BACKGROUND OF THE INVENTION
1. Field of the Invention
[0001] This invention relates to a motor-driven power steering system for a vehicle adapted
to assist the operator-induced steering operation by means of the rotative force of
a motor.
2. Description of the Prior Art known to the Applicant.
[0002] In the past, a power steering system of this type, as schematically illustrated in
Fig. 9, has hitherto been known to the Applicant in which a steering wheel 1 is operatively
connected through a steering shaft 2 and a first rack and pinion gear T₁ including
a first pinion 5 and a first rack tooth portion 6a with a steering rack 6 which is
connected at its opposite ends with a pair of steerable road wheels (not shown) through
a pair of tie rods 8a, 8b so that when the steering wheel 1 is turned by an operator,
the steerable road wheels (not shown) are appropriately steered in accordance with
the steering motion of the steering wheel 1 imparted by the operator. On the other
hand, the steering rack 6 is operatively connected with a motor 13 through a second
rack and pinion gear including a second rack tooth portion 6b and a second pinion
18, a speed-reduction gear R, and a switching clutch 17 so that the driving force
of the motor 13 is transmitted through the speed-reduction gear R, the switching clutch
17 and the second rack and pinion gear T₂ to the rack 6 so as to assist the steering
operation of the steering wheel 1 imparted by the operator. The motor 13 is electrically
connected with a battery 11 through a control unit 9 and a key or ignition switch
12 so that it is energized by the battery 11 under the control of the control unit
9 The control unit 9 is input with control signals from a steering-torque sensor 3
and a vehicle-speed sensor 10 so as to appropriately control the operation of the
motor 13 and the switching clutch 17 on the basis of the steering torque and the vehicle
speed measured.
[0003] The power steering system as constructed above has the following problems. Specifically,
when the travelling speed of the vehicle increases above or decreases below a prescribed
level, the control unit 9 operates to deenergize or energize the switching clutch
17 to interrupt or enable the transmission of the assisting force from the motor 13
to the rack 6 so as to switch the power steering system into a manual steering mode
without any power assist or into a power steering mode with power assist. Accordingly,
whenever the vehicle speed changes across a prescribed speed level, the operating
mode of the steering system abruptly changes from power steering into manual steering
or vice versa, thus causing the operator to feel a certain unsmoothness, unsureness,
or instability in the steering.
[0004] In GB Patent Specification 2 161 770, a power steering system is described which
comprises a single electromagnetic clutch which controls a coupling mechanism so that
above a predetermined speed, the steering is manually controlled.
SUMMARY OF THE INVENTION
[0005] In view of the above, the present invention is intended to obviate the above-described
problem of the prior art, known to the Applicant, and has for its object the provision
of a novel and improved motor-driven power steering system for a vehicle of the kind
described which can be switched or transferred from power steering into manual steering
or vice versa in an extremely smooth manner without causing any unsure feelings.
[0006] According to the present invention, there is provided a motor-driven power steering
system for a vehicle having a steering wheel operatively connected with steerable
road wheels so that the steering wheel is turned by an operator to appropriately steer
the steerable road wheels, the system comprising torque sensor means for providing
a torque signal indicative of torque applied to the steering system by an operator,
a motor for power-assisting the steering motion caused by the operator through the
steering wheel, a control unit for providing a control signal (s) in dependence upon
the torque signal and the speed of the vehicle, and switching clutch means decoupling
the transmission of the power-assisting force in dependence upon the speed of the
vehicle, characterised in that a further clutch means is provided for controlling
transmission of power-assisting forces from the motor to the steerable road wheels,
the further clutch means being controlled in dependence upon the control signal provided
by the control unit.
[0007] Preferably, the power-assisting torque transmitted from the motor toward the rack
through the further clutch is gradually decreased or increased in inverse proportion
to the measured vehicle speed. In this case, such a power-assisting torque may be
gradually decreased or increased in a stepwise fashion.
[0008] In one embodiment, the control unit comprises:
[0009] a steering-torque measuring means adapted to receive the output signal of the torque
sensor for measuring the operator-induced steering torque;
[0010] a vehicle-speed measuring means adapted to receive the output signal of the vehicle-speed
sensor for measuring the vehicle speed;
[0011] a memory means for storing current values to be supplied to the further clutch which
are determined by the vehicle speed and the steering torque;
[0012] a clutch-current determining means adapted to read out from the memory means an appropriate
current value corresponding to the measured steering torque and the measured vehicle
speed for determining the current to be supplied to the further clutch; and
[0013] a clutch-current controlling means for controlling the current supplied to the further
clutch in accordance with the output from the clutch-current determining means.
[0014] In this case, it is preferable that the memory means comprise;
[0015] a reduction-ratio storage means for storing second predetermined reduction ratios
of the steering torque with respect to the vehicle speed; and
[0016] a control-torque calculating means for calculating an appropriate control torque
by multiplying the measured steering torque by the corresponding reduction ratio,
whereby the clutch-current determining means determines an appropriate level of clutch
current based on the calculated control torque.
[0017] In another embodiment, the control unit comprises:
[0018] a steering-torque measuring means adapted to receive the output signal of the torque
sensor for measuring the operator-induced steering torque;
[0019] a vehicle-speed measuring means adapted to receive the output signal of the vehicle-speed
sensor for measuring the vehicle speed;
[0020] a memory means for storing voltage values to be imposed on the motor which are predetermined
by the vehicle speed and the steering torque;
[0021] a motor-voltage determining means adapted to read out from the memory means an appropriate
voltage value corresponding to the measured steering torque and the measured vehicle-speed
for determining the voltage to be imposed on the motor; and
[0022] a motor-voltage controlling means for controlling the voltage imposed on the motor
in accordance with the output of the motor-voltage determining means.
[0023] In this case, it is preferable that the memory means comprise;
[0024] a reduction-ratio storage means for storing predetermined reduction ratios of the
steering torque with respect to the vehicle speed; and
[0025] a control-torque calculating means for calculating an appropriate control torque
by multiplying the measured steering torque by the corresponding reduction ratio,
whereby the motor-voltage determining means determines an appropriate level of motor
voltage based on the calculated control torque.
