is above 0.15%, there is a danger that the forging will tear
during fusion welding.
[0005] The object of the method according to this invention is to present a method of producing
hot forgings which does not exhibit the deficiencies inherent in existing methods.
[0006] A feature of the method covered by this invention is that, for manufacturing the
forging, a steel is used of the following composition:

with hardness, when air-cooled, of, at most, 225 HB. The shearing of the billets from
the cast bar or from the hot-rolled semi-products can be performed cold.
[0007] The method according to the invention is also characterized by the fact that the
tensile strength of forgings obtained by this method is a least 900 N/mm
2, when quenched from forging temperature and without tempering, 0.2-proof stress at
least 700 N/mm
2 and the impact toughness at room temperature at least 25 J measured on a V-notched
specimen.
[0008] Another feature of the method covered by this invention is that, on large diameter
forgings, such as the front axle beams of lorries, in order to increase the hardenability,
boron additives are used in the steel, so that the steel contains the following elements:

[0009] Another feature of the method according to the invention is that, sulphur may also
be added in the following proportion to improve machinability:

[0010] A further feature of the method according to the invention is that, because of the
favourable composition of the steel, the forgings can be assembled by fusion welding
from a number of parts.
[0011] The as-cast billets can be used directly as forging blanks. The invention also concerns
a steel alloy suitable for producing high-strength hot forgings by direct quenching.
A feature of this alloy is that the composition of the alloy is as follows:

and in which without tempering the tensile strength is at least 900 N/mm
2, 0.2-proof stress at least 700 N/mm
2 and the impact toughness at room temperature at least 25 J measured on a V-notched
impact bar, and hardness, when air cooled, does not exceed 225 HB, when the forging
produced from this alloy is intended to be immediately quenched (in water for instance)
from the forging temperature.
[0012] As mentioned above the alloy according to the invention may also contain 0.02-0.15%
sulphur to improve machinability.
[0013] With the method and alloy according to the invention it has been possible to avoid
the weak points inherent in existing techniques by using steels with a favourable
combination of alloying elements.
[0014] The minimum carbon content is determined by the minimum tensile strength required,
while the maximum is determined by the maximum hardness of the air-cooled steel and
the need for weldability and machinability in the quenched condition.
[0015] Silicon is an element which greatly strengthens iron and its content should be kept
as low as possible for segregation.
[0016] During quenching, manganese also promotes the formation of brittle upper bainite
in the microstructure together with martensite. After cooling in air, on the other
hand, manganese greatly increases the amount of pearlite, thus strengthening the steel
and making cold shearing difficult. For these reasons and also having regard to steel
production techniques, the manganese content should not exceed about 1%.
[0017] Chromium is an advantageous alloying element for increasing hardenability. Chromium
does not strengthen ferrite and its effect on strength is slight in the case of slow
cooling.
[0018] Chromium promotes formation not only of martensite but also of a tough and ductile
fine lamellar pearlite. Little chromium segregation occurs during solidification and
chromium gives rise to no problems even in the manufacturing processes. The minimum
amount of chromium is determined by economic factors. If greater hardenability is
required, it is economically advantageous to use boron additions which implies successful
aluminium and/or titanium alloying. Alloying with boron does not in any way increase
the strength of air-cooled steel and is therefore advantageous particularly when cold
shearing is involved.
[0019] Below are the test results obtained with forgings produced by using the method according
to the invention:

[0020] The test results were obtained with hot forgings quenched in water from a finishing
forging temperature of 950-1050
0C without tempering. The results show that with the method according to the invention
it is possible to produce high-strength hot forgings by quenching the forgings immediately
from forging temperature, with an impact strength equivalent to that of conventionally
heat-treated steels. Air-cooled steel according to the invention is-as far as hardness
is concerned-suitable for cold shearing.
1. Method for producing high-strength hot-forgings, which consists of the following
process steps: (1) heating a billet up to the forging temperature of 800 to 1300°C,
(2) forging into a component and (3) direct quenching the component from the forging
heat (into water, for instance), and in which the forging is made of a steel with
a chemical composition comprising:

and in which without tempering the tensile strength of the forged component is a least
900 N/mm
2, 0.2-proof stress at least 700 N/mm
2 and the impact toughness at room temperature at least 25 J measured on a V-notched
impact bar, and hardness, when air cooled, does not exceed 225 HB.
2. Method according to claim 1 but in which the steel contains:
3. Method according to claim 1 and 2 but in which the steel contains the following
elements:
4. Method according to claims 1, 2 and 3 but in which the steel contains:
5. Method according to claims 1 to 4 but in which the forgings are assembled by fusion
welding.
6. Method according to claims 1 to 4 but in which a continuous-cast product is used
in as-cast condition as forging billet.
7. Alloy suitable for producing high-strength hot forgings by direct quenching comprising:

