[0001] Die Erfindung betrifft ein farbfotografisches Silberhalogenidmaterial mit einem
reflektierenden Träger und mindestens einer blauempfindlichen Silberhalogenidemulsionsschicht,
deren Silberhalogenidemulsion zu wenigstens 80 Mol.-% aus Silberchlorid besteht,
das sich durch eine steilere Gradation Gamma 1 und verminderten Schleier auszeichnet.
[0002] Farbfotografisches Silberhalogenidmaterial mit einem reflektierenden Träger (Colorpapier),
auf dem mit Hilfe des Negativs die Abzüge gemacht werden, enthält üblicherweise wenigstens
eine blauempfindliche Silberhalogenidemulsionsschicht mit wenigstens einem Gelbkuppler,
wenigstens eine grünempfindliche Silberhalogenidemulsionsschicht mit wenigstens einem
Purpurkuppler und wenigstens eine rotempfindliche Silberhalogenidemulsionsschicht
mit wenigstens einem Blaugrünkpuppler. Als Emulsionen für Colorpapier werden mehr
und mehr solche mit sehr großem Silberchloridanteil eingesetzt, da diese sich, verglichen
mit den herkömmlichen Emulsionen, die überwiegende Anteile an Silberbromid aufweisen,
wesentlich schneller entwickeln lassen.
[0003] Der Prozeß für die herkömmlichen Materialien ist auf eine Entwicklungszeit von 195
Sekunden, der Entwicklungsprozeß (RA-4-Prozeß) für die hochchloridhaltigen Emulsionen
auf 45 Sekunden eingestellt.
[0004] Nachteilig ist jedoch, daß die hochchloridhaltigen Emulsionen insbesondere im gelben
Bereich eine Erhöhung des Schleiers und eine Verflachung der Lichtergradation (Gamma
1) bewirken.
[0005] Aufgabe der Erfindung war es daher, Maßnahmen zu finden, diese Nachteile zu beseitigen
und so die Vorteile der Chloridemulsionen besser ausnutzen zu können.
[0006] Es wurde nun gefunden, daß diese Aufgabe durch den Zusatz bestimmter organischer
Säuren gelöst werden kann.
[0007] Gegenstand der Erfindung ist daher das eingangs genannte Material, das in der wenigstens
einen blauempfindlichen Silberhalogenidemulsionsschicht mit einem Silberchloridgehalt
von wenigstens 80 Mol.-% neben einem Gelbkuppler wenigstens eine Verbindung der Formel
X-L-OH (I)
enthält, worin
X -OH
oder ein weiter substituiertes Stickstoffatom, vorzugsweise der Formel

L ein Brückenglied mit 2 oder 3 Kohlenstoffatomen bedeuten.
[0008] Vorzugsweise enthält die Verbindung I wenigstens eine Säuregruppe, beispielsweise
eine Sulfonsäuregruppe, insbesondere aber eine Carbonsäuregruppe.
[0009] Die OH-Gruppen können Bestandteil von Carbonsäuregruppen sein.
[0010] R₁ ist insbesondere ein gegebenenfalls substituierter C₁-C₄-Alkylrest oder zusammen
mit R₂ und einem Kohlenstoffatom des Brückengliedes die restlichen Glieder eines heteroaromatischen
Ringes mit 5 bis 10 C-Atomen, der weiter substituiert sein kann, z.B. durch Sulfonsäure-
oder Carbonsäuregruppen.
[0011] R₂ ist insbesondere Wasserstoff, ein gegebenenfalls substituierter Alkylrest oder
zusammen mit einem Kohlenstoffatom des Brückengliedes die restlichen Glieder eines
heteroatomischen Ringes.
[0012] Vorzugsweise bedeutet R₁ den Rest -CH₂-COOH.
[0013] Geeignete Brückenglieder sind beispielsweise

worin
R₃ zusammen mit dem Stickstoffatom der doppelt gebundene Rest eines gegebenenfalls
substituierten heteroaromatischen 5- oder 6-Rings und
R₄,R₅,R₆ den doppelt gebundenen Rest eines aromatischen oder heteroaromatischen 6-
bis 10-gliedrigen Ringsystems, das gegebenenfalls weiter substituiert ist.
[0014] Geeignete Verbindungen sind