[0026] In a further embodiment, the control unit comprises:
[0027] a steering-torque measuring means adapted to receive the output signal of the torque
sensor for measuring the operator-induced steering torque;
[0028] a vehicle-speed measuring means adapted to receive the output signal of the vehicle-speed
sensor for measuring the vehicle speed;
[0029] a first memory means for storing voltage values to be imposed on the motor which
are predetermined by the vehicle speed and the steering torque;
[0030] a motor-voltage determining means adapted to read out from the first memory means
an appropriate voltage value corresponding to the measured steering torque and the
measured vehicle-speed for determining the voltage to be imposed on the motor; a motor-voltage
controlling means for controlling the voltage imposed on the motor in accordance with
the output of the motor-voltage determining means;
[0031] a second memory means for storing current values to be supplied to the further clutch
which are predetermined by the vehicle speed and the steering torque;
[0032] a clutch-current determining means adapted to read out from the second memory means
an appropriate current value corresponding to the measured steering torque and the
measured vehicle-speed for determining the current to be supplied to the further clutch;
and
[0033] a clutch-current controlling means for controlling the current supplied to the further
clutch in accordance with the output from the clutch-current determining means.
[0034] In this case, it is preferable that the first memory means comprise:
[0035] a first reduction-ratio storage means for storing first predetermined reduction ratios
of the steering torque with respect to the vehicle speed; and
[0036] a first control-torque calculating means for calculating a first appropriate control
torque by multiplying the measured steering torque by the corresponding first reduction
ratio, whereby the motor-voltage determining means determines an appropriate level
of motor voltage based on the first calculated control torque;
[0037] and that the second memory means comprise:
[0038] a second reduction-ratio storage means for storing second predetermined reduction
ratios of the steering torque with respect to the vehicle speed; and
[0039] a second control-torque calculating means for calculating a second appropriate control
torque by multiplying the measured steering torque by the corresponding second reduction
ratio, whereby the clutch-current determining means determines an appropriate level
of clutch current based on the second calculated control torque.
[0040] The above and other objects, features and advantages of the present invention will
become apparent from the following detailed description of several presently preferred
embodiments of the invention when taken in conjunction with the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
[0041] Figs. 1 through 8 relate to a motor-driven power steering system in accordance with
one embodiment of the present invention, in which
[0042] Fig. 1 is a schematic view illustrating a general arrangement of the same;
[0043] Fig. 2 is a block diagram showing a control unit and its related parts;
[0044] Fig. 3 is a block diagram showing a motor-voltage storage means and a clutch-current
storage means of the control unit;
[0045] Fig. 4 is a graphic representation showing current/torque characteristics of a first
electromagnetic clutch;
[0046] Fig. 5 is a characteristic view showing a steering-torque/motor-voltage relationship
and a steering-torque/first-clutch-current relationship when the vehicle is standing
still;
[0047] Fig. 6 is a characteristic view showing a steering torque/first-clutch-current relationship
when the vehicle speed changes;
[0048] Fig. 7 is a characteristic view showing a vehicle speed/first-clutch current relationship
and a vehicle speed/second-clutch current relationship when the steering torque is
constant;
[0049] Fig. 8 is a flow chart showing the control processes of the power steering system
of Fig. 1 as controlled by the control unit illustrated in Fig. 2.
[0050] Fig. 9 is a schematic view illustrating a general arrangement of a motor-driven power
steering system for a vehicle, known to the Applicant.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
[0051] The present invention will now be described in detail with reference to a presently
preferred embodiment thereof as illustrated in the accompanying drawings. In the following,
the same parts or elements of the embodiments will be identified by the same reference
numerals and characters as employed in Fig. 9.
[0052] Referring to the drawings and first to Fig. 1, there is shown a general arrangement
of a motor-driven power steering system for a vehicle constructed in accordance with
the present invention. The motor-driven power steering system illustrated includes
a steering wheel 1; a steering shaft 2 fixedly connected at its upper end with the
steering wheel for integral rotation therewith and including an upper section 2a and
a lower section 2b joined with each other through a first universal joint 4a; a torque
sensor 3 mounted on the steering shaft 2 for detecting turning force imparted to the
steering wheel 1 by an operator and generating an electrical signal representative
of the detected steering torque; a first pinion 5 operatively connected at its upper
end with the lower end of the steering shaft 2 through a second universal joint 4b;
a rack 6 operatively connected at its opposite ends through ball joints 7a, 7b with
tie rods 8a, 8b which are in turn connected with a pair of steerable road wheels (not
shown), the rack 6 having a first tooth portion 6a in mesh with the first pinion 5
and a second tooth portion 6b axially spaced from or otherwise continuous with the
first tooth portion 6a; a vehicle-speed sensor 10 for detecting the travelling speed
of the vehicle and generating an output signal representative of the detected vehicle
speed; a battery 11 adapted to be mounted on the vehicle; a key or ignition switch
12; a second pinion 18 in meshing engagement with the second rack tooth portion 6b
on the rack 6; a motor 13 operatively connected through a speed-reduction gear R with
the second pinion 18 for power assisting the steering motion of the rack 6 induced
by the operator, the motor being preferably in the form of a direct current motor
having a shunt winding field or a magnetic field and adapted to be driven to rotate
by the battery 11; a first electromagnetic clutch 14 interposed between the motor
13 and the second pinion 18 for transmitting power therebetween substantially in proportion
to the intensity of current supplied thereto, the first clutch 14 being preferably
in the form of an electromagnetic sliding clutch such as, for example, a powder clutch,
a hysteresis clutch or the like and directly coupled, in the illustrated embodiment,
with an output shaft of the motor 13; a second clutch 17 in the form of an electromagnetic
switching clutch interposed between the motor 13 and the second pinion 18 for selectively
establishing or disconnecting an operative connection therebetween; and a control
unit 109 adapted to receive output signals from the torque sensor 3 and the vehicle-speed
sensor 10 for controlling the operations of the motor 13 and the first and second
clutches 14, 17 in a manner such that the power-assisting force transmitted from the
motor 13 toward the steerable road wheels is gradually decreased before the second
switching clutch 17 is switched off, and gradually increased after the second switching
clutch 17 is switched on. In the illustrated embodiment, the speed-reduction gear
R comprises a worm 15 operatively connected with an output shaft of the first sliding
clutch 14, and a worm wheel 16 in mesh with the worm 15. The second electromagnetic
switching clutch 17 serves to mechanically couple or disconnect the worm wheel 16
with the second pinion 18.
