(19) |
 |
|
(11) |
EP 0 143 626 B1 |
(12) |
EUROPEAN PATENT SPECIFICATION |
(45) |
Mention of the grant of the patent: |
|
27.02.1991 Bulletin 1991/09 |
(22) |
Date of filing: 23.11.1984 |
|
(51) |
International Patent Classification (IPC)5: C10G 1/00 |
|
(54) |
Thermochemical reforming process and plant for ultra heavy crude and tar
Thermochemisches Reformierungsverfahren und Anlage für Schwerstöl und Teer
Procédé de reformage thermochimique et usine pour pétrole brut et goudron
|
(84) |
Designated Contracting States: |
|
BE DE FR GB IT LU NL |
(30) |
Priority: |
25.11.1983 GB 8331535
|
(43) |
Date of publication of application: |
|
05.06.1985 Bulletin 1985/23 |
(73) |
Proprietor: Zakiewicz, Bohdan M., Dr. |
|
El-Segundo
California 90245 (US) |
|
(72) |
Inventor: |
|
- Zakiewicz, Bohdan M., Dr.
El-Segundo
California 90245 (US)
|
(74) |
Representative: Hayward, Denis Edward Peter |
|
Lloyd Wise, Tregear & Co.,
Commonwealth House,
1-19 New Oxford Street London WC1A 1LW London WC1A 1LW (GB) |
(56) |
References cited: :
US-A- 3 200 061 US-A- 4 042 344
|
US-A- 4 008 764
|
|
|
|
|
|
|
|
|
|
|
Remarks: |
|
The file contains technical information submitted after the application was filed
and not included in this specification |
|
Note: Within nine months from the publication of the mention of the grant of the European
patent, any person may give notice to the European Patent Office of opposition to
the European patent
granted. Notice of opposition shall be filed in a written reasoned statement. It shall
not be deemed to
have been filed until the opposition fee has been paid. (Art. 99(1) European Patent
Convention).
|
[0001] This invention relates to the reforming of ultra heavy petroleum crudes and tars
extracted from subterranean or surface formations or from the sand run from mines.
[0002] With the traditional method of extraction and reforming of crudes, only large-scale
refinery installations with specialized technology have been able to carry out the
operations for upgrading and reforming heavy crudes and tars into light products.
Ultra heavy tars generally constitute a feed stock for asphalt production plants only.
None of the existing refinery technologies can perform the conversion (reforming)
of crude at the mining site into pipeline quality light products.
[0003] Prior methods of employing light solvents for ultra heavy tar extraction in any kind
of in-situ operation, or from sand run from a surface mine, have largely failed due
to precipitation of the asphalt fraction and plugging of the formation, or losses
in sand run extraction. Light solvent has been commonly used at the refinery to remove
the asphalt fraction from the heavy crude, but the cost of refinery light solvent
is prohibitive when considered for any of the extraction processes in-situ.
[0004] Large refinery installations are designed to accept specific qualities of crude feed
stock only. Ultra heavy crude has a unique specification and requires unique storing
and transporting facilities. The only practical approach to the storing and transporting
of ultra heavy crude has been to keep it under high temperature and/or dilute it with
refined solvent which is recoverable at the refinery and can be transported back to
the mining/extraction field. A lot of energy is thus consumed merely to deliver the
product to the refinery where, despite the amount of energy consumed, such heavy crude
remains a degraded low priced product, hardly saleable in the world market.
[0005] Accordingly, it is an object of the present invention to provide a process and apparatus
for the reforming of heavy and ultra heavy crudes and tars into pipeline quality products.
Particularly to be treated are crudes having a gravity below 15° API (at 16°C) extracted
in situ from the crude-bearing formation or the sand run excavated from a surface
mine.
[0006] From US-A-4008764 it is already known to recover petroleum from formations containing
viscous petroleum, including tar sand deposits, by injecting into the formation a
mixture of a liquid solvent, especially a hydrocarbon solvent, and a carrier gas,
the solvent and carrier gas being stripped from the recovered petroleum and recycled
for re-use. The solvent and carrier gas mixture may be heated and, although not preferred,
the carrier gas may be a flue gas or exhaust gas.
[0007] The European Patent Application EP-A-0144203, filed on the same date as the present
application and claiming the same priority date, discloses a process for the recovery
of heavy and ultra heavy hydrocarbons from formations containing petroleum deposits
which comprises the steps of injection into the formation a hot flue gas, obtained
from the combustion of fuel at high temperature and pressure, and a hydrogen donor
solvent liquid, and then raising the hydrocarbons thereby mobilised and liquefied
by gas lift. The hot flue gas of the process is produced in a similar thermochemical
reforming plant adjacent to the well head (see figures).
[0008] According to the present invention, there is provided a process for the extraction
and reforming of heavy and ultra-heavy petroleum crudes and tars, comprising an extraction
stage in which hydrocarbon crude from a crude-bearing medium is extracted by the action
of hot flue gases and solvent, and characterised in that the solvent is a hydrogen
donor solvent, and after the extraction stage further processing of the extracted
hydrocarbon crude takes place in a reforming stage employing high temperature combustion
gases, the combustion gases employed in this reforming stage subsequently providing
the flue gases employed in the extraction stage.