[0015] Die Verbindungen der Formel I werden in einer Menge von 10⁻⁵ bis 10⁻¹ µMol/Mol Silberhalogenid
der betreffenden Schicht, vorzugsweise von 10⁻³ bis 10⁻² µMol/Mol Silberhalogenid
eingesetzt.
[0016] Vorzugsweise enthalten alle lichtempfindlichen Silberhalogenidemulsionsschichten
Silberhalogenide mit mindestens 80 Mol.-% AgCl, vorzugsweise mindestens 95 Mol.-%
AgCl.
[0017] Geeignete reflektierende Träger sind vorzugsweise mit einer Barytschicht oder α-Olefinpolymerschicht
(z.B. Polyethylen) laminiertes Papier.
[0018] Die farbfotografischen Materialien enthalten üblicherweise mindestens je eine rotempfindliche,
grünempfindliche und blauempfindliche Silberhalogenidemulsions schicht sowie gegebenenfalls
Zwischenschichten und Schutzschichten.
[0019] Wesentliche Bestandteile der fotografischen Emulsionsschichten sind Bindemittel,
Silberhalogenidkörnchen und Farbkuppler.
[0020] Als Bindemittel wird vorzugsweise Gelatine verwendet. Diese kann jedoch ganz oder
teilweise durch andere synthetische, halbsynthetische oder auch natürlich vorkommende
Polymere ersetzt werden. Synthetische Gelatineersatzstoffe sind beispielsweise Polyvinylalkohol,
Poly-N-vinylpyrrolidon, Polyacrylamide, Polyacrylsäure und deren Derivate, insbesondere
deren Mischpolymerisate. Natürlich vorkommende Gelatineersatzstoffe sind beispielsweise
andere Proteine wie Albumin oder Casein, Cellulose, Zucker, Stärke oder Alginate.
Halbsynthetische Gelatineersatzstoffe sind in der Regel modifizierte Naturprodukte.
Cellulosederivate wie Hydroxyalkylcellulose, Carboxymethylcellulose und Phthalylcellulose
sowie Gelatinederivate, die durch Umsetzung mit Alkylierungs- oder Acylierungsmitteln
oder durch Aufpfropfung von polymerisierbaren Monomeren erhalten worden sind, sind
Beispiele hierfür.
[0021] Die Bindemittel sollen über eine ausreichende Menge an funktionellen Gruppen verfügen,
so daß durch Umsetzung mit geeigneten Härtungsmitteln genügend widerstandsfähige
Schichten erzeugt werden können. Solche funktio nellen Gruppen sind insbesondere
Aminogruppen, aber auch Carboxylgruppen, Hydroxylgruppen und aktive Methylengruppen.
[0022] Die vorzugsweise verwendete Gelatine kann durch sauren oder alkalischen Aufschluß
erhalten sein. Es kann auch oxidierte Gelatine verwendet werden. Die Herstellung solcher
Gelatinen wird beispielsweise in The Science and Technology of Gelatine, herausgegeben
von A.G. Ward und A. Courts, Academic Press 1977, Seite 295 ff beschrieben. Die jeweils
eingesetzte Gelatine soll einen möglichst geringen Gehalt an fotografisch aktiven
Verunreinigungen enthalten (Inertgelatine). Gelatinen mit hoher Viskosität und niedriger
Quellung sind besonders vorteilhaft.
[0023] Die Emulsionen enthalten, wie beschrieben, mindestens 80 Mol-%, vorzugsweise mindestens
95 Mol-% AgCl und außerdem 0 bis 20 Mol-% AgBr und 0 bis 5 Mol-% AgI, vorzugsweise
0 bis 5 Mol-% AgBr und 0 bis 1 Mol-% AgI.
[0024] Es kann sich um überwiegend kompakte Kristalle handeln, die z.B. regulär kubisch
oder oktaedrisch sind oder Übergangsformen aufweisen können. Vorzugsweise können aber
auch plättchenförmige Kristalle vorliegen, deren durchschnittliches Verhältnis von
Durchmesser zu Dicke bevorzugt wenigstens 5:1 ist, wobei der Durchmesser eines Kornes
definiert ist als der Durchmesser eines Kreises mit einem Kreisinhalt entsprechend
der projizierten Fläche des Kornes. Die Schichten können aber auch tafelförmige Silberhalogenidkristalle
aufweisen, bei denen das Verhältnis von Durchmesser zu Dicke wesentlich größer als
5:1 ist, z.B. 12:1 bis 30:1.
[0025] Die Silberhalogenidkörner können auch einen mehrfach geschichteten Kornaufbau aufweisen,
im einfachsten Fall mit einem inneren und einem äußeren Kornbereich (core/shell),
wobei die Halogenidzusammensetzung und/oder sonstige Modifizierungen, wie z.B. Dotierungen
der einzelnen Kornbereiche unterschiedlich sind. Die mittlere Korngröße der Emulsionen
liegt vorzugsweise zwischen 0,2 µm und 2,0 µm, die Korngrößenverteilung kann sowohl
homo- als auch heterodispers sein. Homodisperse Korngrößenverteilung bedeutet, daß
95 % der Körner nicht mehr als ± 30% von der mittleren Korngröße abweichen. Die Emulsionen
können neben dem Silberhalogenid auch organische Silbersalze enthalten, z.B. Silberbenztriazolat
oder Silberbehenat.
[0026] Es können zwei oder mehrere Arten von Silberhalogenidemulsionen, die getrennt hergestellt
werden, als Mischung verwendet werden.
[0027] Die fotografischen Emulsionen können nach verschiedenen Methoden (z.B. P. Glafkides,
Chimie et Physique Photographique, Paul Montel, Paris (1967), G.F. Duffin, Photographic
Emulsion Chemistry, The Focal Press, London (1966), V.L. Zelikman et al, Making and
Coating Photographic Emulsion, The Focal Press, London (1966) aus löslichen Silbersalzen
und löslichen Halogeniden hergestellt werden.
[0028] Die Fällung des Silberhalogenids erfolgt bevorzugt in Gegenwart des Bindemittels,
z.B. der Gelatine und kann im sauren, neutralen oder alkalischen pH-Bereich durchgeführt
werden, wobei vorzugsweise Silberhalogenidkomplexbildner zusätzlich verwendet werden.
Zu letzteren gehören z.B. Ammoniak, Thioether, Imidazol, Ammoniumthiocyanat oder
überschüssiges Halogenid. Die Zusammenführung der wasserlöslichen Silbersalze und
der Halogenide erfolgt wahlweise nacheinander nach dem single-jet- oder gleichzeitig
nach dem double-jet-Verfahren oder nach beliebiger Kombination beider Verfahren. Bevorzugt
wird die Dosierung mit steigenden Zuflußraten, wobei die "kritische" Zufuhrgeschwindigkeit,
bei der gerade noch keine Neukeime entstehen, nicht überschritten werden sollte.
Der pAg-Bereich kann während der Fällung in weiten Grenzen variieren, vorzugsweise
wird das sogenannte pAg-gesteuerte Verfahren benutzt, bei dem ein bestimmter pAg-Wert
konstant gehalten oder ein definiertes pAg-Profil während der Fällung durchfahren
wird. Neben der bevorzugten Fällung bei Halogenidüberschuß ist aber auch die sogenannte
inverse Fällung bei Silberionenüberschluß möglich. Außer durch Fällung können die
Silberhalogenidkristalle auch durch physikalische Reifung (Ostwaldreifung), in Gegenwart
von überschüssigem Halogenid und/oder Silberhalogenidkomplexierungsmittel wachsen.
Das Wachstum der Emulsionskörner kann sogar überwiegend durch Ostwaldreifung erfolgen,
wobei vorzugsweise eine feinkörnige, sogenannte Lippmann-Emulsion, mit einer schwerer
löslichen Emulsion gemischt und auf letzterer umgelöst wird.
[0029] Während der Fällung und/oder der physikalischen Reifung der Silberhalogenidkörner
können auch Salze oder Komplexe von Metallen, wie Cd, Zn, Pb, Tl, Bi, Ir, Rh, Fe
vorhanden sein.
[0030] Ferner kann die Fällung auch in Gegenwart von Sensibilisierungsfarbstoffen erfolgen.
Komplexierungsmittel und/oder Farbstoffe lassen sich zu jedem beliebigen Zeitpunkt
unwirksam machen, z.B. durch Änderung des pH-Wertes oder durch eine oxidative Behandlung.
[0031] Nach abgeschlossener Kristallbildung oder auch schon zu einem früheren Zeitpunkt
werden die löslichen Salze aus der Emulsion entfernt, z.B. durch Nudeln und Waschen,
durch Flocken und Waschen, durch Ultrafiltration oder durch Ionenaustauscher.
[0032] Die Silberhalogenidemulsion wird im allgemeinen einer chemischen Sensibilisierung
unter definierten Bedingungen - pH, pAg, Temperatur, Gelatine-, Silberhalogenid-
und Sensibilisatorkonzentration - bis zum Erreichen des Empfindlichkeits- und Schleieroptimums
unterworfen. Die Verfahrensweise is z.B. bei H. Frieser "Die Grundlagen der Photographischen
Prozesse mit Silberhalogeniden" Seite 675-734, Akademische Verlagsgesellschaft (1968)
beschrieben.
[0033] Dabei kann die chemische Sensibilisierung unter Zusatz von Verbindungen von Schwefel,
Selen, Tellur und/oder Metallverbindungen von z.B. Gold, Platin, Palladium, Iridium
erfolgen, weiterhin können Thiocyanatverbindungen, oberflächenaktive Verbindungen,
wie Thioether, heterocyclische Stickstoffverbindungen (z.B. Imidazole, Azaindene)
oder auch spektrale Sensibilisatoren (beschrieben z.B. bei F. Hamer "The Cyanine
Dyes and Related Compounds", 1964, bzw. Ullmans Encyclopädie der technischen Chemie,
4. Auflage, Bd. 18, S. 431 ff. und Research Disclosure Nr. 17643, Abschnitt III) zugegeben
werden. Ersatzweise oder zusätzlich kann eine Reduktionssensibilisierung unter Zugabe
von Reduktionsmitteln (Zinn-II-Salze, Amine, Hydrazinderivate, Aminoborane, Silane,
Formamidinsulfinsäure) durch Wasserstoff, durch niedrigen pAg (z.B. kleiner 5) und/oder
hohen pH (z.B. über 8) durchgeführt werden.
[0034] Die fotografischen Emulsionen können Verbindungen zur Verhinderung der Schleierbildung
oder zur Stabilisierung der fotografischen Funktion während der Produktion, der Lagerung
oder der fotografischen Verarbeitung enthalten.
[0035] Besonders geeignet sind Azaindene, vorzugsweise Tetra-und Pentaazaindene, insbesondere
solche, die mit Hydroxyl- oder Aminogruppen substituiert sind. Derartige Verbindungen
sind z.B. von Birr, Z. Wiss. Phot.
47 (1952), S. 2-58 beschrieben worden. Weiter können als Antischleiermittel Salze von
Metallen wie Quecksilber oder Cadmium, aromatische Sulfon- oder Sulfinsäuren wie Benzolsulfinsäure,
oder stickstoffhaltige Heterocyclen wie Nitrobenzimidazol, Nitroindazol, gegebenenfalls
substituierte Benztriazole oder Benzthiazoliumsalze eingesetzt werden. Besonders
geeignet sind Mercaptogruppen enthaltende Heterocyclen, z.B. Mercaptobenzthiazole,
Mercaptobenzimidazole, Mercaptotetrazole, Mercaptothiadiazole, Mercaptopyrimidine,
wobei diese Mercaptoazole auch eine wasserlöslichmachende Gruppe, z.B. eine Carboxylgruppe
oder Sulfogruppe, enthalten können. Weitere geeignete Verbindungen sind in Research
Disclosure Nr. 17643 (1978), Abschnitt VI, veröffentlicht.
[0036] Die Stabilisatoren können den Silberhalogenidemulsionen vor, während oder nach deren
Reifung zugesetzt werden. Selbstverständlich kann man die Verbindungen auch anderen
fotografischen Schichten, die einer Halogensilberschicht zugeordnet sind, zusetzen.
[0037] Es können auch Mischungen aus zwei oder mehreren der genannten Verbindungen eingesetzt
werden.
[0038] Die fotografischen Emulsionsschichten oder andere hydrophile Kolloidschichten des
erfindungsgemäß hergestellten lichtempfindlichen Materials können oberflächenaktive
Mittel für verschiedene Zwecke enthalten, wie Überzugshilfen, zur Verhinderung der
elektrischen Aufladung, zur Verbesserung der Gleiteigenschaften, zum Emulgieren der
Dispersion, zur Verhinderung der Adhäsion und zur Verbesserung der fotografischen
Charakteristika (z.B. Entwicklungsbeschleunigung, hoher Kontrast, Sensibilisierung
usw.). Neben natürlichen oberflächenaktiven Verbin dungen, z.B. Saponin, finden hauptsächlich
synthetische oberflächenaktive Verbindungen (Tenside) Verwendung: nicht-ionische Tenside,
z.B. Alkylenoxidverbindungen, Glycerinverbindungen oder Glycidolverbindungen, kationische
Tenside, z.B. höhere Alkylamine, quartäre Ammoniumsalze, Pyridinverbindungen und
andere heterocyclische Verbindungen, Sulfoniumverbindungen oder Phosphoniumverbindungen,
anionische Tenside, enthaltend eine Säuregruppe, z.B. Carbonsäure-, Sulfonsäure-,
eine Phosphorsäure-, Schwefelsäureester- oder Phosphorsäureestergruppe, ampholytische
Tenside, z.B. Aminosäure- und Aminosulfonsäureverbindungen sowie Schwefel- oder Phosphorsäureester
eines Aminoalkohols.
[0039] Die fotografischen Emulsionen können unter Verwendung von Methinfarbstoffen oder
anderen Farbstoffen spektral sensibilisiert werden. Besonders geeignete Farbstoffe
sind Cyaninfarbstoffe, Merocyaninfarbstoffe und komplexe Merocyaninfarbstoffe.
[0040] Eine Übersicht über die als Spektralsensibilisatoren geeigneten Polymethinfarbstoffe,
deren geeignete Kombinationen und supersensibilisierend wirkenden Kombinationen enthält
Research Disclosure 17643/1978 in Abteilung IV.
[0041] Insbesondere sind die folgenden Farbstoffe - geordnet nach Spektralgebieten - geeignet:
1. als Rotsensibilisatoren
[0042] 9-Ethylcarbocyanine mit Benzthiazol, Benzselenazol oder Naphthothiazol als basische
Endgruppen, die in 5- und/oder 6-Stellung durch Halogen, Methyl, Methoxy, Carbalkoxy,
Aryl substituiert sein können sowie 9-Ethyl-naphthoxathia- bzw. -selencarbocyanine
und 9-Ethyl-naphthothiaoxa- bzw. - benzimidazocarbocyanine, vorausgesetzt, daß die
Farbstoffe mindestens eine Sulfoalkylgruppe am heterocyclischen Stickstoff tragen.
2. als Grünsensibilisatoren
[0043] 9-Ethylcarbocyanine mit Benzoxazol, Naphthoxazol oder einem Benzoxazol und einem
Benzthiazol als basische Endgruppen sowie Benzimidazocarbocyanine, die ebenfalls weiter
substituiert sein können und ebenfalls mindestens eine Sulfoalkylgruppe am heterocyclischen
Stickstoff enthalten müssen.
3. als Blausensibilisatoren
[0044] symmetrische oder asymmetrische Benzimidazo-, Oxa-, Thia- oder Selenacyanine mit
mindestens einer Sulfoalkylgruppe am heterocyclischen Stickstoff und gegebenenfalls
weiteren Substituenten am aromatischen Kern, sowie Apomerocyanine mit einer Rhodaningruppe.
[0045] Den unterschiedlich sensibilisierten Emulsionsschichten werden nicht diffundierende
monomere oder polymere Farbkuppler zugeordnet, die sich in der gleichen Schicht oder
in einer dazu benachbarten Schicht befinden können. Gewöhnlich werden den rotempfindlichen
Schichten Blau grünkuppler, den grünempfindlichen Schichten Purpurkuppler und den
blauempfindlichen Schichten Gelbkuppler zugeordnet.
[0046] Farbkuppler zur Erzeugung des blaugrünen Teilfarbenbildes sind in der Regel Kuppler
vom Phenoltyp; geeignete Beispiele hierfür sind
BG 1: R₁ = -C₄H₉; R₂ = H; R₃ = -CN; R₄ = Cl
BG 2: R₁ = -C₄H₉; R₂ = H; R₃ = H; R₄ = -SO₂CHF₂
BG 3: R₁ = -C₄H₉;

R₃ = H; R₄ = -CN
BG 4: R₁ = CH₂H₅; R₂ = H; R₃ = H; R₄ = -SO₂CH₃
BG 5: R₁ = -C₄H₉; R₂ = H; R₃ = H; R₄ = -SO₂-C₄H₉
BG 6: R₁ = -C₄H₉; R₂ = H; R₃ = -CN; R₄ = -CN
BG 7: R₁ = -C₄H₉; R₂ = H; R₃ = H; R₄ = -SO₂-CH₂-CHF₂
BG 8: R₁ = -C₂H₅; R₂ = H; R₃ = H; R₄ = -SO₂CH₂-CHF-C₃H₇
BG 9: R₁ = -C₄H₉; R₂ = H; R₃ = H; R₄ = F
BG 10: R₁ = -C₄H₉; R₂ =H; R₃ =H; R₄ = -SO₂CH₃
BG 11: R₁ = -C₄H₉; R₂ =H; R₃ =H; R₄ = -CN

BG 12: R₁ = -CH₃; R₂ = -C₂H₅; R₃, R₄ = -t-C₅H₁₁
BG 13: R₁ = -CH₃; R₂ = H; R₃, R₄ = -t-C₅H₁₁
BG 14: R₁ = -C₂H₅; R₂ = -C₂H₅; R₃, R₄ = -t-C₅H₁₁
BG 15: R₁ = -C₂H₅; R₂ = -C₄H₉; R₃, R₄ = -t-C₅H₁₁
BG 16: R₁ = -C₂H₅; R₂ = -C₄H₉; R₃, R₄ = -t-C₄H₉

BG 17: R₁, R₂ = -t-C₅H₁₁; R₃ = -C₄H₉; R₄ = H; R₅ = -C₃F₇
BG 18: R₁ = -NHSO₂-C₄H₉; R₂ = H; R₃ = -C₁₂H₂₅; R₄ = Cl; R₅ = Phenyl
BG 18: R₁, R₂ = -t-C₅H₁₁; R₂ = Cl, R₃ = -CH(CH₃)₂; R₄ = Cl; R₅ = Pentafluorphenyl
BG 20: R₁ = -t-C₅H₁₁; R₂ = Cl; R₃ = -C₆H₁₃; R₄ = Cl; R₅ = -2-Chlorphenyl
[0049] Bei den Farbkupplern kann es sich um 4-Äquivalentkuppler, aber auch um 2-Äquivalentkuppler
handeln. Letztere leiten sich von den 4-Äquivalentkupplern dadurch ab, daß sie in
der Kupplungsstelle einen Substituenten enthalten, der bei der Kupplung abgespalten
wird. Zu den 2-Äquivalentkupplern sind solche zu rechnen, die farblos sind, als auch
Weißkuppler, die bei Reaktion mit Farbentwickleroxidationsprodukten im wesentlichen
farblose Produkte ergeben.
[0050] Beispiele für Weißkuppler sind:

[0051] Hochmolekulare Farbkuppler sind beispielsweise in DE-C-1 297 417, DE-A-24 07 569,
DE-A-31 48 125, DE-A-32 17 200, DE-A-33 20 079, DE-A-33 24 932, DE-A-33 31 743,
DE-A-33 40 376, EP-A-27 284, US-A-4 080 211 beschrieben. Die hochmolekularen Farbkuppler
werden in der Regel durch Polymerisation von ethylenisch ungesättigten monomeren
Farbkupplern hergestellt. Si können aber auch durch Polyaddition oder Polykondensation
erhalten werden.
[0052] Die Einarbeitung der Kuppler oder anderer Verbindungen in Silberhalogindemulsionsschichten
kann in der Weise erfolgen, daß zunächst von der betreffenden Verbindung eine Lösung,
eine Dispersion oder eine Emulsion hergestellt und dann der Gießlösung für die betreffende
Schicht zugefügt wird. Die Auswahl des geeigneten Lösungs- oder Dispersionsmittel
hängt von der jeweiligen Löslichkeit der Verbindung ab.
[0053] Methoden zum Einbringen von in Wasser im wesentlichen unlöslichen Verbindungen durch
Mahlverfahren sind beispielsweise in DE-A-26 09 741 und DE-A-26 09 742 beschrieben.
[0054] Hydrophobe Verbindungen können auch unter Verwendung von hochsiedenden Lösungsmitteln,
sogenannten Ölbildnern, in die Gießlösung eingebracht werden. Entsprechende Methoden
sind beispielsweise in US-A-2 322 027, US-A-2 801 170, US-A-2 801 171 und EP-A-O
043 037 beschrieben.
[0055] Anstelle der hochsiedenden Lösungsmitteln können Oligomere oder Polymere, sogenannte
polymere Ölbildner Verwendung finden.
[0056] Die Verbindungen können auch in Form beladener Latices in die Gießlösung eingebracht
werden. Verwiesen wird beispielsweise auf DE-A-25 41 230, DE-A-25 41 274, DE-A-28
35 856, EP-A-O 014 921, EP-A-0 069 671, EP-A-O 130 115, US-A-4 291 113.
[0057] Die diffusionsfeste Einlagerung anionischer wasserlöslicher Verbindungen (z.B. von
Farbstoffen) kann auch mit Hilfe von kationischen Polymeren, sogenannten Beizenpolymeren
erfolgen.
[0058] Geeignete Ölbildner sind z.B. Phthalsäurealkylester, Phosphonsäureester, Phosphorsäureester,
Citronensäureester, Benzoesäureester, Amide, Fettsäureester, Trimesinsäureester,
Alkohole, Phenole, Anilinderivate und Kohlenwasserstoffe.
[0059] Beispiele für geeignete Ölbildner sind Dibutylphthalat, Dicyclohexylphthalat, Di-2-ethylhexylphthalat,
Decylphthalat, Triphenylphosphat, Tricresylphosphat, 2-Ethylhexyldiphenylphosphat,
Tricyclohexylphosphat, Tri-2-ethylhexylphosphat, Tridecylphosphat, Tributoxyethylphosphat,
Trichlorpropylphosphat, Di-2-ethylhexylphenylphosphat, 2-Ethylhexylbenzoat, Dodecylbenzoat,
2-Ethylhexyl-p-hydroxybenzoat, Diethyldodecanamid, N-Tetradecylpyrrolidon, Isostearylalkohol,
2,4-Di-tert.-amylphenol, Dioctylacelat, Glycerintributyrat, Isostearyllactat, Trioctylcitrat,
N,N-Dibutyl-2-butoxy-5-tert.-octylanilin, Paraffin, Dodecylbenzol und Diisopropylnaphthalin.
[0060] Üblicherweise wählt man eine Schichtanordnung, bei der auf den Träger die blauempfindlichen,
dann die rotempfindlichen und schließlich die grünempfindlichen Schichten folgen.
[0061] Die in der Regel zwischen Schichten unterschiedlicher Spektralempfindlichkeit angeordneten
nicht lichtempfindlichen Zwischenschichten können Mittel enthalten, die eine unerwünschte
Diffusion von Entwickleroxidationsprodukten aus einer lichtempfindlichen in eine
andere lichtempfindliche Schicht mit unterschiedlicher spektraler Sensibilisierung
verhindern.
[0062] Geeignete Mittel, die auch Scavenger genannt werden, werden in Research Disclosure
17 643 (Dez. 1978), Kapitel VII, 17 842/1979, Seite 94-97 und 18.716/ 1979, Seite
650 sowie in EP-A-69 070, 98 072, 124 877, 125 522 und in US-A-463 226 beschrieben.
[0063] Beispiele für besonders geeignete Verbindungen sind:

[0064] Das fotografische Material kann weiterhin UV-Licht absorbierende Verbindungen, Weißtöner,
Abstandshalter, Lichtschutzmittel, Antioxidantien, D
Min-Farbstoffe, Zusätze zur Verbesserung der Farbstoff-, Kuppler- und Weißenstabilisierung
sowie zur Verringerung des Farbschleiers, Weichmacher (Latices), Biocide und anderes
enthalten.
[0065] UV-Licht absorbierende Verbindungen sollen die Bildfarbstoffe vor dem Ausbleichen
durch UV-reiches Tageslicht schützen. Beispiele sind arylsubstituierte Benzotriazolverbindungen
(US-A-3 533 794), 4-Thiazolidonverbindungen (US-A-3 314 794 und 3 352 681), Benzophenonverbindungen
(JP-A-2784/71), Zimtsäureesterverbindungen (US-A-3 705 805 und 3 707 375), Butadienverbindungen
(US-A-4 045 229) oder Benzoxazolverbindungen (US-A-3 700 455).
[0066] Beispiele besonders geeigneter Verbindungen sind

R, R₁ = H; R₂ = t-C₄H₉
R = H; R₁, R₂ = t-C₄H₉
R = H; R₁, R₂ = t-C₅H₁₁
R = H; R₁ = s-C₄H₉; R₂ = t-C₄H₉
R = Cl; R₁ = t-C₄H₉; R₂ = s-C₄H₉
R = Cl; R₁, R₂ = t-C₄H₉
R = Cl; R₁ = t-C₄H₉; R₂ = -CH₂-CH₂-COOC₈H₁₇
R = H; R = i-C₁₂H₂₅; R₂ = CH₃
R, R₁, R₂ = t-C₄H₉

R₁, R₂ = n-C₆H₁₃; R₃, R₄ = CN

R₁, R₂ = CH₂=CH-CH₂; R₃, R₄ = CN

R₁, R₂ H; R₃ = CN; R₄ = CO-NHC₁₂H₂₅
R₁, R₂ = CH₃; R₃ = CN; R₄ = CO-NHC₁₂H₂₅

[0067] Es können auch ultraviolettabsorbierende Kuppler (wie Blaugrünkuppler des α-Naphtholtyps)
und ultraviolettabsorbierende Polymere verwendet werden. Diese Ultraviolettabsorbentien
können durch Beizen in einer speziellen Schicht fixiert sein.
[0068] Geeignete Weißtöner sind z.B. in Research Disclosure 17 643 (Dez. 1978), Kapitel
V, in US-A-2 632 701, 3 269 840 und in GB-A-852 075 und 1 319 763 beschrieben.
[0069] Bestimmte Bindemittelschichten, insbesondere die vom Träger am weitesten entfernte
Schicht, aber auch gelegentlich Zwischenschichten, insbesondere, wenn sie während
der Herstellung die vom Träger am weitesten entfernte Schicht darstellen, können fotografisch
inerte Teilchen anorganischer oder organischer Natur enthalten, z.B. als Mattierungsmittel
oder als Abstandshalter (DE-A-33 31 542, DE-A-34 24 893, Research Disclosure 17 643,
(Dez. 1978), Kapitel XVI).
[0070] Der mittlere Teilchendurchmesser der Abstandshalter liegt insbesondere im Bereich
von 0,2 bis 10 µm. Die Abstandshalter sind wasserunlöslich und können alkaliunlöslich
oder alkalilöslich sein, wobei die alkalilöslichen im allgemeinen im alkalischen
Entwicklungsbad aus dem fotografischen Material entfernt werden. Beispiele für geeignete
Polymere sind Polymethylmethacrylat, Copolymere aus Acrylsäure und Methylmethacrylat
sowie Hydroxypropylmethylcellulosehexahydrophthalat.
[0071] Zusätze zur Verbesserung der Farbstoff-, Kuppler- und Weißenstabilität sowie zur
Verringerung des Farbschleiers (Research Disclosure 17 643/1978, Kapitel VII) können
den folgenden chemischen Stoffklasen angehören: Hydrochinone, 6-Hydroxychromane, 5-Hydroxycumarane,
Spirochromane, Spiroindane, p-Alkoxyphenole, sterische gehinderte Phenole, Gallussäurederivate,
Methylendioxybenzole, Aminophenole, sterisch gehinderte Amine, Derivate mit veresterten
oder verätherten phenolischen Hydroxylgruppen, Metallkomplexe.
[0072] Verbindungen, die sowohl eine sterisch gehinderte Amin-Partialstruktur als auch
eine sterisch gehinderte Phenol-Partialstruktur in einem Molekül aufweisen (US-A-4
268 593), sind besonders wirksam zur Verhinderung der Beeinträchtigung (Verschlechterung
bzw. Abbau) von gelben Farbbildern als Folge der Entwicklung von Wärme, Feuchtigkeit
und Licht. Um die Beeinträchtigung (Verschlechterung bzw. den Abbau) von purpurroten
Farbbildern, insbesondere ihre Beeinträchtigung (Verschlechterung bzw. Abbau) als
Folge der Einwirkung von Licht, zu verhindern, sind Spiroindane (JP-A-159 644/81)
und Chromane, die durch Hydrochinondiether oder -monoether substiutiert sind (JP-A-89
835/80) besonders wirksam.
[0073] Beispiele besonders geeigneter Verbindungen sind:

sowie die als EOP-Fänger aufgeführten Verbindungen.
[0074] Die Schichten des fotografischen Materials können mit den üblichen Härtungsmitteln
gehärtet werden. Geeignete Härtungsmittel sind z.B. Formaldehyd, Glutaraldehyd und
ähnliche Aldehydverbindungen, Diacetyl, Cyclopentadion und ähnliche Ketonverbindungen,
Bis-(2-chlorethylharnstoff), 2-Hydroxy-4,6-dichlor-1,3,5-triazin und andere Verbindungen,
die reaktives Halogen enthalten (US-A-3 288 775, US-A-2 732 303, GB-A-974 723 und
GB-A-1 167 207) Divinylsulfonverbindungen, 5-Acetyl-1,3-di-acryloylhexahydro-1,3,5-triazin
und andere Verbindungen, die eine reaktive Olefinbindung enthalten (US-A-3 635 718,
US-A-3 232 763 und GB-A-994 869); N-Hydroxymethylphthalimid und andere N-Methylolverbindungen
(US-A-2 732 316 und US-A-2 586 168); Isocyanate (US-A-3 103 437); Aziridinverbindungen
(US-A-3 017 280 und US-A-2 983 611); Säurederivate (US-A-2 725 294 und US-A-2 725
295); Verbindungen vom Carbodiimidtyp (US-A-3 100 704); Carbamoylpyridiniumsalze
(DE-A-22 25 230 und DE-A-24 39 551); Carbamoyloxypyridiniumverbindungen (DE-A-24 08
814); Verbindungen mit einer Phosphor-Halogen-Bindung (JP-A-113 929/83); N-Carbonyloximid-Verbindungen
(JP-A-43353/81); N-Sulfonyloximido-Verbindungen (US-A-4 111 926), Dihydrochinolinverbindungen
(US-A-4 013 468), 2-Sulfonyloxypyridiniumsalze (JP-A-110 762/81), Formamidiniumsalze
(EP-A-0 162 308), Verbindungen mit zwei oder mehr N-Acyloximino-Gruppen (US-A-4
052 373), Epoxyverbindungen (US-A-3 091 537), Verbindungen vom Isoxazoltyp (US-A-3
321 313 und US-A-3 543 292); Halogencarboxyaldehyde, wie Mucochlorsäure; Dioxanderivate,
wie Dihydroxydioxan und Di-chlordioxan; und anorganische Härter, wie Chromalaun und
Zirkonsulfat.
[0075] Die Härtung kann in bekannter Weise dadurch bewirkt werden, daß das Härtungsmittel
der Gießlösung für die zu härtende Schicht zugesetzt wird, oder dadurch, daß die zu
härtende Schicht mit einer Schicht überschichtet wird, die ein diffusionsfähiges Härtungsmittel
enthält.
[0076] Unter den aufgeführten Klassen gibt es langsam wirkende und schnell wirkende Härtungsmittel
sowie sogenannte Soforthärter, die besonders vorteilhaft sind. Unter Soforthärtern
werden verbindungen verstanden, die geeignete Bindemittel so vernetzen, daß unmittelbar
nach Beguß, spätestens nach 24 Stunden, vorzugsweise spätestens nach 8 Stunden die
Härtung so weit abgeschlossen ist, daß keine weitere durch die Vernetzungsreaktion
bedingte Änderung der Sensitometrie und der Quellung des Schichtverbandes auftritt.
Unter Quellung wird die Differenz von Naßschichtdicke und Trockenschichtdicke bei
der wäßrigen Verarbeitung des Films verstanden (Photogr. Sci., Eng. 8 (1964), 275;
Photogr. Sci. Eng. (1972), 449).
[0077] Bei diesen mit Gelatine sehr schnell reagierenden Härtungsmitteln handelt es sich
z.B. um Carbamoylpyridiniumsalze, die mit freien Carboxylgruppen der Gelatine zu
reagieren vermögen, so daß letztere mit freien Aminogruppen der Gelatine unter Ausbildung
von Peptidbindungen und Vernetzung der Gelatine reagieren.
[0078] Geeignete Beispiele für Soforthärter sind z.B. Verbindungen der allgemeinen Formeln

worin
R₁ Alkyl, Aryl oder Aralkyl bedeutet,
R₂ die gleiche Bedeutung wie R₁ hat oder Alkylen, Arylen, Aralkylen oder Alkaralkylen
bedeutet, wobei die zweite Bindung mit einer Gruppe der Formel

verknüpft ist oder
R₁ und R₂ zusammen die zur Vervollständigung eines gegebenenfalls substituierten heterocyclischen
Ringes, beispielsweise eines Piperidin-, Piperazin- oder Morpholinringes erforderlichen
Atome bedeuten, wobei der Ring z.B. durch C₁-C₃-Alkyl oder Halogen substituiert sein
kann,
R₃ für Wasserstoff, Alkyl, Aryl, Alkoxy, -NR₄-COR₅, -(CH₂)
m-NR₈R₉, -(CH₂)
n-CONR₁₃R₁₄ oder

oder ein Brückenglied oder eine direkte Bindung an eine Polymerkette steht, wobei
R₄, R₆, R₇, R₉, R₁₄, R₁₅, R₁₇, R₁₈, und R₁₉ Wasserstoff oder C₁-C₄-Alkyl,
R₅ Wasserstoff, C₁-C₄-Alkyl oder NR₆R₇,
R₈ -COR₁₀
R₁₀ NR₁₁R₁₂
R₁₁ C₁-C₄-Alkyl oder Aryl, insbesondere Phenyl,
R₁₂ Wasserstoff, C₁-C₄-Alkyl oder Aryl, insbesondere Phenyl,
R₁₃ Wasserstoff, C₁-C₄-Alkyl oder Aryl, insbesondere Phenyl,
R₁₆ Wasserstoff, C₁-C₄-Alkyl, COR₁₈ oder CONHR₁₉,
m eine Zahl 1 bis 3
n eine Zahl 0 bis 3
p eine Zahl 2 bis 3 und
Y O oder NR₁₇ bedeuten oder
R₁₃ und R₁₄ gemeinsam die zur Vervollständigung eines gegebenenfalls substituierten
heterocyclischen Ringes, beispielsweise eines Piperidin-, Piperazin- oder Morpholinringes
erforderlichen Atome darstellen, wobei der Ring z.B. durch C₁-C₃-Alkyl oder Halogen
substituiert sein kann,
Z die zur Vervollständigung eines 5- oder 6-gliedrigen aromatischen heterocyclischen
Ringes, gegebenenfalls mit anelliertem Benzolring, erforderlichen C-Atome und
X
⊖ ein Anion bedeuten, das entfällt, wenn bereits eine anionische Gruppe mit dem übrigen
Molekül verknüpft ist;

worin
R₁, R₂, R₃ und X
⊖ die für Formel (a) angegebene Bedeutung besitzen.
[0079] Es gibt diffusionsfähige Härtungsmittel, die auf alle Schichten innerhalb eines Schichtverbandes
in gleicher Weise härtend wirken. Es gibt aber auch schichtbegrenzt wirkende, nicht
diffundierende, niedermolekulare und hochmolekulare Härter. Mit ihnen kann man einzelnen
Schichten, z.B. die Schutzschicht besonders stark vernetzen. Dies ist wichtig, wenn
mann die Silberhalogenid-Schicht wegen der Silberdeckkrafterhöhung wenig härtet und
mit der Schutzschicht die mechanischen Eigenschaften verbessern muß (EP-A 0 114 699).
[0080] Farbfotografische Negativmaterialien werden üblicherweise durch Entwickeln, Bleichen,
Fixieren und Wässern oder durch Entwickeln, Bleichen, Fixieren und Stabilisieren ohne
nachfolgende Wässerung verarbeitet, wobei Bleichen und Fixieren zu einem Verarbeitungsschritt
zusammengefaßt sein können. Als Farbentwicklerverbindung lassen sich sämtliche Entwicklerverbindungen
verwenden, die die Fähigkeit besitzen, in Form ihres Oxidationsproduktes mit Farbkupplern
zu Azomethin- bzw. Indophenolfarbstoffen zu reagieren. Geeignete Farbentwicklerverbindungen
sind aromatische, mindestens eine primäre Aminogruppe enthaltende Verbindungen vom
p-Phenylendiamintyp, beispielsweise N,N-Dialkyl-p-phenylendiamine wie N,N-Diethyl-p-phenylendiamin,
1-(N-Ethyl-N-methansulfonamidoethyl)-3-methyl-p-phenylendiamin, 1-(N-Ethyl-N-hydroxyethyl)-3-methyl-p-phenylendiamin
und 1-(N-Ethyl-N-methoxyethyl)-3-methyl-p-phenylendiamin. Weitere brauchbare Farbentwickler
sind beispielsweise in J. Amer. Chem. Soc.
73, 3106 (1951) und G. Haist, Modern Photographic Processing, 1979, John Wiley and Sons,
New York, Seite 545 ff. beschrieben.
[0081] Nach der Farbentwicklung kann ein saures Stoppbad oder eine Wässerung folgen.
[0082] Überlicherweise wird das Material unmittelbar nach der Farbentwicklung gebleicht
und fixiert. Als Bleichmittel können z.B. Fe(III)-Salze und Fe(III)-Komplexsalze
wie Ferricyanide, Dichromate, wasserlösliche Kobaltkomplexe verwendet werden. Besonders
bevorzugt sind Eisen-(III)-Komplexe von Aminopolycarbonsäuren, insbesondere z.B.
von Ethylendiamintetraessigsäure, Propylendiamintetraessigsäure, Diethylentriaminpentaessigsäure,
Nitrilotriessigsäure, Iminodiessigsäure, N-Hydroxyethyl-ethylendiamintriessigsäure,
Alkyliminodicarbonsäuren und von entsprechenden Phosphonsäuren. Geeignete als Bleichmittel
sind weiterhin Persulfate und Peroxide, z.B. Wasserstoffperoxid.
[0083] Auf das Bleichfixierbad oder Fixierbad folgt meist eine Wässerung, die als Gegenstromwässerung
ausgeführt ist oder aus mehreren Tanks mit eigener Wasserzufuhr besteht.
[0084] Günstige Ergebnisse können bei Verwendung eines darauf folgenden Schlußbades, das
keinen oder nur wenig Formaldehyd enthält, erhalten werden.
[0085] Die Wässerung kann aber durch ein Stabilisierbad vollständig ersetzt werden, das
üblicherweise im Gegenstrom geführt wird. Dieses Stabilisierbad übernimmt bei Formaldehydzusatz
auch die Funktion eines Schlußbades.
Beispiel
[0086] Ein farbfotografisches Aufzeichnungsmaterial wurde hergestellt, indem auf einen
Schichtträger aus beidseitig mit Polyethylen beschichtetem Papier die folgenden Schichten
in der angegebenen Reihenfolge aufgetragen wurden. Die Mengenangaben beziehen sich
jeweils auf 1 m². Für den Silberhalogenidauftrag werden die entsprechenden Mengen
AgNO₃ angegeben.
Schichtaufbau 1
[0087]
1. Schicht (Substratschicht):
0,2 g Gelatine
2. Schicht (blauempfindliche Schicht):
blauempfindliche Silberhalogenidemulsion (99,5 Mol.-% Chlorid, 0,5 Mol.-% Bromid,
mittlerer Korndurchmesser 0,8 µm) aus 0,63 g AgNO₃ mit
1,38 g Gelatine
0,95 g Gelbkuppler GB 9
0,2 g Weißkuppler W 4
0,29 g Trikresylphosphat (TKP)
3. Schicht (Schutzschicht):
1,1 g Gelatine
0,06 g 2,5-Dioctylhydrochinon
0,06 g Dibutylphthalat (DBP)
4. Schicht (grünempfindliche Schicht)
grünsensibilisierte Silberhalogenidemulsion (99,5 Mol.-% Chlorid, 0,5 Mol.-% Bromid,
mittlerer Korndurchmesser 0,6 µm) aus 0,45 g AgNO₃ mit
1,08 g Gelatine
0,41 g Purpurkuppler PP 3
0,08 g 2,5-Dioctylhydrochinon
0,5 g DBP
0,04 g TKP
5. Schicht (UV-Schutzschicht)
1,15 g Gelatine
0,6 g UV-Absorber der Formel

0,045 g 2,5-Dioctylhydrochinon
0,04 g TKP
6. Schicht (rotempfindliche Schicht)
rotsensibilisierte Silberhalogenidemulsion (99,5 Mol.-% Chlorid, 0,5 Mol.-% Bromid,
mittlerer Korndurchmesser 0,5 µm) aus 0,3 g AgNO₃ mit
0,75 g Gelatine
0,36 g Blaugrünkuppler BG 16
0,36 g TKP
7. Schicht (UV-Schutzschicht)
0,35 g Gelatine
0,15 g UV-Absorber wie 5. Schicht
0,2 g TKP
8. Schicht (Schutzschicht)
0,9 g Gelatine
0,3 g Härtungsittel der Formel

Schichtaufbauten 2 bis 9
[0088] wie Schichtaufbau 1, jedoch zusätzlich mit einer Verbindung Formel I (gemäß blauempfindlicher
Schicht) nach folgender Tabelle.
[0089] Von den Proben wurden Schleier und Gradation G 1 (Lichtergradation) frisch und nach
24-stündigem Digerieren der Gießlösungen bei 40°C bestimmt. Die Verarbeitung erfolgte
nach dem RA-4-Prozeß.
Auf bau |
Verbindung |
Menge |
Schleier hinter Blaufilter |
Gradation G 1 |
|
|
(mg) |
0 h |
24 h |
0 h |
24 h |
1 |
- |
- |
0,121 |
0,154 |
1,85 |
1,78 |
2 |
K 1 |
3 |
0,117 |
0,136 |
1,85 |
1,81 |
3 |
K 2 |
4 |
0,120 |
0,131 |
1,85 |
1,82 |
4 |
K 3 |
3 |
0,120 |
0,136 |
1,81 |
1,79 |
5 |
K 4 |
4 |
0,121 |
1,137 |
1,81 |
1,79 |
6 |
K 5 |
5 |
0,121 |
0,145 |
1,82 |
1,79 |
7 |
K 6 |
4 |
0,120 |
0,147 |
1,85 |
1,83 |
8 |
K 7 |
4 |
0,120 |
0,147 |
1,86 |
1,82 |
9 |
K 8 |
5 |
0,123 |
0,137 |
1,87 |
1,86 |
[0090] Die Tabelle zeigt, daß der Zusatz der erfindungsgemäßen Substanzen einen wesentlich
geringeren Schleieranstieg nach 24-stündigem Digerieren bewirkt sowie einen geringeren
Abfall der Lichtergradation (Schwellengradation G 1).