[0053] As diagrammaticaly illustrated in Fig. 2, the control unit 109 comprises: a steering-torque
measuring means 109a adapted to receive the output signal of the torque sensor 3 for
measuring the operator-induced steering torque; a vehicle-speed measuring means 109b
adapted to receive the output signal of the the vehicle-speed sensor 10 for measuring
the vehicle speed; a first memory means 109c for storing voltage values to be imposed
on the motor 13 which are predetermined by the vehicle speed and the steering torque;
a motor-voltage determining means 109d adapted to read out from the first memory means
109c an appropriate voltage value corresponding to the measured steering torque and
the measured vehicle-speed for determining the voltage to be imposed on the motor
13; a second memory means 109e for storing current values to be supplied to the first
electromagnetic sliding clutch 14 which are predetermined by the vehicle speed and
the steering torque; a clutch-current determining means 109f adapted to read out from
the second memory means 109e an appropriate current value corresponding to the measured
steering torque and the measured vehicle-speed for determining the current to be supplied
to the first electromagnetic sliding clutch 14; a motor-voltage controlling means
109g for controlling the voltage imposed on the motor 13 in accordance with the output
of the motor-voltage determining means 109d; a clutch-current controlling means 109h
for controlling the current supplied to the first electromagnetic sliding clutch 14
in accordance with the output from the clutch-current determining means 109f; and
a clutch controlling means 109i for controlling the second electromagnetic switching
clutch 17 in a manner such that the second clutch 17 is switched off when the vehicle
speed increases above a prescribed level, and switched on when the vehicle speed decreases
below the prescribed level.
[0054] As illustrated in Fig. 3, the first memory means 109c comprises: a first reduction-ratio
storage means 209a for storing first predetermined reduction ratios of the steering
torque with respect to the vehicle speed; and a first control-torque calculating means
209b for calculating a first appropriate control torque by multiplying the measured
steering torque by the corresponding first reduction ratio, whereby the motor-voltage
determining means 109d determines an appropriate level of motor voltage based on the
first calculated control torque. Also, the second memory means 109e comprises: a second
reduction-ratio storage means 209c for storing second predetermined reduction ratios
of the steering torque with respect to the vehicle speed; and a second control-torque
calculating means 209d for calculating a second appropriate control torque by multiplying
the measured steering torque by the corresponding second reduction ratio, whereby
the clutch-current determining means 109f determines an appropriate level of clutch
current based on the second calculated control torque.
[0055] Now, the operation of the power steering system of this embodiment will be described
with reference to Figs. 1 through 8. First, the case in which a vehicle is stationary
or standing still will be considered. In this case, when the key switch 12 is first
turned on to start the engine, the electromagnetic clutch 17 is automatically actuated
to place the second pinion 18 into mechanical coupling with the worm wheel 16. In
this state, when the steering wheel 1 is turned by an operator, the control unit 109
acts to control the operations of the motor 13 and the sliding clutch 14 in the manner
as illustrated in Fig. 5 which shows a relationship between steering torque, motor
voltage and clutch current. More specifically, when steering torque increases in the
righthand direction to point
a in Fig. 5, the motor 13 is turned on and then imposed with 100% voltage at point
b. As the steering torque further increases, current begins to flow through the electromagnetic
clutch 14 at point
c and the intensity of the current increases logarithmically with respect to an increase
in the steering torque, and reaches 100% current at point
d. On the other hand, as the steering torque decreases, current flowing through the
electromagnetic sliding clutch 14 begins to decrease at point
d and reaches 0% current at point
c. In accordance with a further decrease in the steering torque, the motor 13 is turned
off at point
e so that the voltage imposed on the motor 13 becomes 0% at point
f. Similar to this, the motor 13 and the first electromagnetic sliding clutch 14 are
controlled in the same manner when the steering torque increases or decreases in the
lefthand direction.
[0056] As shown in Fig. 4, the characteristic of the sliding clutch 14 is used in a range
in which transmitting torque or sliding torque increases substantially in direct proportion
to clutch current. Accordingly, as is clear from Fig. 5, the motor 13 is imposed with
100% voltage and energized to start rotating when steering torque increases to point
a. As the steering torque further increases, current flowing through the sliding clutch
14 begins to gradually increase at point
c so that the output torque transmitted from the sliding clutch 14 to the worm 15 increases
gradually. As a result, auxiliary torque having an intensity corresponding to the
turning force imparted to the steering wheel by an operator is transmitted from the
motor 13 to the second tooth portion 6b on the rack 6 via the sliding clutch 14, the
worm wheel 16, the electromagnetic clutch 17 and the second pinion 18, thereby lightening
the steering operation for the operator.
[0057] Now, the case in which the vehicle is travelling will be considered. In this case,
as seen from Fig. 6, current flowing through the first sliding clutch 14 is controlled
by the control unit 109 on the basis of the current value which is previously stored
in the clutch-current storage means 109e and which is determined by the steering torque
and the vehicle speed in an appropriate manner. Specifically, as shown in Fig. 6,
the clutch current is determined such that it begins to rise or increase at point
c and reaches 100% or full static current at point
d, the rising curve becoming more gradual in accordance with an increase in the vehicle
speed. Also, the starting point of the rising curve displaces from a smaller steering
torque side toward a larger steering torque side in accordance with an increase in
the vehicle speed. More particularly, in cases where the steering torque is assumed
to be constant, the clutch current supplied to the first sliding clutch 14 is controlled
to decrease in a stepwise fashion in inverse proportion to an increase in the vehicle
speed. For example, the clutch current is controlled by the control torque determined
by the product of the steering torque and a reduction ratio which corresponds to the
vehicle speed so that it gradually decreases in a stepwise manner as illustrated in
Fig. 7. Thus, the clutch current is made zero at point
f even when steering torque is imparted to the steering wheel 1. When the vehicle speed
further increases to point
h in Fig. 7, the second electromagnetic switching clutch 17 is switched off or deenergized
to release the engagement or mechanical coupling between the worm wheel 16 and the
second pinion 18, thereby switching the steering system into a manual steering mode
without any power assist. In this manner, the torque transmitted from the motor 13
to the rack 6 is gradually decreased in accordance with an increase in the vehicle
speed under the action of the first sliding clutch 14 so that it is made zero before
switching off or deenergization of the second switching clutch 17. On the other hand,
as the vehicle speed decreases, the transmission torque or sliding torque of the first
sliding clutch 14 begins to increase after the second switching clutch 17 is energized
to mechanically couple the worm wheel 16 with the second pinion 18. As a result, the
steering system can change over from the power steering mode into the manual steering
mode or vice versa in an extremely smooth manner without giving rise to any feelings
of unsureness or instability which would otherwise be caused by abrupt connection
or disconnection of the second switching clutch 17.
[0058] Also, the voltage imposed on the motor 13 is likewise controlled in the same manner
as the current supplied to the first sliding clutch 14. Though not illustrated, it
is possible to control either the motor voltage or the clutch current supplied to
the first sliding clutch 14 alone.
[0059] The above control of the power steering system can be installed simply by replacing
the conventional control program of a control unit with that of the present invention
without changing the general arrangement of a conventional power steering system.
Accordingly, it is possible to manufacture the motor-driven power steering system
of the present invention at low cost.
1. A motor-driven power steering system for a vehicle having a steering wheel operatively
connected with steerable road wheels so that the steering wheel is turned by an operator
to appropriately steer the steerable road wheels, the system comprising torque sensor
means (3) for providing a torque signal indicative of torque applied to the steering
system by an operator, a motor (13) for power-assisting the steering motion caused
by the operator through the steering wheel, a control unit (9) for providing a control
signals in dependence upon the torque signal and the speed of the vehicle, and switching
clutch means (17) for coupling or decoupling the transmission of the power-assisting
force in dependence upon the speed of the vehicle, characterised in that a further
clutch means (14) is provided for controlling transmission of power-assisting forces
from the motor (13) to the steerable road wheels, the further clutch means (14) being
controlled in dependence upon the control signal (2) provided by the control unit
(9).
2. A motor-driven power steering system according to claim 1, comprising a vehicle-speed
sensor (10) for detecting the vehicle speed to generate an output signal representative
of the detected vehicle speed, wherein:
the motor (13) is adapted to be energized by a battery (11);
the switching clutch means (17) is in the form of an electromagnetic switching clutch
adapted to be switched off for interrupting the transmission of the power-assisting
force from the motor (13) toward the steerable road wheels when the vehicle speed
increases above a prescribed level, and switched on for transmission of the power-steering
force therebetween when the vehicle speed decreases below the prescribed level; and
the further clutch means (14) is in the form of an electromagnetic sliding clutch
for controlling the power-assisting force transmitted from the motor (13) to the steerable
road wheels;
the control unit (109) is adapted to receive output signals from the torque sensor
(3) and the vehicle-speed sensor (10) for controlling the operations of the motor
(13) and the further clutch means (14) in a manner such that the power-steering force
transmitted from the motor (13) to the steerable road wheels through the sliding clutch
(14) is gradually decreased before the switching clutch means (17) is switched off,
and gradually increased after the switching clutch means (17) is switched on.
3. A motor-driven power steering system for a vehicle as set forth in claim 2, wherein
the power-assisting force transmitted from the motor (13) to the steerable road wheels
through the sliding clutch (14) is gradually decreased or increased in inverse proportion
to the vehicle speed.
4. A motor-driven power steering system for a vehicle as set forth in claim 3, wherein
the power-assisting force transmitted from the motor (13) to the steerable road wheels
through the sliding clutch (14) is gradually decreased or increased in a stepwise
fashion.
5. A motor-driven power steering system for a vehicle as set forth in claim 2, wherein
the control unit (109) comprises:
a steering-torque measuring means (109a) adapted for receiving the output signal of
the torque sensor (3) for measuring the operator-induced steering torque;
a vehicle-speed measuring means (109b) adapted for receiving the output signal of
the vehicle-speed sensor (10) for measuring the vehicle speed;
a memory means (109e) for storing current values to be supplied to the sliding clutch
(14) which are predetermined by the vehicle speed and the steering torque;
a clutch-current determining means (109f) adapted for reading out from the memory
means (109e) an appropriate current value corresponding to the measured steering torque
and the measured vehicle-speed for determining the current to be supplied to the sliding
clutch (14); and
a clutch-current controlling means (109h) for controlling the current supplied to
the sliding clutch (14) in accordance with the output from the clutch-current determining
means (109f).
6. A motor-driven power steering system for a vehicle as set forth in claim 2, wherein
the control unit (10) comprises:
a steering-torque measuring means (109a) adapted for receiving the output signal of
the torque sensor (3) for measuring the operator-induced steering torque;
a vehicle-speed measuring means (109b) adapted for receiving the output signal of
the vehicle-speed sensor (10) for measuring the vehicle speed;
a memory means (109c) for storing voltage values to be imposed on the motor (13) which
are predetermined by the vehicle speed and the steering torque;
a motor-voltage determining means (109d) adapted for reading out from the memory means
(l09c) an appropriate voltage value corresponding to the measured steering torque
and the measured vehicle-speed for determining the voltage to be imposed on the motor;
and
a motor-voltage controlling means (109g) for controlling the voltage imposed on the
motor in accordance with the output of the motor-voltage determining means (109d).
7. A motor-driven power steering system for a vehicle as set forth in claim 6, wherein
the control unit (109) comprises:
a second memory means (109e) for storing current values to be supplied to the sliding
clutch (14) which are predetermined by the vehicle speed and the steering torque;
a clutch-current determining means (109f) adapted for reading out from the second
memory means (109e) an appropriate current value corresponding to the measured steering
torque and the measured vehicle-speed for determining the current to be supplied to
the sliding clutch; and
a clutch-current controlling means (109h) for controlling the current supplied to
the sliding clutch (14) in accordance with the output from the clutch-current determining
means.
8. A motor-driven power steering system for a vehicle as set forth in claim 5 or claim
6, wherein the memory means (109e) comprises:
a reduction-ratio storage means (209c) for storing predetermined reduction ratios
of the steering torque with respect to the vehicle speed; and
a control-torque calculating means (209d) for calculating an appropriate control torque
by multiplying the measured steering torque by the corresponding reduction ratio,
whereby the clutch-current determining means (109f) determines an appropriate level
of clutch current based on the calculated control torque.
9. A motor-driven power steering system for a vehicle as set forth in claim 7, wherein
the first memory means (109c) comprises:
a first reduction-ratio storage means (109a) for storing first predetermined reduction
ratios of the steering torque with respect to the vehicle speed; and
a first control-torque calculating means (109b) for calculating a first appropriate
control torque by multiplying the measured steering torque by the corresponding first
reduction ratio, whereby the motor-voltage determining means (109d) determines an
appropriate level of motor voltage based on the first calculated control torque;
and wherein the second memory means (109e) comprises:
a second reduction-ratio storage means (209c) for storing second predetermined reduction
ratios of the steering torque with respect to the vehicle speed; and
a second control-torque calculating means (209d) for calculating a second appropriate
control torque by multiplying the measured steering torque by the corresponding second
reduction ratio, whereby the clutch-current determining means (109f) determines an
appropriate level of clutch current based on the second calculated control torque.
10. A motor-driven power steering system according to any one of claims 2 to 9, comprising:
a first pinion (5) operatively connected with a steering shaft (2) and adapted to
be driven by the steering wheel (1) through the intermediary of the steering shaft;
a rack (6) operatively connected through tie rods (8a,8b) with a pair of steerable
road wheels and having a first rack tooth portion (6a) and a second rack tooth portion
formed (6b) thereon, the first rack tooth portion being in meshing engagement with
the first pinion;
a second pinion (18) being in meshing engagement with the second rack tooth portion
on said rack; wherein:
the motor is operatively connected through a speed-reduction gear (R) with the second
pinion (18) for power assisting the steering motion of the rack induced by the operator
through the intermediary of the steering wheel, the steering shaft (2), the first
pinion (5) and the first rack tooth portion;
the sliding clutch (14) interposed between the motor and the second pinion (18) being
operative for transmitting power therebetween substantially in proportion to the intensity
of current supplied thereto; and
the switching clutch (17) interposed between the motor and the second pinion (18)
being operative for selectively disconnecting the operative connection between the
motor and the second pinion (18) when the vehicle speed increases above said prescribed
level and establishing the operative connection therebetween when the vehicle speed
decreases below said prescribed level.
1. Système de direction assistée entraîné par moteur pour un véhicule ayant un volant
de direction connecté de façon fonctionnelie à des roues directionnelles du véhicule,
de sorte que le volant de direction est tourné par un opérateur pour braquer, de façon
appropriée, les roues directionnelles du véhicule, le système comprenant un moyen
de détection du couple (3) pour fournir un signal de couple indicateur du couple appliqué
au système de direction par un opérateur, un moteur (13) pour assister en puissance
le mouvement de braquage provoqué par l'opérateur à l'aide du volant de direction,
une unité de contrôle (9) pour fournir des signaux de contrôle dépendant du signal
de couple et de la vitesse du véhicule, et un moyen formant accouplement de commutation
(17) pour coupler ou découpler la transmission de la force d'assistance de puissance
en fonction de la vitesse du véhicule, caractérisé en ce qu'un autre moyen formant
accouplement (14) est prévu pour contrôler la transmission des forces d'assistance
en puissance depuis le moteur (13) vers les roues directionnelles du véhicule, l'autre
moyen formant accouplement (14) étant contrôlé en fonction du signal de contrôle (2)
délivré par l'unité de contrôle (9).
2. Système de direction assistée entraîné par moteur, en accord avec la revendication
1 , et comprenant un détecteur de vitesse du véhicule (10) pour détecter la vitesse
du véhicule de manière à générer un signal de sortie représentatif de la vitesse détectée
du véhicule, dans lequel :
le moteur (13) est adapté pour être alimenté par une batterie (11);
le moyen formant accouplement de commutation (17) a la forme d'un embrayage de commutation
électromagnétique adapté pour être mis à l'arrêt pour interrompre la transmission
de la force d'assistance en puissance provenant du moteur (13) vers les roues directionnelles
du véhicule, lorsque la vitesse du véhicule augmente au-dessus d'un niveau prescrit,
et pour commuter en marche la transmission de la force d'assistance en puissance entre
ceux-ci lorsque la vitesse du véhicule diminue en dessous du niveau prescrit; et
l'autre moyen formant accouplement (14) a la forme d'un embrayage mobile électromagnétique
pour contrôler la force d'assistance en puissance transmise depuis le moteur (13)
vers les roues directionnelles du véhicule;
l'unité de contrôle (109) est adaptée pour recevoir des signaux de sortie provenant
du détecteur de couple (3) et du détecteur de vitesse du véhicule (10), afin de contrôler
le fonctionnement du moteur (13) et de l'autre moyen formant accouplement (14) de
telle sorte que la force d'assistance au braquage transmise depuis le moteur (13)
vers les roues directionnelles du véhicule, par l'intermédiaire de l'accouplement
mobile (14), est graduellement diminuée avant que le moyen formant accouplement de
commutation (17) ne soit désactivé, et est graduellement augmentée après que le moyen
formant accouplement de commutation (17) soit activé.
3. Système de direction assistée entraîné par moteur pour un véhicule, tel que décrit
dans la revendication 2, dans lequel la force d'assistance en puissance transmise
depuis le moteur (13) vers les roues directionnelles du véhicule par l'intermédiaire
de l'accouplement mobile (14) est graduellement diminuée ou augmentée en proportion
inverse à la vitesse du véhicule.
4. Système de direction assistée entraîné par moteur pour un véhicule, tel que décrit
dans la revendication 3, dans lequel la force d'assistance en puissance transmise
depuis le moteur (13) vers les roues directionnelles du véhicule par l'intermédiaire
de l' accouplement mobile (14) est graduellement diminuée ou augmentée palier par
palier.
5. Système de direction assistée entraîné par moteur pour un véhicule, tel que décrit
dans la revendication 2, dans lequel l'unité de contrôle (109) comprend :
un moyen de mesure du couple de braquage (109a) adapté pour recevoir le signal de
sortie provenant du détecteur de couple (3) afin de mesurer le couple de braquage
induit par l'opérateur;
un moyen de mesure de la vitesse du véhicule (109b) adapté pour recevoir le signal
de sortie provenant du détecteur de vitesse du véhicule (10) afin de mesurer la vitesse
du véhicule;
un moyen formant mémoire (109e) pour emmaganiser les valeurs du courant à appliquer
à l'accouplement mobile (14) qui sont prédéterminées par la vitesse du véhicule et
le couple de braquage;
un moyen de détermination du courant d' accouplement (109f) adapté pour lire dans
le moyen formant mémoire (109e) une valeur de courant appropriée correspondant au
couple de braquage mesuré et à la vitesse mesurée du véhicule, afin de déterminer
le courant à fournir à l' accouplement mobile (14); et
un moyen de contrôle du courant d'accouplement (109h) afin de contrôler le courant
fourni à l'accouplement coulissant (14) en accord avec la sortie du moyen de détermination
du courant d'accouplement (109f).
6. Système de direction assistée entraîné par moteur pour un véhicule selon la revendication
2, dans lequel l'unité de contrôle (10) comprend :
un moyen de mesure du couple de braquage (109a) adapté pour recevoir le signal de
sortie provenant du détecteur de couple (3) afin de mesurer le couple de braquage
induit par l'opérateur;
un moyen de mesure de la vitesse du véhicule (109b) adapté pour recevoir le signal
de sortie du détecteur de vitesse du véhicule (10) afin de mesurer la vitesse du véhicule;
un moyen formant mémoire (109c) pour emmagasiner des valeurs de tension à imposer
au moteur (13) qui sont prédéterminées par la vitesse du véhicule et le couple de
braquage;
un moyen de détermination de la tension du moteur (109d) adapté pour lire dans le
moyen formant mémoire (109c) une valeur de tension appropriée qui correspond au couple
de braquage mesuré ainsi qu'à la vitesse mesurée du véhicule pour déterminer la tension
à imposer au moteur; et
un moyen de contrôle de la tension du moteur (109g) afin de contrôler la tension imposée
au moteur en accord avec la sortie du moyen de détermination de la tension du moteur
(109d).
7. Système de direction assistée entraîné par moteur pour un véhicule selon la revendication
6, dans lequel l'unité de contrôle (109) comprend :
un second moyen formant mémoire (109e) pour emmagasiner des valeurs de courant à fournir
à l' accouplement mobile (14) qui sont prédéterminées par la vitesse du véhicule et
le couple de braquage;
un moyen de détermination du courant d'accouplement (109f) adapté pour lire dans le
second moyen formant mémoire (109e) une valeur appropriée de courant qui correspond
au couple de braquage mesuré ainsi qu'à la vitesse mesurée du véhicule afin de déterminer
le courant à fournir à l' accouplement coulissant ; et
un moyen de contrôle du courant d'accouplement (109h) pour contrôler le courant fourni
à l' accouplement mobile (14) en accord avec la sortie du moyen de détermination du
courant d' accouplement.
8. Système de direction assistée entraîné par moteur pour un véhicule selon la revendication
5 ou 6, dans lequel le moyen formant mémoire (109e) comprend :
un moyen d'emmagasinement de taux de réduction (209c) pour emmagasiner des taux de
réduction prédéterminés du couple de braquage en fonction de la vitesse du véhicule;
et
un moyen de calcul du couple de contrôle (209d) afin de calculer un couple de contrôle
approprié en multipliant le couple de braquage mesuré par le taux de réduction correspondant,
de sorte que le moyen de détermination du courant d'accouplement (102f) détermine
un niveau approprié de courant d'accouplement sur la base du couple de contrôle calculé.
9. Système de direction assistée entraîné par moteur pour un véhicule selon la revendication
7, dans lequel le premier moyen formant mémoire (109c) comprend :
un premier moyen d'emmagasinage de taux de réduction (109a) pour emmagasiner un premier
taux de réduction prédéterminé du couple de braquage en fonction de la vitesse du
véhicule; et
un premier moyen de calcul du couple de contrôle (109b) afin de calculer un premier
couple de contrôle approprié en multipliant le couple de braquage mesuré par le premier
taux de réduction correspondant, de sorte que le moyen de détermination de la tension
du moteur (109c) détermine un niveau approprié de tension du moteur sur la base du
premier couple de contrôle calculé;
et dans lequel le second moyen formant mémoire (109e) comprend :
un second moyen d`emmagasinage de taux de réduction (209c) afin d'emmagasiner un second
taux de réduction prédéterminé du couple de braquage en fonction de la vitesse du
véhicule; et
un second moyen de calcul du couple de contrôle (209d) afin de calculer un second
couple de contrôle approprié en multipliant le couple de braquage mesuré par le second
taux de réduction correspondant, de sorte que le moyen de détermination du courant
d'accouplement (109f) détermine un niveau approprié de courant d'accouplement sur
la base du second couple de contrôle calculé.
10. Système de direction assistée entraîné par moteur en accord avec l'une quelconque
des revendications 2 à 9, comprenant :
un premier pignon (5) connecté de façon fonctionnelle avec une colonne de direction
(2) et adapté pour être entraîné par le volant de direction (1) par l'intermédiaire
de la colonne de direction;
une crémaillère (6) connectée de façon fonctionnelle par l'intermédiaire de tiges
de bielle (8a, 8b) avec une paire de roues directionnelles du véhicule et possédant
une première portion dentée (6a) de crémaillère ainsi qu'une second portion dentée
(6b) de crémaillère formée sur celle-ci, la première portion dentée de crémaillère
étant en prise d'engrenage avec le premier pignon;
un second pignon (18) étant en prise d'engrenage avec la seconde portion dentée de
crémaillère de ladite crémaillère; dans laquelle:
le moteur est connecté de façon fonctionnelle par l'intermédiaire d'un engrenage de
réduction de vitesse (R) avec le second pignon (18) afin d'assister en puissance le
mouvement de braquage de la crémaillère qui est induit par l'opérateur par l'intermédiaire
du volant de direction, de la colonne de direction (2), du premier pignon (5) et de
la première portion dentée de crémaillère;
l' accouplement mobile (14) interposé entre le moteur et le second pignon (18) fonctionnant
pour transmettre la puissance entre ceux-ci substantiellement en proportion avec l'intensité
du courant fourni à celui-ci; et
l' accouplement de commutation (17) interposé entre le moteur et le second pignon
(18) fonctionnant pour sélectivement disconnecter le couplage fonctionnel entre le
moteur et le second pignon (18) lorsque la vitesse du véhicule augmente au-dessus
dudit niveau prescrit, et pour établir le couplage fonctionnel entre ceux-ci lorsque
la vitesse du véhicule diminue en dessous du niveau prescrit.
1. Motorgetriebenes Servolenksystem für ein Fahrzeug mit einem lenkrad, das betriebsmäßig
mit lenkbaren Laufrädern so verbunden ist, daß es von einem Fahrer zum richtigen Lenken
der lenkbaren Laufräder drehbar ist, wobei das System umfaßt: einen Drehmomentsensor
(3), der ein ein vom Fahrer auf das Lenksystem aufgebrachtes Drehmoment anzeigendes
Drehmomentsignal liefert, einen Motor (13), der die vom Fahrer durch das Lenkrad bewirkte
Lenkbewegung mit einer Lenkhilfskraft unterstützt, eine Steuereinheit (109), die in
Abhängigkeit vom Drehmomentsignal und der Fahrzeuggeschwindigkeit ein Steuersignal
liefert, und eine Schaltkupplung (17), die die Übertragung der Lenkhilfskraft in Abhängigkeit
von der Fahrzeuggeschwindigkeit ankoppelt oder abkoppelt, dadurch gekennzeichnet,
daß eine weitere Kupplung (14) vorgesehen ist, die die Übertragung der Lenkhilfskräfte
vom Motor (13) auf die lenkbaren Laufräder steuert, wobei die weitere Kupplung (14)
in Abhängigkeit von dem von der Steuereinheit (109) gelieferten Steuersignal (2) gesteuert
wird.
2. Motorgetriebenes Servolenksystem nach Anspruch 1, umfassend einen Fahrzeuggeschwindigkeitssensor
(10), der die Fahrzeuggeschwindigkeit aufnimmt und ein der aufgenommenen Fahrzeuggeschwindigkeit
entsprechendes Ausgangssignal erzeugt, wobei:
der Motor (13) von einer Batterie (11) aktivierbar ist;
die Schaltkupplung (17) als elektromagnetische Schaltkupplung ausgebildet ist, die
ausschaltbar ist, um die Übertragung der Lenkhilfskraft vom Motor (13) auf die lenkbaren
Laufräder zu unterbrechen, wenn die Fahrzeuggeschwindigkeit über einen vorbestimmten
Wert ansteigt, und die zur Übertragung der Lenkhilfskraft dazwischen einschaltbar
ist, wenn die Fahrzeuggeschwindigkeit unter den vorbestimmten Wert sinkt; und
die weitere Kupplung (14) als elektromagnetische Rutschkupplung ausgebildet ist, die
die vom Motor (13) auf die lenkbaren Laufräder übertragene Lenkhilfskraft steuert;
die Steuereinheit (109) Ausgangssignale vom Drehmomentsensor (3) und vom Fahrzeuggeschwindigkeitssensor
(10) empfängt und den Betrieb des Motors (13) und der weiteren Kupplung (14) derart
steuert, daß die vom Motor (13) durch die Rutschkupplung (14) auf die lenkbaren Laufräder
übertragene Lenkhilfskraft allmählich verringert wird, bevor die Schaltkupplung (17)
ausgeschaltet ist, und allmählich erhöht wird, nachdem die Schaltkupplung (17) eingeschaltet
ist.
3. Motorgetriebenes Servolenksystem für ein Fahrzeug nach Anspruch 2, wobei die vom Motor
(13) durch die Rutschkupplung (14) auf die lenkbaren Laufräder übertragene Lenkhilfskraft
im umgekehrten Verhältnis zur Fahrzeuggeschwindigkeit allmählich verringert oder erhöht
wird.
4. Motorgetriebenes Servolenksystem für ein Fahrzeug nach Anspruch 3, wobei die vom Motor
(13) durch die Rutschkupplung (14) auf die lenkbaren Laufräder übertragene Lenkhilfskraft
stufenweise allmählich verringert oder erhöht wird.
5. Motorgetriebenes Servolenksystem für ein Fahrzeug nach Anspruch 2, wobei die Steuereinheit
(109) umfaßt:
eine Lenkdrehmoment-Meßeinrichtung (109a), die das Ausgangssignal des Drehmomentsensors
(3) empfängt und das fahrerinduzierte Lenkdrehmoment mißt;
eine Fahrzeuggeschwindigkeits-Meßeinrichtung (109b), die das Ausgangssignal des Fahrzeuggeschwindigkeitssensors
(10) empfängt und die Fahrzeuggeschwindigkeit mißt;
einen Speicher (109e), der die der Rutschkupplung (14) zuzuführenden Stromwerte speichert,
die von der Fahrzeuggeschwindigkeit und dem Lenkdrehmoment vorbestimmt sind;
eine Kupplungsstrom-Bestimmungseinrichtung (109f), die aus dem Speicher (109e) einen
dem gemessenen Lenkdrehmoment und der gemessenen Fahrzeuggeschwindigkeit entsprechenden
geeigneten Stromwert ausliest und den der Rutschkupplung (14) zuzuführenden Strom
bestimmt;
eine Kupplungsstrom-Steuereinrichtung (109h), die den der Rutschkupplung (14) zuzuführenden
Strom nach Maßgabe des Ausgangssignals der Kupplungsstrom-Bestimmungseinrichtung (109f)
steuert.
6. Motorgetriebenes Servolenksystem für ein Fahrzeug nach Anspruch 2, wobei die Steuereinheit
(109) umfaßt:
eine Lenkdrehmoment-Meßeinrichtung (109a), die das Ausgangssignal des Drehmomentsensors
(3) empfängt und das fahrerinduzierte Lenkdrehmoment mißt;
eine Fahrzeuggeschwindigkeits-Meßeinrichtung (109b), die das Ausgangssignal des Fahrzeuggeschwindigkeitssensors
(10) empfängt und die Fahrzeuggeschwindigkeit mißt;
einen Speicher (109c), der die an den Motor (13) anzulegenden Spannungswerte speichert,
die von der Fahrzeuggeschwindigkeit und dem Lenkdrehmoment vorbestimmt sind;
eine Motorspannungs-Bestimmungseinrichtung (109d), die aus dem Speicher (109c) einen
dem gemessenen Lenkdrehmoment und der gemessenen Fahrzeuggeschwindigkeit entsprechenden
geeigneten Spannungswert ausliest und die an den Motor anzulegende Spannung bestimmt;
und
eine Motorspannungs-Steuereinrichtung (109g), die die an den Motor angelegte Spannung
nach Maßgabe des Ausgangssignals der Motorspannungs-Bestimmungseinrichtung (109d)
steuert.
7. Motorgetriebenes Servolenksystem für ein Fahrzeug nach Anspruch 6, wobei die Steuereinheit
(109) umfaßt:
einen zweiten Speicher (109e), der der Rutschkupplung (14) zuzuführende Stromwerte
speichert, die von der Fahrzeuggeschwindigkeit und dem Lenkdrehmoment vorbestimmt
sind;
eine Kupplungsstrom-Bestimmungseinrichtung (109f), die aus dem zweiten Speicher (109e)
einen dem gemessenen Lenkdrehmoment und der gemessenen Fahrzeuggeschwindigkeit entsprechenden
geeigneten Stromwert ausliest und den der Rutschkupplung zuzuführenden Strom bestimmt;
und
eine Kupplungsstrom-Steuereinrichtung (109h), die den der Rutschkupplung (14) zugeführten
Strom nach Maßgabe des Ausgangssignals der Kupplungsstrom-Bestimmungseinrichtung steuert.
8. Motorgetriebenes Servolenksystem für ein Fahrzeug nach Anspruch 5 oder 6, wobei der
Speicher (109e) umfaßt:
einen Untersetzungsverhältnisspeicher (209c), der vorbestimmte Untersetzungsverhältnisse
des Lenkdrehmoments relativ zur Fahrzeuggeschwindigkeit speichert; und
einen Steuerdrehmomentrechner (209d), der durch Multiplikation des gemessenen Lenkdrehmoments
mit dem entsprechenden Untersetzungsverhältnis ein geeignetes Steuerdrehmoment errechnet,
so daß die Kupplungsstrom-Bestimmungseinrichtung (109f) aufgrund des errechneten Steuerdrehmoments
einen geeigneten Kupplungsstromwert bestimmt.
9. Motorgetriebenes Servolenksystem für ein Fahrzeug nach Anspruch 7, wobei der erste
Speicher (109c) umfaßt:
einen ersten Untersetzungsverhältnisspeicher (209a), der erste vorbestimmte Untersetzungsverhältnisse
des Lenkdrehmoments relativ zur Fahrzeuggeschwindigkeit speichert; und
einen ersten Steuerdrehmomentrechner (209b), der durch Multiplikation des gemessenen
Lenkdrehmoments mit dem entsprechenden ersten Untersetzungsverhältnis ein erstes geeignetes
Steuerdrehmoment errechnet, so daß die Motorspannungs-Bestimmungseinrichtung (109d)
aufgrund des ersten errechneten Steuerdrehmoments einen geeigneten Motorspannungswert
bestimmt;
und wobei der zweite Speicher (109e) umfaßt:
einen zweiten Untersetzungsverhältnisspeicher (209c), der zweite vorbestimmte Untersetzungsverhältnisse
des Lenkdrehmoments relativ zur Fahrzeuggeschwindigkeit speichert; und
einen zweiten Steuerdrehmomentrechner (209d), der durch Multiplikation des gemessenen
Lenkdrehmoments mit dem entsprechenden zweiten Untersetzungsverhältnis ein zweites
geeignetes Steuerdrehmoment errechnet, so daß die Kupplungsstrom-Bestimmungseinrichtung
(109f) aufgrund des zweiten errechneten Steuerdrehmoments einen geeigneten Kupplungsstromwert
bestimmt.
10. Motorgetriebenes Servolenksystem nach einem der Ansprüche 2 bis 9, umfassend:
ein erstes Ritzel (5), das mit einer Lenkspindel (2) betriebsmäßig verbunden und über
diese durch das Lenkrad (1) antreibbar ist;
eine Zahnstange (6), die durch Spurstangen (8a, 8b) mit einem Paar von lenkbaren Laufrädern
betriebsmäßig verbunden ist und an der eine erste (6a) und eine zweite (6b) Verzahnung
ausgebildet ist, wobei die erste Verzahnung mit dem ersten Ritzel kämmt;
ein zweites Ritzel (18), das mit der zweiten Verzahnung an der Zahnstange kämmt; wobei:
der Motor durch ein Untersetzungsgetriebe (R) mit dem zweiten Ritzel (18) betriebsmäßig
verbunden ist, um die vom Fahrer über das Lenkrad, die Lenkspindel (2), das erste
Ritzel (5) und die erste Verzahnung induzierte Lenkbewegung der Zahnstange mit einer
Lenkhilfskraft zu unterstützen;
wobei die zwischen dem Motor und dem zweiten Ritzel (18) angeordnete Rutschkupplung
(14) Kraft zwischen diesen im wesentlichen proportional zur Stärke des ihr zugeführten
Stroms überträgt; und
die zwischen dem Motor und dem zweiten Ritzel (18) angeordnete Schaltkupplung (17)
die betriebsmäßige Verbindung zwischen dem Motor und dem zweiten Ritzel (18) selektiv
unterbricht, wenn die Fahrzeuggeschwindigkeit über den vorbestimmten Wert ansteigt,
und die betriebsmäßige Verbindung dazwischen herstellt, wenn die Fahrzeuggeschwindigkeit
unter den vorbestimmten Wert sinkt.