[0009] Preferably, the extracted crude is subjected to a hydrogenation treatment in which
it is reacted with hydrogen and a reformed hydrocarbon stream, and the hydrogenated
crude then undergoes multi-stage fractionation, the liquid phase of the last stage
of fractionation being taken off as product while the liquid phase or phases of one
or more stages of fractionation preceding the last are recycled to provide a stream
for thermal reforming at high temperature by the heat of the combustion gases which
stream after reforming provides said reformed hydrocarbon stream for the hydrogenation
treatment. The hydrogen for the hydrogenation treatment may be principally obtained
by a water gas reaction in which steam is decomposed by passage over coke at a high
temperature maintained by the combustion gases, the coke having been deposited from
the reformed hydrocarbon stream during the high temperature reforming. The solvent
employed in the extraction of the crude may be obtained from the condensed vapour
phase of the last stage of fractionation.
[0010] The invention further provides plant for the performance of the process, including
a thermochemical reforming reactor comprising, in sequence, a high temperature high
pressure furnace section for generating combustion gases, a thermochemical reforming
section containing reforming coils surrounded by the combustion gases and through
which a stream of hydrogenated crude hydrocarbons flows for reforming, and a quencher-hydrogenator
section in which the extracted crude is hydrogenated by reaction with hydrogen and
the reformed stream of hydrocarbons from the reforming section.
[0011] Processes and plant for performing the invention will now be described with reference
to the accompanying drawings, in which:
[0012] Figure 1 is a schematic of plant for processing ultra heavy hydrocarbons recovered
from a well, and
[0013] Figure 2 shows the plant adapted to process feedstock from the sand run excavated
in an open cast mine.
[0014] Ultraheavy crudes and tars require a high temperature, approximately 700°C, for thermocracking.
The recovered ultra heavy crude will commonly have properties as follows:
[0015] gravity below 15° API (16°C) down to 0° API, in the raw state;
[0016] high sulphur content, usually not less than 3%;
[0017] high conradson carbon content;
[0019] high requirement of hydrogen for hydrogenation, not less than 250-500 cu. ft. (7-14
m³) per barrel (0.16 m³) of crude;
[0020] high sand content, as a result of recovery from nonconsolidated formations, or from
mined sand runs;
[0021] high degree of emulsification, as a result of gas-lifting by the use of flue gas,
[0022] high inlet temperature at inlet to the plant, as a result of heating in the production
wells;
[0023] decreased viscosity at inlet to the plant, not exceeding 5.10
-³Pa.s. (5cP).
[0024] In the example shown in Figure 1, the feed stock for the plant is obtained from a
'daisy' well 10 with a central solvent injection and production bore 12 surrounded
by six slanting gas injection bores 13.
[0025] The feed stock from the annular casing 14 of the production bore 12, which will typically
be an emulsion of crude, solvent, water and gas, enters a main separator 11 at elevated
temperature and pressure, for example, 450°F (232°C) and 460 PSIG (3151 x 10³
N/m²).
[0026] The main separator 11, which has internal vertical apertured baffles 31, separates
the diluted crude from the water and sand. Vaporized hydrocarbons are condensed in
a condenser 15 which is an inlet stage of gas scrubber 16 from which carbon dioxide
and nitrogen are vented. The condenser has a coil which is cooled by raw water pumped
from a well or reservoir by a pump 17. The water, after passing through the condenser
15, is introduced into the cooling coil system 18 of the desander-desalter separator
19 from where it passes into a furnace water jacket 20 of a high pressure thermochemical
reformer 21 and thence as steam into the coil of a steam superheater 22 at about 450°F
(232°C). Between the water jacket 20 and the steam superheater 22, a by-pass stream
is withdrawn at a process control valve 24 and injected continuously, or cyclically,
into thermochemical reforming coils 23 through process control valves 25, 26. Superheated
steam from the steam superheater 22 is injected into a sand jet-washing system 27
in the main separator 11 where it condenses, and whence it carries entrained sand
into the desanding-desalting separator 19. The water is cooled somewhat in the separator
19, and the settling sand is discharged, at 28, by a screw feeder 32.
[0027] Separated, largely de-emulsified crude in solvent, under the internal pressure of
the main separator 11, is introduced at a temperature of about 420°F (216°C) into
a quencher-hydrogenator 29 in which it is reacted with superheated thermally cracked
hydrocarbon, and hydrogen generated principally in the coil system 23 of the thermochemical
reformer 21 from which it enters the quencher-hydrogenator usually at a temperature
not less than 1300°F (704°C). Quenched and hydrogenated crude under the internal pressure
of the quencher-hydrogenator 29 leaves at about 850°F (454°C) and is introduced into
a first stage fractionator 30 at an inlet temperature of, for example, 800°F (427°C).
The heavy liquid fraction separated in the fractionator 30 is recycled by a pump 33
to the process control valves 26, 25 and through the coils 23 of the thermochemical
reformer into the quencher-hydrogenator 29.
[0028] The light vapour fraction from the fractionator 30 is condensed in an air-cooled
condenser 34 and pumped by a pump 36 at about 550°F (288°C) into a second stage fractionator
35, from where the liquid fraction, which is a heavy distillate, is pumped off by
a pump 37 and recycled, via a process control valve 44 and the valves 25, 26, through
the coils 23 in the thermochemical reformer to the quencher-hydrogenator 29. The lighter
vapour fraction from the fractionator 35 is condensed in an air-cooled condenser 38
and pumped by a pump 39 at about 300°F (149°C) to a third stage fractionator 40. The
liquid fraction from the third stage fractionator is a final pipeline quality commercial
product, up to 40° API gravity, and is pumped away by a pump 41 via process control
valves 42, 43 to a final reformed product pipeline 45.
[0029] The vapour fraction from the fractionator 40 is condensed in an air-cooled condenser
46 and injected by a pump 47 via a process control valve 48, at a temperature of about
200°F (93°C), down the central pipe 49 of the production bore 12 to act as hydrogen
donor solvent to dissolve and partially reform the in situ crude by hydrogenation
in the presence of flue gas components and in reaction with them. Alternatively, or
in addition, this vapour fraction or a part of it can be utilised for the same purpose
in a vessel serving as an ultra heavy crude extractor. The hydrogen donor solvent
is a highly hydrogenated naphthene fraction having a boiling range usually between
150° and 250°F (66° - 121°C). The amount of solvent needed for crude extraction is
usually approximately 25% by weight of the recovered crude. Further portions of it
can be blended with the final product or employed to dilute the hydrocarbon liquids
returning to the thermochemical reformer from the first and second stage fractionators.
[0030] The core of the entire plant is the high pressure, high temperature thermochemical
reforming reactor 21, which produces high temperature combustion gases and which performs
the following functions:
i) thermal cracking,
ii) thermochemical reforming,
iii) hydrogen generation,
iv) coke deposition and decoking.
[0031] The superheated flue gases leaving the thermochemical reformer at about 900°F (482°C)
and 900 PSI (6165 x 10³
N/m²) are fed to the outer casing 50 of the production well and thence into the gas
injection bores 13 to react with the hydrogen donor solvent and the in situ crude.
Hot water at about 200°F (93°C) is also supplied into the outer casing 50 from the
desander-desalter 19 by a pump 51. Alternatively, or in addition, the flue gases can
be utilised similarly in a vessel serving as a mined crude extractor-reformer.
[0032] The thermochemical reforming reactor 21 has a water-jacketed high pressure refractory
furnace 52 with a burner system fed by high pressure fuel pumps 53 and a compressor
54 into which the gaseous fraction from the condenser 46 is introduced for use as
fuel. The main fuel for the furnace may be gas or liquid hydrocarbon or pulverised
coal, but is preferably obtained from the crude being treated in the process. It is
injected at high pressure, together with compressed air which can, if desired, be
oxygen enriched. The furnace 52 opens into the section of the reactor containing the
reforming coils 23, which is followed by the section containing the steam super-heater
22. The system is designed to restrict the decompression and flow of the combustion
gases from the furnace so that a high intensity condensed flame is obtained and a
very high combustion gas temperature is reached, not less than 3000°F (1649°C).
[0033] The coil system 23 of the thermochemical reformer has dual interconnected passageways
55, 56 controlled by the process control valves 24, 25, 26. While one pass is charged
with heavy hydrocarbons from the fractionators 30, 35 for thermal cracking and coke
deposition, the other pass is fed with steam from the by-pass valve 24 to provide
a water gas reaction with the deposited coke and generate hydrogen. The hydrogen mixes
with the crude and partially refined hydrocarbons and provides the hydrogenation reaction
in the quencher-hydrogenator 29. The process control valves 24, 25, 26 are operated
to switch the flows of hydrocarbons and steam cyclically between the coil passages
55 and 56 so as to maintain the water gas reaction, but the hydrogen flow into the
quencher hydrogenator, and hence the hydrogenation reaction, is substantially continuous.
Additional hydrogen is generated in the quencher hydrogenator by reaction of the flue
gases with residual steam from the coils 23.
[0034] The function of the water jacket 20 around the furnace 52 is to raise the water temperature
to generate steam for the water gas reaction with the deposited coke. Provision for
a large amount of coke deposition is made by enlargement of the diameter of the tubing
of each coil to form a coke deposition chamber in which the hydrocarbon flow velocity
is decreased, these chambers being situated toward the furnace end of the reforming
section where combustion is still continuing around the coils 23 so that the coke
deposition chambers are exposed to a very high heat intensity. With deposition of
a sufficient amount of coke, there is a lowering of the hydrocarbon viscosity, and
that means a better hydrocarbon quality is obtained after just the first stage of
reforming. The coke deposition chambers are constructed from high quality metal alloy
resistant to high temperature and high external pressure.
[0035] The process valves 24, 25, 26 have controllers designed to provide manual or automatic
control of the entire water gas reaction in the thermochemical reformer.
[0036] The plant can also be adapted to extract and reform ultra heavy crude and tar from
the sand run excavated in an open cast mine as shown in Figure 2. The main components
of the plant and their functions remain unchanged when operating on sand run. The
feed stock is a heated mixture of partially reformed crude obtained by extraction
of the sand run in a silo or retort 60 by means of the hydrogen donor solvent and
flue gas components. The silo has an internal screw-conveyor system 61 extending horizontally
beyond the silo to a length sufficient to obtain extraction of the crude from the
sand run by countercurrent flow of the superheated flue gases and solvent.
[0037] The flights of the screw-conveyor are of an open type with openings between the core-shaft
63 and the main screw band of the conveyor. The core-shaft is a tube with openings
62 along it that are fitted with hard metal jet nozzles through which the flue gases
from the thermochemical reformer 21 and solvent from the condenser 46 are injected
into the constantly rotating and conveyed sand run. During the process of injecting
the flue gases and solvent, the crude in the conveyed sand is liquefied, partially
reformed and extracted from the sand through bottom filters 64. The extracted crude
at an outlet temperature of, for example, 200°F (93°C) can be further processed in
a hydrocyclone-desilter, to remove mineral particles, or can be pumped, as shown,
by a pump 65 directly into the regular main separator 11.
[0038] Sand from which the crude has been extracted is delivered from a terminal compacting
section 66 of the screw- conveyor which is maintained at the hottest temperature by
the incoming superheated flue gases. The incoming hydrogen donor solvent, however,
is introduced through a feed tube 67 that extends axially through the compacting section
of the screw-conveyor, within the tubular shaft 63 of the conveyor, to the middle
section of the screw-conveyor beyond the compacting section 66. The flue gases, in
their flow countercurrent to the direction of conveyance of the sand run, assist in
retaining the vapour of the hydrogen donor solvent in contact with the crude-bearing
sand and promote its reaction with the crude.
[0039] The countercurrently flowing flue gases and solvent together strip out crude from
the sand primarily in the major section of length of the screw-conveyor 61 that, in
the direction of conveyance of the sand, lies upstream of the terminal compacting
section 66 of the conveyor. In the compacting section, the flue gases alone strip
out the residual crude. The solvent vapour and dissolved hydrocarbons permeate through
the sand run and are quenched and condensed to liquid in a condensing section 69 before
leaving the silo or retort.
[0040] The flue gases after their countercurrent passageway along the screw-conveyor 61
permeate through the pile of sand run 68 awaiting treatment deposited in the silo
60. These gases react with moisture in the sand run, which leads to partial decontamination
of the flue gases in regard to their SO₂ and NO
x content. The final pollution control is achieved in the condenser/gas scrubber 16
where two streams of gases, one from the main separator 11 and the other from the
silo or retort 60, are mixed together and, after having been stripped of condensate,
if any, are scrubbed free of traces of SO₂.
[0041] Thus both in the case of extraction from a production well and in the case of extraction
from excavated sand run, a single stream of high temperature combustion gases serves
both to promote non-catalytic reforming of the crude hydrocarbons after extraction
and partakes in the actual extraction process. Moreover, the hydrogen donor solvent
used in the extraction process is obtained as a by-product of the reforming process.
The plant is readily capable of being set up and operated in the field at the well-head
or mining site, and can indeed be mobile, and it will produce a regular light pipe-line
quality product from heavy crude materials that were hitherto barely saleable.
[0042] Advantageously, for easy transport and assembly the main thermochemical reformer
and reactor together with the quencher hydrogenator can be constructed as a long tubular
vessel in three or possibly four segments each of which can be individually detached
for maintenance or replacement. The first segment will be the furnace section, the
second will be the section containing the reforming coils and the steam superheater
and the third section will be the quencher hydrogenator; or alternatively, the reforming
coils and the steam superheater can be in two separable sections instead of the same
section. The tubular segments need not exceed 5 ft. (1.52 m) in diameter and they
will all be heavily thermally insulated internally and can also be externally surrounded
by cold water jackets, if desired. The length of the tubular segments will be sufficient
to ensure proper mixing, heat exchange and reaction amongst the various components
partaking in the process. The train of tubular segments can, if convenient, be assembled
at the factory. `" ` `
[0043] In addition to the main train of segments forming the thermochemical reforming rector,
there will be a second train consisting of the fractionators and their coolers and
a third train consisting of the main separator with its gas scrubber and the desander-desalter.
Each of these two further trains can also, if convenient, be factory assembles.
[0044] It would, of course, also be possible, as an alternative to add the main separator
or extraction vessel to the train forming the thermochemical reforming reactor as
an additional tubular segment.
1. A process for the extraction and reforming of heavy and ultra-heavy petroleum crudes
and tars, comprising an extraction stage in which hydrocarbon crude from a crude-bearing
medium is extracted by the action of hot flue gases and solvent, and characterised
in that the solvent is a hydrogen donor solvent, and after the extraction stage further
processing of the extracted hydrocarbon crude takes place in a reforming stage employing
high temperature combustion gases, the combustion gases employed in this reforming
stage subsequently providing the flue gases employed in the extraction stage.
2. A process according to Claim 1, wherein the extracted crude is subjected to a hydrogenation
treatment in which it is reacted with hydrogen and a reformed hydrocarbon stream,
and the hydrogenated crude then undergoes multi-stage fractionation, the liquid phase
of the last stage of fractionation being taken off as product while the liquid phase
or phases of one or more stages of fractionation preceding the last are recycled to
provide a stream for thermal reforming at high temperature by the heat of the combustion
gases which stream after reforming provides said reformed hydrocarbon stream for the
hydrogenation treatment.
3. A process according to Claim 2, wherein the hydrogen for the hydrogenation treatment
is principally obtained by a water gas reaction in which steam is decomposed by passage
over coke at a high temperature maintained by the combustion gases, the coke having
been deposited from the reformed hydrocarbon stream during the high temperature reforming.
4. A process according to Claim 3, wherein the high temperature hydrocarbon reforming
and the water gas reaction occur in separate dual passageways surrounded by the combustion
gases, the hydrocarbon stream and the steam flow being cyclically switched so as to
change over the passageways in which they respectively flow at intervals.
5. A process according to Claim 2, or Claim 3, or Claim 4, wherein the condensed vapour
phase of the last stage of fractionation provides the solvent employed in extraction
of the crude.
6. A process according to Claim 3, or Claim 4, wherein the steam for the water gas reaction
is generated by passage of water through a water jacket of a furnace in which the
combustion gases are generated.
7. A process according to any one of Claims 2 to 6, wherein before hydrogenation the
extracted crude is treated in a separator to separate solid mineral content and salts.
8. A process according to Claims 6 and 7, wherein a portion of the steam from the furnace
water jacket is superheated by the combustion gases and then injected into the separator.
9. A process according to Claim 8, wherein water and the separated solid mineral content
is transferred from the separator to a desander in which the mineral content settles
and the water is cooled by heat exchange with ingoing feed water supplying the furnace
water jacket.
10. A process according to any one of the preceding Claims, wherein the combustion gases
are generated by combustion at high pressure of fuel obtained from the hydrocarbon
crude.
11. A process according to any one of Claims 1 to 10, wherein the extraction step is carried
out on crude-bearing excavated sand run in a silo or retort equipped with a screw-conveyor,
the flue gases and solvent flowing in countercurrent to the sand run being conveyed
by the conveyor.
12. Plant for the performance of the process of the preceding Claims, including a thermochemical
reforming reactor comprising, in sequence, a high temperature high pressure furnace
section for generating combustion gases, a thermochemical reforming section containing
reforming coils surrounded by the combustion gases and through which a stream of hydrogenated
crude hydrocarbons flows for reforming, and a quencher-hydrogenator section in which
the extracted crude is hydrogenated by reaction with hydrogen and the reformed stream
of hydrocarbons from the reforming section.
13. Plant according to Claim 12, wherein the reforming coils are dual coils each including
an enlarged diameter coke deposition chamber situated where it is subjected to the
greatest heat of the combustion gases, and process control valves are provided for
switching flows between the dual passageways at intervals so as to interchange the
hydrocarbon stream with a steam flow that generates hydrogen by water gas reaction
with the deposited coke.
14. Plant according to Claim 12 or Claim 13, wherein the furnace section is water-jacketted
and a process control valve is provided to admit steam generated in the water jacket
to the reforming coils for the water gas reaction.
15. Plant according to Claim 14, further comprising a steam superheater section between
the reforming section and the quencher-hydrogenator section in which steam generated
in the furnace water jacket is superheated by the combustion gases for use in the
separation of solid minerals and salts from the extracted crude before hydrogenation.
16. Plant according to Claim 15, wherein the furnace, reforming, superheater and quencher-hydrogenator
sections are contained in sequence in a continuous tubular vessel built up from separable
tubular segments.
17. Plant according to any one of Claims 12 to 16, further including a train of fractionators
and condensers receiving the extracted crude after hydrogenation and supplying the
hydrocarbon stream for reforming, a final product stream and a stream of solvent for
use in the extraction of the crude.
18. Plant according to any one of Claims 12 to 17, further including a main separator
in which the extracted crude is treated with superheated steam, and a desander in
which water and solid mineral content from the main separator are cooled and separated.
19. Plant according to any one of Claims 12 to 18, further including an extraction silo
or retort equipped with a screw-conveyor which conveys excavated crude-bearing sand
run in countercurrent to flue gases and solvent, the screw-conveyor having a tubular
core-shaft fitted with jet nozzles for the introduction of flue gases and/or solvent
into the conveyed sand run.
1. Un procédé d'extraction et de réformage des bruts de pétrole lourds et ultra-lourds
et de goudrons, comprenant une étape de récupération dans laquelle l'hydrocarbure
brut provenant d'un fluide à teneur en brut est extrait grâce à l'action de gaz chauds
et de solvant, et caractérisé en ce que le solvant est un solvant donneur d'hydrogène,
et l'étape d'extraction ayant lieu, un traitement complémentaire de l'hydrocarbure
brut extrait, dans une étape de réformage utilisant des gaz de combustion à température
élevée, les gaz de combustion utilisés dans cette étape de réformage produisant pour
la suite les gaz d'échappement utilisés dans l'étape d'extraction.
2. Un procédé selon la revendication 1, dans lequel le brut extrait est soumis à un traitement
d'hydrogénation dans lequel on le fait réagir avec de l'hydrogène et un courant d'hydrocarbure
réformé, et le brut hydrogéné étant ensuite fractionné en plusieurs étapes, la phase
liquide de la dernière étape de fractionnement étant prélevée en tant que produit
alors que la phase ou les phases d'une ou plusieurs étapes du fractionnement précédant
la dernière étape est (sont) recyclée(s) pour produire un courant de réformage thermique
à haute température, grâce à la chaleur des gaz de combustion qui s'écoulent après
que le réformage ait produit ledit courant d'hydrocarbure réformé pour le traitement
d'hydrogénation.
3. Un procédé selon la revendication 2, dans lequel l'hydrogène pour le traitement d'hydrogénation
est obtenu principalement par une réaction entre gaz et eau dans laquelle la vapeur
est décomposée par passage sur du coke à la haute température qui est maintenu par
les gaz de combustion, le coke ayant été déposé par le courant d hydrocarbure réformé
durant le réformage à haute température.
4. Un procédé selon la revendication 3, dans lequel le réformage à haute température
de l'hydrocarbure et la réaction entre gaz et eau se produisent dans des passages
doubles séparés entourés par les gaz de combustion, le courant d'hydrocarbure et l'écoulement
de vapeur étant commutés cycliquement de façon à permuter à intervalles les passage
dans lesquels surviennent des écoulements respectifs.
5. Un procédé selon la revendication 2 ou 3, ou 4, dans lequel la phase vapeur condensée
du dernier étage de fractionnement produit le solvant utilisé dans l'extraction du
brut.
6. Un procédé selon la revendication 3 ou 4, dans lequel la vapeur pour la réaction entre
eau et gaz est produite par passage d'eau dans une chemise humide d'un four dans lesquels
les gaz de combustion sont produits.
7. Un procédé selon l'une quelconque des revendications 2 à 6, dans lequel, avant hydrogénation,
le brut extrait est traité dans un séparateur pour séparer les substances minérales
solides et les sels.
8. Un procédé selon les revendications 6 et 7, dans lequel une partie de la vapeur provenant
de la chemise humide du four est surchauffée à l'aide des gaz de combustion et ensuite
injectée dans le séparateur.
9. Un procédé selon la revendication 8, dans lequel l'eau et la substance minéral solide
sont transférées du séparateur à un dessableur dans lequel les traces de substances
minérales et l'eau sont refroidies par échange thermique avec l'eau d'alimentation
de la chemise humide du four.
10. Un procédé selon l'une quelconque des revendications précédentes, dans lequel les
gaz de combustion sont produits par la combustion à haute pression du fioul obtenu
de l'hydrocarbure brut.
11. Un procédé selon l'une quelconque des revendications 1 à 10, dans lequel l'étape d'extraction
est effectuée sur un sable excavé contenant du brut, passant dans un silo ou une chambre
équipée d'un alimentateur à vis, les gaz d'échappement et le solvant s'écoulant à
contre-courant du sable véhiculé par l'alimentateur.
12. Installation pour mettre en oeuvre le procédé selon les revendications précédentes,
comprenant un réacteur de réformage thermochimique contenant, dans l'ordre, une section
de four à haute température pour produire des gaz de combustion, une section de réformage
thermochimique contenant des serpentins de réformage entourés par les gaz de combustion
et à travers lesquels s'écoule un courant d'hydrocarbures bruts hydrogénés destiné
au réformage, et une section à refroidisseur-hydrogénateur dans laquelle le brut extrait
est hydrogéné par réaction avec l'hydrogène et le courant réformé d'hydrocarbures
provenant de la section de réformage.
13. Installation selon la revendication 12, dans laquelle les serpentins de réformage
sont des serpentins doubles comprenant chacun une chambre de dépôt de coke de grand
diamètre située à l'emplacement où est dégagée la plus grande chaleur des gaz de combustion,
et des soupapes de commande de processus étant prévues pour commuter à intervalles
les écoulements entre les passages doubles, de façon à interchanger le courant d'hydrocarbure
avec un courant de vapeur qui produit de l'hydrogène par réaction entre les gaz et
l'eau, avec le coke déposé.
14. Installation selon la revendication 12 ou 13, dans laquelle la section de four est
dotée d'une chemise humide et une soupape de commande de processus étant prévue pour
introduire de la vapeur produite dans la chemise vers les serpentins de réformage
pour la réaction entre gaz et eau.
15. Installation selon la revendication 14, comprenant en outre une section à surchauffeur
de vapeur, entre la section de réformage et la section à refroidisseur-hydrogénateur,
dans laquelle la vapeur produite dans la chemise humide du four est surchauffée par
les gaz d'échappement servant dans la séparation des substances minérales solides
et des sels du brut extrait, avant l'hydrogénation.
16. Installation selon la revendication 15, dans laquelle les sections de four, de réformage,
de surchauffeur et de refroidisseur-hydrogénateur sont contenues, les unes à la suite
des autres, dans un récipient tubulaire continu construit à partir de segments tubulaires
séparables.
17. Installation selon l'une quelconque des revendications 12 à 16, comprenant en outre
un jeu de fractionneurs et de condenseurs recevant le brut extrait après hydrogénation
et produisant le courant d'hydrocarbure pour le réformage, un courant de produit final
et un courant de solvant pour utilisation dans l'extraction du brut.
18. Installation selon l'une quelconque des revendications 12 à 17, comprenant en outre
un séparateur principal dans lequel le brut extrait est traité avec la vapeur surchauffée,
et un dessableur dans lequel l'eau et les substances minérales solides provenant du
séparateur principal sont refroidies et séparées.
19. Installation selon l'une quelconque des revendications 12 à 18, comprenant en outre
un silo ou chambre d'extraction, équipé d'un alimentateur à vis qui véhicule du sable
excavé contenant du brut, à contre-courant des gaz d'échappement et du solvant, l'alimentateur
à vis présentant un arbre de noyau tubulaire pourvu de buses d'injection pour l'introduction
des gaz d'échappement et/ou du solvant dans le sable véhiculé.
1. Verfahren zum Extrahieren und Reformieren schwerer und ultraschwerer Rohöle und Teere,
bestehend aus einer Extraktionsstufe, bei der Kohlenwasserstoffrohgut aus einem rohgut-
oder rohölführenden Medium durch Einwirken von heißen Abgasen und Lösemittel extrahiert
wird, dadurch gekennzeichnet, daß das Lösemittel ein Wasserstoffdonatorlösemittel ist und daß nach der Extraktionsstufe
die Weiterbearbeitung des extrahierten Kohlenwasserstoffrohgutes oder -rohöls in einer
Reformierungsstufe durchgeführt wird, bei der Verbrennungsgase hoher Temperatur verwendet
werden, wobei diese in dieser Reformierungsstufe verwendeten Verbrennungsgase darauf
die Abgase bereitstellen, die in der Extraktionsstufe verwendet werden.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das extrahierte Rohgut einer Hydrogenierungsbehandlung unterzogen wird, bei
der es mit Wasserstoff und einem reformierten Kohlenwasserstoffstrom zur Reaktion
gebracht wird, worauf das hydrogenierte Rohgut oder Rohöl einer mehrstufigen Fraktionierung
ausgesetzt wird, wobei die Flüssigphase der letzten Stufe der Fraktionierung als Produkt
abgezogen wird, während die Flüssigphase oder -phasen einer oder mehrerer Fraktionierungsstufen,
die der letzten vorangehen, rückgeführt wird bzw. werden, um einen Strom für die thermische
Reformierung bei hoher Temperatur durch die Wärme der Verbrennungsgase vorzusehen,
durch den nach der Reformierung dieser reformierte Kohlenwasserstoffstrom für die
Hydrogenierungsbehandlung bereitgestellt wird.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet,daß der Wasserstoff für die Hydrogenierungsbehandlung hauptsächlich gewonnen wird
durch eine Wasser-Gasreaktion, bei der Dampf durch Überleiten über Koks bei einer
hohen, von den Verbrennungsgasen aufrechterhaltenen Temperatur zersetzt wird, wobei
der Koks aus dem reformierten Kohlenwasserstoffstrom während der Hochtemperaturreformierung
abgesetzt wurde.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet,daß die Hochtemperatur-Kohlenwasserstoffreformierung und die Wasser-Gasreaktion in
getrennten Doppeldurchgängen stattfinden, die von den Verbrennungsgasen umgeben sind,
wobei der Kohlenwasserstoffstrom und die Dampfströmung zyklisch geschaltet werden,
um so die Durchgänge umzuschalten, in denen sie jeweils in Abständen geführt werden.
5. Verfahren nach einen der vorhergehenden Ansprüche 2 oder 3 oder 4, dadurch gekennzeichnet,daß von der kondensierte Dampfphase der letzten Fraktionierungsstufe das hei der Extraktion
des Rohgutes oder Rohöls verwendete Lösemittel bereitgestellt wird.
6. Verfahren nach einem der vorhergehenden Ansprüche 3 oder 4, dadurch gekennzeichnet, daß der Dampf für die Wasser-Gasreaktion durch das Durchleiten von Wasser durch einen
Wassermantel eines Ofens erzeugt wird, in dem die Verbrennungsgase erzeugt werden.
7. Verfahren nach einem der vorhergehenden Ansprüche 2 bis 6, dadurch gekennzeichnet, daß das extrahierte Rohgut oder Rohöl vor der Hydrogenierung in einem Abscheider behandelt
wird, um den Stoffgehalt an festen Mineralien und Salzen abzuscheiden.
8. Verfahren nach einem der vorhergehenden Ansprüche 6 und 7, dadurch gekennzeichnet, daß ein Teil des Dampfes aus dem Ofenwassermantel durch die Verbrennungsgase überhitzt
und dann in den Abscheider eingespritzt wird.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet,daß Wasser und der abgeschiedene Stoffgehalt an festen Mineralien aus dem Abscheider
an einen Entsander überführt wird, in dem sich der Mineralstoffgehalt absetzt und
das Wasser durch Wärmeaustausch mit einströmenden, den Ofenwassermantel versorgenden
Speisewasser gekühlt wird.
10. Verfahren nach einem der vorhergehenden Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die Verbrennungsgase durch Verbrennen bei hoher Temperatur von aus dem Kohlenwasserstoffrohgut
gewonnenem Brennstoff erzeugt werden.
11. Verfahren nach einem der vorhergheenden Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die Extraktionsstufe durchgeführt wird auf ausgefördertem rohgut- oder rohölführendem
Sandlauf, in einem mit einem Schneckenförderer ausgerüsteten Silo oder in einer derart
ausgestatteten Retorte, wobei die Abgase und das Lösemittel zum vom Förderer geförderten
Sandlauf gegenströmig geführt werden.
12. Anlage zur Durchführung des Verfahrens nach den vorhergehenden Ansprüchen 1 bis 11,
gekennzeichnetdurch einen thermochemischen Reformierungsreaktors bestehend in Reihenfolge aus einem
Hochtemperatur-Hochdruckofenabschnitt zur Erzeugung von Verbrennungsgasen, einem thermochemischen
Reformierungsabschnitt, der Reformierungsrohrschlangen aufweist, die von den Verbrennungsgasen
umschlossen werden und durch die ein Strom der hydrogenierten Rohgut- oder Rohölkohlenwasserstoffe
zum Reformieren fließen, und einem Ablöschung-Hydrogenierungsabschnitt, in dem das
extrahierte Rohöl oder Rohgut durch Reagieren mit Wasserstoff und dem reformierten
Kohlenwasserstoffstrom aus dem Reformierungsabschnitt hydrogeniert wird.
13. Anlage nach Anspruch 12, dadurch gekennzeichnet,daß als Reformierungsrohrschlangen Doppelrohrschlangen verwendet werden, von denen
jede eine Koksabsatzkammer vergrößerten Durchmessers aufweist, die dort angeordnet
ist, wo sie der größten Wärme der Verbrennungsgase ausgesetzt ist, und daß Prozeßsteuerungsventile
oder -schieber zum Schalten des Strömens zwischen den Doppeldurchgängen in Intervallen
vorgesehen sind, um den Kohlenwasserstoffstrom mit einer Dampfströmung zu vertauschen,
die Wasserstoff durch die Wasser-Gasreaktion mit abgesetzten Koks erzeugt.
14. Anlage nach einem der vorhergehenden Ansprüche 12 oder 13, dadurch gekennzeichnet, daß der Ofenabschnitt mit einer Wasserummantelung versehen ist und daß ein Prozeßsteuerventil
oder -schieber vorgesehen ist, um im Wassermantel erzeugten Dampf in die Reformierungsrohrschlangen
für die Wasser-Gasreaktion einzulassen.
15. Anlage nach Anspruch 14, gekennzeichnetdurch einen Dampfüberhitzerabschnitt zwischen dem Reformierungsabschnitt und dem Ablöschung-Hydrogenierungsabschnitt,
in dem der im Ofenwassermantel erzeugte Dampf durch die Verbrennungsgase überhitzt
wird, um bei der Abscheidung der festen Mineralien und Salze aus dem extrahierten
Rohgut oder Rohöl vor dem Hydrogenieren verwendet zu werden.
16. Anlage nach Anspruch 15, dadurch gekennzeichnet,daß der Ofen, der Reformierungs-, der Überhitzer- und der Ablöschung-Hydrogenierungsabschnitt
in Reihenfolge in einem aus getrennten Rohrsegmenten kontinuierlich aufgebauten rohrförmigen
Gefäß enthalten sind.
17. Anlage noch einem der vorhergehenden Ansprüche 12 bis 16, gekennzeichnet durch einen Zug Fraktionatoren und Kondensatoren, von denen das extrahierte Rohgut
oder Rohöl nach der Hydrogenierung aufgenommen und der Kohlenwasserstoffstrom zum
Reformieren zugeführt wird, und einen Endproduktstrom sowie einen Lösemittelstrom
zur Verwendung bei der Rohgut- oder Rohölextraktion.
18. Anlage nach einem der vorhergehenden Ansprüche 12 bis 17, gekennzeichnet durch einen Hauptabscheider, in dem das extrahierte Rohgut oder Rohöl mit überhitztem
Dampf behandelt wird, und durch einen Entsander, in dem Wasser und der Stoffgehalt
an festen Mineralien aus dem Hauptabscheider gekühlt und abgeschieden werden.
19. Anlage nach einem der vorhergehenden Ansprüche 12 bis 18, gekennzeichnet durch ein Extraktionssilo oder eine Extraktionsretorte, der bzw. die mit einem Schneckenförderer
ausgerüstet ist, von dem ausgeförderter rohölführender Sandlauf gegenströmig zu den
Abgasen und zum Lösemittel gefördert wird, wobei der Schneckenförderer einen rohrförmigen
Kernschaft aufweist, der mit Strahldüsen zum Einführen der Abgase und/oder des Lösemittels
in den geförderten Sandlauf bestückt ist.