and in which without tempering the tensile strength of the forged component is at
least 900 N/mm
2, 0.2-proof stress at least 700 N/mm
2 and the impact toughness at room temperature at least 25 J measured on a V-notched
impact bar, and hardness, when air cooled, does not exceed 225 HB.
8. Alloy according to claim 7 but in which the C-content of the steel is:
9. Alloy according to claim 7 or 8 but in which the Al-, Ti- and B-contents are:
10. Alloy according to claims 7, 8 and 9 but in which the steel contains:
1. Verfahren zur Herstellung von hochfesten Heißschmiedestücken, das aus den folgenden
Verfahrensschritten besteht: (1) Heizen eines Barrens auf die Schmiedetemperatur von
800 bis 1300°C, (2) Schmeiden in ein Schmiedestück und (3) direktes Abschrecken des
Schmiedestücks von der Schmiedehitze (z.B. in Wasser), bei welchem das Schmiedestück
aus einem Stahl gefertigt ist, dessen chemische Zusammensetzung

und in dem ohne Härtung die Zugfestigkeit des geschmiedeten Stückes wenigstens 900
N/mm
2, die 0,2-Elastizitätsgrenze wenigstens 700 N/mm
2 und die Schlagzähigkeit bei Raumtemperatur wenigstens 25 J ist, gemessen an einer
V-eingekerbten Schlagstange, und die Härte, wenn luftgekühlt, 225 HB nicht überschreitet.
2. Verfahren nach Anspruch 1, in dem der Stahl

enthält.
3. Verfahren nach Ansprüchen 1 und 2, in dem der Stahl die Elemente

enthält.
4. Verfahren nach den Ansprüchen 1, 2 und 3, in dem der Stahl

enthält.
5. Verfahren nach Ansprüchen 1 bis 4, in dem die Schmiedestücke durch Schmelzschweißung
zusammengefügt sind.
6. Verfahren nach Ansprüchen 1 bis 4, in dem ein Strangguß-Produkt in einem wie gegossenen
Zustand als Schmiedebarren verwendet wird.
7. Legierung für die Herstellung von hochfesten Heißschmiedestücken durch direkte
Abschreckung, die

und in welcher ohne Härtung die Zugfestigkeit des geschmiedeten Stückes wenigstens
900 N/mm
2, die 0,2-Elastizitätsgrenze wenigstens 700 N/mm
2 und die Schlagzähigkeit bei Raumtemperatur wenigstens 25 J ist, gemessen an einer
V-eingekerbten Schlagstange, und die Härte, wenn luftgekühlt, 225 HB nicht überschreitet.
8. Legierung nach Anspruch 7, in der der C-Gehalt des Stahls

ist.
9. Legierung nach Ansprüchen 7 und 8, worin der AI-, Ti- und B-Gehalt

ist.'
10. Legierung nach Ansprüchen 7, 8 und 9, worin der Stahl

enthält. ,
1. Procédé d'obtention de pièces forgées à résistance élevée comprenant les étapes
consistant à: (1) chauffer une billette jusqu'à la température de forgeage de 800
à 1300°C, (2) la forger selon un composant et (3) tremper directement le composant
depuis la température de forgeage (par exemple, dans l'eau) dans lequel le forgeage
est mis en oeuvre avec un acier répondant à la composition chimique:

et dans lequel sans revenu la résistance à la traction du composant forgé est d'au
moins 900 N/mm
2, la limite élastique 0,2 d'au moins 700 N/mm
2 et la dureté aux chocs à la température ambiante d'au moins 25 J mesurée sur une
barre de chocs à entailles en V et la dureté quand l'air est refroidi ne dépasse pas
225 HB.
2. Procédé selon la revendication 1, dans lequel l'acier contient:
3. Procédé selon l'une des revendications 1 ou 2, dans lequel l'acier contient les
éléments suivants:
4. Procédé selon l'une des revendications 1 à 3, dans lequel l'acier contient:
5. Procédé selon l'une des revendications 1 à 4, dans lequel les pièces forgées sont
assemblées par soudage à fusion.
6. Procédé selon l'une des revendications 1 à 4, dans lequel on utilise un produit
coulé en continu dans l'état coulé en tant que billette de forgeage.
7. Alliage approprié pour l'obtention de pièces forgées à chaud à résistance élevée
par trempe directe comprenant:

et dans lequel sans revenu la résistance à la traction du composant forgé est d'au
moins 900 N/mm
2, la limite élastique 0,2 d'au moins 700 N/mm
2 et la dureté aux chocs à la température ambiante d'au moins 25 J mesurée sur une
barre de chocs à entailles en V et la dureté lorsque l'air est refroidi ne dépasse
pas 225 HB.
8. Alliage.selon la revendication 7, dans lequel la teneur en carbone de l'acier est:
9. Alliage selon l'une des revendications 7 ou 8, dans lequel les teneurs en aluminium,
titane et bore sont:
10. Alliage selon l'une des revendications 7 à 9, dans lequel l'acier contient: