| (19) |
 |
|
(11) |
EP 0 157 081 B1 |
| (12) |
EUROPEAN PATENT SPECIFICATION |
| (45) |
Mention of the grant of the patent: |
|
04.12.1991 Bulletin 1991/49 |
| (22) |
Date of filing: 17.01.1985 |
|
|
| (54) |
Device for dispensing controlled lengths of material
Einrichtung zur Ablieferung kontrollierter Materiallängen
Dispositif pour la délivrance de longueurs contrôlées de matériau
|
| (84) |
Designated Contracting States: |
|
DE FR GB |
| (30) |
Priority: |
05.03.1984 US 586171
|
| (43) |
Date of publication of application: |
|
09.10.1985 Bulletin 1985/41 |
| (73) |
Proprietor: International Business Machines
Corporation |
|
Armonk, N.Y. 10504 (US) |
|
| (72) |
Inventors: |
|
- Houser, David Erle
Appalachin
New York 13732 (US)
- Morenus, Richard Jay
Endwell
New York 13760 (US)
|
| (74) |
Representative: Gaugel, Heinz |
|
Schönaicher Strasse 220 D-7030 Böblingen D-7030 Böblingen (DE) |
| (56) |
References cited: :
EP-A- 0 076 773
|
US-A- 3 165 207
|
|
| |
|
|
|
|
| |
|
| Note: Within nine months from the publication of the mention of the grant of the European
patent, any person may give notice to the European Patent Office of opposition to
the European patent
granted. Notice of opposition shall be filed in a written reasoned statement. It shall
not be deemed to
have been filed until the opposition fee has been paid. (Art. 99(1) European Patent
Convention).
|
[0001] This invention relates to the field of materials handling and more particularly pertains
to steppers for dispensing controlled lengths of electrical wire for use in printed
circuit boards.
[0002] In the automated manufacture of circuit boards in which a length of electrical wire
connects electrical devices such as pin sockets and the like, the wire must be dispensed
automatically usually from a spool in lengths that are accurate within a close tolerance
of the actual length between the parts to be connected. In the prior art the devices
that produce these lengths include a large quantity of the dispensed material wound
on a spool that is mounted for rotation about its axis and driven in rotation by an
electrical motor energized and de-energized for periods of time that produce a segment
of wire of the desired length. A knife edge or other cutting means is provided to
sever the wire segment from the wire that is rolled on the spool.
[0003] Devices of this type, however, prove to be inaccurate in producing wire of the desired
length because of the rotational inertia of the spool and the inability to start and
stop the motor precisely as required to produce the desired length of the material.
[0004] The device as claimed in claim 1 is intended to solve this problem. The dependent
claims are related to embodiments of the invention.
[0005] The device according to embodiments of this invention can dispense controlled and
predetermined lengths of material such as wire, metal bands, ribbon tapes, paper,
etc. The device includes a source of pressurized gas such as a compressor, air pump
or the like and a track within which the dispensed material is guided and moves through
the device. The material is first threaded along the track from an inlet end of the
device to an outlet end where the material is dispensed in accurately controlled lengths.
Along the track spaced longitudinally from one another are first and second surfaces
against which the material can be clamped, fixed or held against movement. Located
in the space between the clamping surfaces and along the track is a displacement region
which defines surfaces that are spaced laterally one from another, the lengths of
the surfaces of the displacement region being unequal. The difference in length of
the surfaces of the displacement region establishes the length of the material that
is drawn into, advanced through and dispensed from the device during each control
cycle. A housing further defines manifolds within which pressure drops are produced
between the clamping surfaces and laterally spaced surfaces of the displacement region
and the source of air pressure by way of pneumatic electronically controlled valves
actuated sequentially during each cycle.
[0006] The valves selectively open and close communication between the outlet side of the
pressure source and the manifolds according to the control of a computer, microprocessor
or other control means, which energizes electrical solenoid windings that produce
the on-off disposition of the valves. The control means selectively opens and closes
the valves so that the material to be dispensed is held against the clamping surfaces
due to the effect of air pressure admitted to the associated manifolds. Within the
displacement region, the control valves cause the air pressure to move the dispensed
material selectively against one or the other of the laterally spaced surfaces. In
this way, by selectively clamping the leading portion of the wire segment located
within the device and releasing the trailing portion of the wire segment, the material
is drawn into the device by concurrently opening the valve that causes the material
to conform to the longer surface of the displacement region. Then, the material is
forced outward from the device by first clamping the trailing portion of the wire
and releasing the leading portion of the wire located within the device and opening
the valve that causes the material to conform to the surface of the displacement region
having the shorter length.
[0007] This device can be adapted to dispense a band of metal using a programmable actuator
that selectively energizes an electromagnet, which when energized causes the band
to conform alternately to the longer and shorter surfaces of the displacement region
and to become clamped against the surfaces of the forward and trailing clamping regions
of the device.
[0008] The features and advantages of this invention will be apparent from the following
more particular description of the preferred embodiments of the invention illustrated
in the accompanying drawings in which:
- Figure 1
- is a top view of the dispenser according to this invention showing a general arrangement
of the track, the control valves, the pressure source and the means for controlling
the operation of the valves.
- Figure 2
- is a side elevation view of the device of Figure 1.
- Figure 3
- is an isometric view showing the stepper plate and adapter plate spaced from one another
and illustrating the several positions of a segment of a length of wire being dispensed
by the device.
- Figure 4
- is a partial cross-sectional view taken at plane IV-IV of Figure 1.
- Figure 5
- is a partial cross-sectional view taken at plane V-V of Figure 1.
- Figure 6
- is a timing diagram showing the relative occurrences of the changes of state of the
pneumatic valves that pressurize the manifolds.
- Figure 7
- is a top view of a stepper according to this invention.
- Figure 8
- is a top edge view of the stepper of Figure 7.
[0009] Referring first to Figures 1 and 2, the wire dispensing device or stepper according
to the present invention includes a base plate 10; a mounting block 12 bolted to the
base plate; a stepper plate 14 and actuator plate 16, which are mounted on the mounting
block; a cover 18; and clamps 20, 22, which are bolted to the base plate and support
the cover against the effect of pressurized gas within the device.
[0010] A valve plate 24 fixed to the base plate provides a surface on which three valves
26, 28, 30 are mounted. A second valve plate 32 mounted to the base plate at its opposite
end provides a surface on which a fourth valve 34 is mounted. The valves may be electronic
valves that control pneumatic fluid circuits by way of a poppet diaphragm whose state
is determined by electronic control. Valves of this type are produced by Clippard
Instrument Laboratory, Inc., identified as model numbers EV-3-12, normally closed
three-way valves adapted for use with 12 volt potential. Valves 26, 28, 30 and 34
are three-way valves, whose on state opens communication between the valve inlet and
outlet and whose off state closes this communication and also opens the valve to exhaust.
[0011] The solenoids that control the operation of these valves are connected to the output
ports of a computer, microprocessor or other control device 36 that supplies current
selectively to the windings of the solenoids which are integral with each valve assembly.
[0012] The pneumatic circuit includes a source 40 of pressurized air or inert gas connected
by ducts 42, 44 to the intake fittings 46, 48 by means of which the valves are pressurized.
The outlet ports of valves 26, 28 and 30 are connected by conduits 54-56 to manifolds
58, 59, 60 formed in stepper plate 14 The outlet port of valve 34 is connected by
conduit 61 to a manifold 62 formed in actuator plate 16. Stepper plate 14 and actuator
plate 16 define a track 63 within which the dispensed material is guided and contained
as it passes through the dispenser.
[0013] When valves 26, 28, 30 and 34 are open, the outlet of pressure source 40 is connected
to manifolds 58, 59, 60 and 62, respectively. When valves 26, 28 or 30 and 34 are
closed, the outlet side of the pressure source is closed to manifolds 58, 59, 60 and
62, respectively. However, when the valves are de-energized, the manifolds are opened
to the atmosphere and closed to the pressure source. Manifolds 64 and 66 are continuously
open to atmosphere.
[0014] Turning now to Figure 3, the manifolds 58, 59, 60 of the stepper plate 14 each have
a pressure port 72, 71, 70 by means of which valves 26, 28, 30, respectively, connect
the pressure source to the manifolds. The depth to which the manifolds are formed
in the plate is greater than the depth of the passages 74, 75, 76, which communicate
the manifolds with the track 63. At each longitudinal end of the stepper plate, vertical
surface 78 is relieved as at 80, 82 to form a lead surface, which in combination with
lead surfaces 96 and 94, respectively, of plate 16 directs the dispensed material
into the track.
[0015] Actuator plate 16 is similarly formed with three manifolds 62, 64, 66 each formed
at approximately the same depth in the actuator plate. Manifold 62 has a pressure
port 73 by means of which valve 34 communicates the pressure source to manifold 62.
The interior end of manifolds 62, 64, 66 have surfaces 84, 85, 86 formed in the upper
surface of the actuator plate shallower than the bottom surface of manifolds 62, 64,
66. These surfaces permit communication between the respective manifolds and track
63, which is defined by the vertical surface 78 of stepper plate 14, that extends
the full length of plate 14 and the vertical surface 88 of the actuator plate that
extends along the full length of plate 16. Inclined surface 90 forms a transition
surface joining vertical surface 88 and horizontal surface 84 at the outlet of manifold
66. Inclined surface 92 forms a transition surface between vertical surface 88 and
horizontal surface 86 at the outlet of manifold 64. Relief surfaces 94, 96 at opposite
longitudinal ends of actuator plate 16 form lead surfaces that guide the material
into track 63.
[0016] Referring now to Figures 4 and 5, it can be seen that the material to be dispensed,
which in the described example is insulated copper wire 100, is guided and contained
within the track defined by vertical surfaces 78, 88. For example, the track defines
a displacement region that can be pressurized from either manifold 59 or 62 by way
of the passages located between cover 18 and surfaces 75 or 85. When manifold 59 is
pressurized and manifold 62 is depressurized, the wire is displaced within the track
away from manifold 59 and toward manifold 62. Similarly when manifold 62 is pressurized
and manifold 59 is depressurized, the wire is displaced within the track away from
manifold 62 and toward manifold 59. In Figure 5 it can be seen that the wire can be
held on inclined clamping surface 90 against longitudinal movement when manifold 60
is pressurized because the pressure in the passage that surface 74 defines is greater
than the pressure in the passage that passage 84 defines. A pressure drop across the
dispensed material forces the material against surface 90. When manifold 60 is pressurized
and the wire is clamped between the cover and surface 90, the wire is restrained against
movement parallel to its axis. On the other hand, when manifold 60 is depressurized,
the wire is released from surface 90 and into the track between surfaces 78, 88 where
it is free to move axially. The passage defined by cover 18 and surface 84 communicates
manifold 66 with the track. Clamping surface 92, the associated manifolds 58, 64,
valve 26 and passages 76, 86 operate in a similar way to surface 90, manifolds 60,
66, valve 30 and passages 74, 84 as described above.
[0017] Operation of the wire stepper can be described best with reference to Figures 3 and
6. In Figure 6 the high state of the timing chart for valves 26, 28, 30, 34 indicates
that the corresponding manifolds 58, 59, 60, 62, which communicate with the outlet
side of the valve, are pressurized. Similarly, when the timing diagram goes low, communication
between the pressure source and the manifolds is closed because the corresponding
valve is closed and the manifolds are open to atmosphere. The stepping cycle begins
as shown in Figure 6 with valves 26 and 28 open and valves 30 and 34 closed. With
the valves so disposed, the leading portion of the wire segment located in the device
is clamped against surface 92, the wire segment is held straight against vertical
surface 88, as shown in position A, due to the effect of air pressure admitted to
the displacement region through manifold 59, and the trailing portion of the wire
segment is free to move longitudinally.
[0018] In the next step of the cycle, valve 28 closes and valve 34 opens, but valve 26 remains
open and valve 30 remains closed. With the valves so disposed, the leading portion
of the wire segment located within the device remains clamped against the surface
92. The trailing portion is free to move longitudinally and the intermediate portion,
located in the displacement region, is moved away from surface 88 and into contact
with arcuate surface 102, a segment of vertical surface 78 on the stepper plate 14.
This places the wire segment in the form shown in position B of Figure 3. An additional
length of wire from the trailing side of the wire segment is drawn into the stepper
device in order to allow the wire to conform to the shape of surface 102 whose length
is greater than that of the portion of surface 88 from which the material was moved.
Because the leading portion of the wire is clamped, the required additional length
of wire must necessarily be taken up from the trailing portion of the wire.
[0019] After the additional length of wire is drawn into the device, valve 26 closes, valve
30 opens, valve 28 remains closed and valve 34 remains open. This disposition of valves
28 and 34 acts to maintain the intermediate portion of the wire segment, the portion
within the displacement region of the device, in contact with surface 102; however,
air pressure clamps the trailing portion of the wire segment against surface 90, and
closure of valve 30 acts to release the leading portion of the wire segment from being
clamped on surface 92. This combination of valve states sets the stepping device so
that the wire segment can be advanced in the direction of vector D.
[0020] The wire segment is advanced in the next stage of the control valve cycle by opening
valve 28, closing valve 34, maintaining valve 26 closed and maintaining valve 30 open.
While valve 28 is open and valve 34 is closed, the intermediate portion of the wire
segment, that portion located within the displacement region, is forced away from
contact with surface 102 and into contact with vertical surface 88. This straightens
the wire segment and forces the incremental length of the wire in the direction of
vector D by a distance that is substantially equal to the difference in length between
arcuate surface 102 and the longitudinal projection of surface 102 on surface 88.
In other words, the difference between the length of the dispensed material that conforms
to surface 102 and the length that conforms to the straight portion of the displacement
region is the length of material that is advanced during one full valve cycle.
[0021] Valves 26, 28, 30, and 34 are now in the state they originally had when the control
cycle began. The cycle is repeated, either under manual control or the control of
a computer, as many times as required to dispense the length of wire required. The
incremental length dispensed by one full cycle of pressure valve control is determined
by the difference in length of the wire segment that conforms to surface 102 and the
length of the wire segment over the intermediate length that conforms to surface 88.
The length of wire dispensed from the device can be varied by programming the number
of cycles performed. For example, if the stepper device had been arranged to dispense
0.127 mm (0.005 inches) of wire per cycle, twenty cycles of operation would dispense
2.54 mm (0.10 inches). In the operation of the device, air pressure is maintained
preferably in the range between 275.6 and 551.2 kPa (40 and 80 psi. (gauge)).
[0022] The stepper devive can be adapted to dispense material other than wire such as metal
bands, ribbon tapes, paper, etc. Fluids, preferably inert gaseous fluids, other than
air can be used. Vacuum, rather than positive pressure, can be used for clamping and
movement of the dispensed material within the stepper device.
[0023] The device can be used to dispense material in either the direction indicated by
vector D or in the reverse direction by changing the sequencing of the valves. If
a metallic material is to be dispensed with this device, electromagnets can be used
instead of the pressure source, valves and fluid manifolds to produce an electromagnetic
stepping actuator. The actuation of such a device can be controlled by the application
of electrical current to the electromagnets in the same way, and according to a similar
timing schedule, as the solenoids of the pressure valves are energized.
[0024] The principles of this invention are incorporated in the wire stepper device illustrated
in Figures 7 and 8, to which reference is now made. The wire stepper includes upper
and lower cover plates 200, 202, an inlet guide fitting 204, an outlet guide fitting
206 and intermediate plates 208, 210 which define manifolds 212, 214, 216 sealed at
the upper and lower surfaces by plates 200 and 202. Manifold 212 is connected and
disconnected from the source of pressurized fluid 40 by way of fitting 218, which
is adapted for connection to the outlet side of valve 30. Manifold 212 is connected
also to atmosphere through exhaust port 220. Similarly, manifold 216 has a fitting
222 adapted to be connected to the outlet side of valve 26, which opens and closes
communication between manifold 216 and the fluid pressure source. Manifold 216 also
communicates with the atmosphere through an exhaust port 224. Manifold 214 is connected
to and disconnected from the fluid pressure source by way of fittings 226, 228. Fitting
226 is connected to the outlet side of valve 28, and fitting 228 is connected to the
outlet side of valve 34, both valves being connected to the pressure source. The operation
of valves 26, 28, 30, and 34 is controlled through the operation of a computer 36
or other control device adapted to selectively open and close the valve in accordance
with the principles of this invention as previously described with respect to Figures
3 and 6.
[0025] The upper and lower plates are formed with a first row 230 and a second row 232 of
pins, each mounted side-by-side, axes parallel and vertical. The pins define a path
between the pin rows into which the material to be dispensed by the stepper device
is guided and moves. Figure 7 schematically shows electrical wire 100 located within
the device and guided through the device in the space provided between the rows of
pins. However, for reasons of clarity, the wire is shown at the entrance and exit
of the device, but not located within the manifolds between the pin rows. In the intermediate
portion or displacement region 214 located between the outlet and inlet ends of the
stepper device, the wire contacts the outer surfaces of the row of pins, which are
spaced laterally from one another a greater distance than the thickness of the material
and of the lateral spacing of the pin rows within manifolds 212 and 216. In the region
defined by manifold 214, the pin rows are spaced apart a greater distance than required
merely to receive the material between them. When the dispensed material is located
within manifold 214, it moves selectively and controllably between contact with the
surfaces of pin rows 230 and 232. In this way the material is drawn into the stepper
device from a source of supply 236 of the material and moves toward the outlet and
onto a surface such as that of a circuit board 238. In the process of placing the
wire on the surface of the board, a stylus 240 can be used to develop heat for attaching
the wire to the surface of the circuit board.
[0026] The operation of the stepper device of Figures 7 and 8 is controlled by the operation
of the pressure valves in the manner previously described. First, the dispensed material
is threaded through the device in the space defined by the adjacent surface of the
pin rows 230, 232 and is lead outward from the outlet fitting 206 onto the surface
of the circuit board. The dispenser is mounted on a machine that is adapted to move
the dispenser in relation to the surface of the circuit board and to move stylus 240
in accordance with this motion. As the material is dispensed, the stylus operates
to fix the position of the wire on the surface of the circuit board.
[0027] A typical cycle for operation of the control valves begins with valves 26 and 28
open and valves 30 and 34 closed. With the valves so disposed, the portion of the
wire segment located within manifold 212 is released from pressurized contact on the
pins, the portion of the wire segment located within manifold 216 is clamped against
the surface of the pins of row 230 by the effect of air pressure in manifold 212 and
the wire segment located within manifold 214 is forced against the surfaces of pin
row 230.
[0028] A pressure difference is produced across the material located within a manifold whenever
the manifold is pressurized. The pressure drop results because exhaust fittings 220
and 224 are located on the opposite side of the material from fittings 218 and 222
and fitting 228 is located on the opposite side of the material from fitting 226.
When a manifold is pressurized and the dispensed material is positioned within the
manifold, air flows through a constricted passage bounded by the adjacent pin surfaces,
the interior surfaces of the upper and lower plates 200, 202 and the upper and lower
surfaces of the dispensed material. This constriction produces lower pressure on the
side of the material that is opposite the side of the material closest to fittings
218, 222 and 226, which communicate the pressure source to the manifold. The pressure
difference causes the material to press against the pin row that is downstream from
the pressure source.
[0029] Next, valve 28 closes and valve 34 opens, valve 30 remains closed and valve 26 remains
open. The effect of this combination of valve states is to maintain the clamping attachment
against pin row 230 of the wire segment located within manifold 216 while the portion
of the wire segment wtihin manifold 212 is released for motion. The segment of the
wire located within displacement manifold 214 is moved from contact with pin row 230
and into contact with the surfaces of the pins of row 232. This action operates to
draw material from spool 236 through manifold 212 and into manifold 214.
[0030] Next, the state of valve 26 is closed and valve 30 is opened, while valves 28 and
34 remain closed and open, respectively. The effect of this combination of valve states
is to clamp that portion of the wire segment located within manifold 212 against the
surface of the pins of row 230, to release that portion of the wire segment located
within manifold 216 from clamping contact on the pins, and to maintain that portion
of the wire segment located within manifold 214 in clamping contact on the surface
of the pins of row 232.
[0031] Finally, at the last state of the valve control cycle, valve 28 is turned on, valve
34 is turned off, valve 26 remains off and valve 30 remains on. This combination of
valve states forces the portion of the wire segment located within displacement manifold
214 away from the surface of the pins of row 232 and into contact with the surface
of the pins of row 230. While this is occurring, the portion of the wire segment located
within manifold 212 remains clamped on the pin surfaces of row 230 and the portion
of the wire segment located within manifold 216 is released from contact on the pins,
thereby allowing the wire segment to advance through the dispensing device outward
from manifold 216 through the outlet fitting 206 and onto the surface of circuit board
238.
[0032] Finally, the state of the valves is returned to that at which the cycle began: valve
26 is turned on, valve 30 is turned off and valves 28 and 34 remain on and off, respectively.
The cycle is repeated according to the control of the computer as often as required
to dispense the required length of material before the material is cut to the desired
length.
1. A device for dispensing controlled lengths of material characterized by
a track (63) within which movement of the material is guided, defining first and second
longitudinally spaced clamping surfaces (90, 92), a displacement region located between
the first and second surfaces, said region having laterally spaced surfaces (88, 102)
whose lengths differ from one another by a determined length, this difference in length
establishing the length of material that is dispensed from the device during each
control cycle valve means (26, 28, 30, 34) for opening and closing communication between
a pressure source (40) and the first surface (90), second surface (92) and surfaces
(88, 102) of the displacement region; and
means for selectively controlling the opening and closing of the valve means, whereby
the material to be dispensed is selectively held against the first surface (90), second
surface (92) and the surfaces (88, 102) of the displacement region by the effect of
the pressure source (40) when the associated valve means opens said communication,
and the material is released from said surfaces when the associated valve means closes
said communication.
2. The device as claimed in claim 1,
characterized in that said pressure source comprises a source of pressurized gas (40).
3. The device as claimed in claim 1 or 2,
characterized in that the material to be dispensed is fixed against longitudinal movement
by being held against one of the clamping surfaces when the valve means opens communication
between the pressure source and the selected clamping surface, the material is released
from said surface when the valve means closes said communication, and the material
is alternately forced to conform to one of the surfaces of the displacement region
when the valve means opens communication between the pressure source and the other
surface of the displacement region.
4. The device as claimed in claims 1 to 3,
characterized by
a first manifold (58) selectively pressurized through operation of the valve means,
extending along at least a portion of the length of the first clamping surface (92),
when pressurized providing a pressure difference across the material that is located
adjacent the first clamping surface (92);
a second manifold (60) selectively pressurized through operation of the valve means,
extending along at least a portion of the length of the second clamping surface (90),
when pressurized providing a pressure difference across the material that is located
adjacent the second clamping surface (90); and
a third manifold (59, 62) selectively pressurized through operation of the valve means,
extending along at least a portion of the length of the displacement region, providing
a pressure difference across the material that is located within the displacement
region.
5. The device as claimed in claim 4, characterized in that the first and second manifolds
each include:
a supply manifold (58, 60) connected through the valve means to the pressure source
and positioned on one lateral side of the material located within the respective manifold;
an exhaust manifold (64, 66) wherein the pressure is less than the pressure within
the pressurized supply manifold, positioned on the opposite side of said material;
and
means forming a constricted passage between the supply manifold and the exhaust manifold,
whereby a pressure drop is produced from the pressurized supply manifold to the exhaust
manifold across said material.
6. The device as claimed in claim 5,
characterized in that the constricted passage that connects the supply manifold and
the exhaust manifold is defined at least in part by the clamping surfaces.
7. The device as claimed in claims 4 to 6,
characterized in that the third manifold (59, 62) includes a supply manifold communicating
through the valve means selectively to the pressure source and to the atmosphere and
positioned on one lateral side of the material located within the third manifold,
and exhaust manifold communicating through the valve means selectively to the pressure
source and to the atmosphere and positioned on the opposite side of said material,
and means forming a constricted passage between the supply manifold and the exhaust
manifold, whereby a pressure difference can be produced from the supply manifold to
the exhaust manifold across said material.
8. The device as claimed in claims 1 to 7,
characterized in that the valve means includes first and second two-way valves, the
exhaust port of the first valve being disposed in the first manifold, the exhaust
port of the second valve being disposed in the second manifold, and third and fourth
three-way valves each having an exhaust port disposed in the third manifold, one in
the supply manifold and the other in the exhaust manifold, and a port communicating
to atmosphere when their supply port is closed to the pressure source; each of said
valves having its supply port connected to the pressure source.
9. The device as claimed in claims 1 to 8,
characterized in that the track comprises two rows of pins (230, 232), the pins of
each row being arranged side-by-side, spaced longitudinally from one another with
their axes vertical and parallel to one another, the pin rows defining the first clamping
surface and the second clamping surface wherein the rows are spaced laterally from
one another a distance that permits the dispensed material to pass between the facing
pin surfaces of the pin rows, the pin rows defining the displacement region wherein
the rows are spaced laterally from one another and the length of one pin row is substantially
greater than the length of the other pin row.
10. The device as claimed in claim 9,
characterized in that the device includes upper and lower closure members and wherein
the constricted passage is defined at least in part by the longitudinal distances
between adjacent pins of a row of pins, the vertical distances between the upper surface
of said material and the interior surface of the upper closure member, and the vertical
distance between the lower surface of said material and the interior surface of the
lower closure member.
1. Dispositif pour la délivrance de longueurs contrôlées de matériau, caractérisé par
une liaison (63) à l'intérieur de laquelle le mouvement du matériau est guidé, définissant
une première et une seconde surface de fixation (90,92) séparées longitudinalement,
une zone de déplacement située entre les première et seconde surfaces, ladite zone
ayant des surfaces espacées latéralement (88,102) dont les longueurs diffèrent l'une
de l'autre par une distance déterminée, cette différence de distance établissant la
longueur du matériau provenant du dispositif au cours de chaque cycle de contrôle
; un système de vannes (26,28,30,34) pour ouvrir et fermer le passage entre une source
de pression (40) et la première surface (90), la seconde surface (92) et les surfaces
(88,102) de la zone de déplacement ; et un moyen pour commander sélectivement l'ouverture
et la fermeture du système de vannes, par lequel le matériau à délivrer est maintenu
sélectivement contre la première surface (90), la seconde surface (92) et les surfaces
(88,102) de la zone de déplacement sous l'effet de la source de pression (40) lorsque
le système de vannes associé ouvre ledit passage, et le matériau est dégagé desdites
surfaces lorsque le système de vannes associé ferme ledit passage.
2. Dispositif selon la revendication 1, caractérisé en ce que ladite source de pression
comprend une source de gaz sous pression (40).
3. Dispositif selon la revendication 1 ou 2, caractérisé en ce que le matériau à délivrer
est empêché d'avoir un mouvement longitudinal en étant maintenu contre l'une des surfaces
de fixation lorsque le système de vannes ouvre le passage entre la source de pression
et la surface de fixation sélectionnée, le matériau est dégagé de ladite surface lorsque
le système de vannes ferme ledit passage, et le matériau est contraint en alternance
de s'adapter à l'une des surfaces de la zone de déplacement lorsque le système de
vannes ouvre le passage entre la source de pression et l'autre surface de la zone
de déplacement.
4. Dispositif selon les revendications 1 à 3, caractérisé par un premier collecteur (58)
mis sous pression sélectivement par l'actionnement du système de vannes, s'étendant
le long d'au moins une partie de la longueur de la première surface de fixation (92),
et fournissant, lorsqu'il est mis sous pression, une différence de pression à travers
le matériau qui est situé de façon adjacente à la première surface de fixation (92)
; un deuxième collecteur (60) mis sous pression sélectivement par l'actionnement du
système de vannes, s'étendant le long d'au moins une partie de la longueur de la seconde
surface de fixation (90), et fournissant, lorsqu'il est mis sous pression, une différence
de pression à travers le matériau qui est situé de façon adjacente à la seconde surface
de fixation (90) ; et un troisième collecteur (59,62) mis sous pression sélectivement
par l'actionnement du système de vannes, s'étendant le long d'au moins une partie
de la longueur de la zone de déplacement, fournissant une différence de pression à
travers le matériau qui est situé à l'intérieur de la zone de déplacement.
5. Dispositif selon la revendication 4, caractérisé en ce que le premier et le deuxième
collecteur sont soumis chacun : d'un collecteur d'alimentation (58,60) relié par le
système de vannes à la source de pression, et placé sur un côté latéral du matériau
situé à l'intérieur de son collecteur respectif ; un collecteur d'échappement (64,66)
dans lequel la pression est inférieure à la pression maintenue dans le collecteur
d'alimentation mis sous pression, placé sur le côté opposé dudit matériau ; et un
dispositif formant un passage rétréci entre le collecteur d'alimentation et le collecteur
d'échappement, dans lequel une chute de pression est produite depuis le collecteur
d'alimentation sous pression jusqu'au collecteur d'échappement, en traversant ledit
matériau.
6. Dispositif selon la revendication 5, caractérisé en ce que le passage resseré qui
relie le collecteur d'alimentation au collecteur d'échappement, est défini, au moins
partiellement, par les surfaces de fixation.
7. Dispositif selon les revendications 4 à 6, caractérisé en ce que le troisième collecteur
(59,62) comprend un collecteur d'alimentation communiquant par l'intermédiaire du
système de vannes sélectivement avec la source de pression et l'atmosphère, et placé
sur un côté latéral du matériau situé à l'intérieur du troisième collecteur, un collecteur
d'échappement communiquant par l'intermédiaire du système de vannes sélectivement
avec la source de pression et l'atmosphère, et placé sur le côté opposé dudit matériau,
et un dispositif formant un passage rétréci entre le collecteur d'alimentation et
le collecteur d'échappement, dans lequel une différence de pression peut être produite
depuis le collecteur d'alimentation jusqu'au collecteur d'échappement, à travers ledit
matériau.
8. Dispositif selon les revendications 1 à 7, caractérisé en ce que le système de vannes
comprend une première et une deuxième soupape à deux voies, l'orifice d'échappement
de la première soupape étant situé dans le premier collecteur, l'orifice d'échappement
de la seconde soupape étant situé dans le deuxième collecteur, et une troisième et
une quatrième soupape à trois voies possédant chacune un orifice d'échappement situé
dans le troisième collecteur, l'une dans le collecteur d'alimentation et l'autre dans
le collecteur d'échappement, et un orifice communiquant avec l'atmosphère lorsque
leur orifice d'alimentation est fermé à la source de pression ; chacune desdites soupapes
ayant son orifice d'alimentation relié à la source de pression.
9. Dispositif selon les revendications 1 à 8, caractérisé en ce que la glissière comprend
deux rangées de chevilles ou broches (230,232), les broches de chaque rangée étant
disposées côte à côte, espacées longitudinalement les unes des autres et leurs axes
étant verticaux et parallèles les uns avec les autres, les rangées de broches définissant
la première surface de fixation et la seconde surface de fixation, les rangées étant
espacées latéralement l'une de l'autre d'une distance qui permet au matériau dispensé
de passer entre les surfaces en regard des broches des rangées de broches, lesdites
rangées de broches définissant la zone de déplacement dans laquelle les rangées sont
espacées latéralement l'une de l'autre et la longueur de l'une des rangées de broches
est substantiellement plus grande que celle de l'autre rangée de broches.
10. Dispositif selon la revendication 9, caractérisé en ce que le dispositif comprend
des éléments de fermeture supérieur et inférieur et dans lesquels le passage rétréci
est défini au moins en partie par les distances longitudinales entre les broches adjacentes
d'une même rangée de broches, les distances verticales entre la surface supérieure
dudit matériau et la surface intérieure de l'élément de fermeture supérieur, et la
distance verticale entre la surface inférieure dudit matériau et la surface intérieure
de l'élément de fermeture inférieur.
1. Gerät zum Austeilen gesteuerter Längen eines Materials, gekennzeichnet durch
eine Bahn (63), innerhalb deren die Bewegung des Materials geführt wird, die erste
und zweite in Längsrichtung im Abstand angeordnete Einspannflächen (90, 92) definiert,
einen zwischen den ersten und zweiten Flächen gelegenen Verschiebungsbereich, der
in seitlichem Abstand angeordnete Flächen (88, 102) aufweist, deren Längen sich voneinander
um eine vorgegebene Länge unterscheiden, wobei der Längenunterschied die Länge des
Materials bestimmt, die vom dem Gerät während jedes Steuerzyklus ausgeteilt wird,
eine Ventilvorrichtung (26, 28, 30, 34) zum Öffnen und Schließen des Verbindungsweges
zwischen einer Druckquelle (40) und der ersten Fläche (90), der zweiten Fläche (92)
und den Flächen (88, 102) des Verschiebungsbereiches und
eine Vorrichtung zum wahlweisen Steuern des Öffnens und Schließens der Ventilvorrichtung,
wodurch das auszuteilende Material selektiv gegen die erste Fläche (90), die zweite
Fläche (92) und die Flächen (88, 102) des Verschiebungsbereiches durch die Wirkung
der Druckquelle (40) gehalten wird, wenn die zugeordnete Ventilvorrichtung den Verbindungsweg
öffnet, und das Material von den Flächen abgelöst wird, wenn die zugeordnete Ventilvorrichtung
den Verbindungsweg schließt.
2. Gerät nach Anspruch 1, dadurch gekennzeichnet, daß die Druckquelle aus einer Quelle
(40) für ein unter Druck stehendes Gas besteht.
3. Gerät nach den Ansprüchen 1 oder 2, dadurch gekennzeichnet, daß das auszuteilende
Material gegen eine Bewegung in Längsrichtung dadurch gesichert wird, daß es gegen
eine der Einspannflächen geklemmt wird, wenn die Ventilvorrichtung den Verbindungsweg
zwischen der Druckquelle und der ausgewählten Einspannfläche öffnet, daß das Material
von der Fläche abgelöst wird, wenn die Ventilvorrichtung den Verbindungsweg schließt
und daß das Material abwechselnd gezwungen wird, sich einer der Flächen des Verschiebungsbereiches
anzupassen, wenn die Ventilvorrichtung den Verbindungsweg zwischen der Druckquelle
und der anderen Fläche des Verschiebungsbereiches öffnet.
4. Gerät nach den Ansprüchen 1 bis 3, gekennzeichnet durch
ein erstes Verteilerrohrsystem (58), das durch die Betätigung der Ventilvorrichtung
selektiv unter Druck gesetzt wird und sich zumindest längs eines Teiles der Länge
der ersten Einspannfläche (92) erstreckt und das, wenn es unter Druck steht, einen
Druckunterschied quer zu dem Material liefert, das an die erste Einspannfläche (92)
angrenzt,
ein zweites Verteilerrohrsystem (60), das durch die Betätigung der Ventilvorrichtung
selektiv unter Druck gesetzt wird und sich zumindest längs eines Teiles der Länge
der zweiten Einspannfläche (90) erstreckt und das, wenn es unter Druck gesetzt wird,
einen Druckunterschied quer zu dem Material liefert, das an die der zweite Einspannfläche
(90) angrenzt und
ein drittes Verteilerrohrsystem (59, 62), das durch Betätigen der Ventilvorrichtung
selektiv unter Druck gesetzt wird und sich zumindest längs eines Teiles der Länge
des Verschiebungsbereiches erstreckt und einen Druckunterschied quer zu dem Material
liefert, das sich innerhalb des Verschiebungsbereiches befindet.
5. Gerät nach Anspruch 4, dadurch gekennzeichnet, daß das erste und zweite Verteilerrohrsystem
jeweils einschließen:
ein Zuführverteilerrohr (58, 60), das durch die Ventilvorrichtung mit der Druckquelle
verbunden ist und auf einer Seite des Materials angeordnet ist, das sich innerhalb
des betreffenden Verteilerrohrsystems befindet,
ein Auslaßverteilerrohr (64, 66), in dem der Druck geringer ist als der Druck innerhalb
des unter Druck stehenden Zuführverteilerrohres, das auf der gegenüberliegenden Seite
des Materials angeordnet ist und
eine Vorrichtung zum Bilden eines verengten Durchlasses zwischen dem Zuführverteilerrohr
und dem Auslaßverteilerrohr, wobei ein Druckabfall quer zu dem Material von dem unter
Druck stehenden Zuführverteilerrohr zu dem Auslaßverteilerrohr hervorgerufen wird.
6. Gerät nach Anspruch 5, dadurch gekennzeichnet, daß der verengte Durchlaß, der das
Zuführverteilerrohr und das Auslaßverteilerrohr verbindet, zumindest teilweise durch
die Einspannflächen definiert ist.
7. Gerät nach den Ansprüchen 4 bis 6, dadurch gekennzeichnet, daß das dritte Verteilerrohrsystem
(59, 62) ein Zuführverteilerrohr einschließt, das über die Ventilvorrichtung selektiv
mit der Druckquelle und mit der Atmosphäre in Verbindung steht und das auf einer Seite
des Materials angeordnet ist, das sich innerhalb des dritten Verteilerrohrsystems
befindet, und ein Auslaßverteilerrohr, das über die Ventilvorrichtung selektiv mit
der Druckquelle und mit der Atmosphäre in Verbindung steht und das auf einer Seite
des Materials angeordnet ist, und eine Vorrichtung, die einen verengten Durchlaß zwischen
dem Zuführverteilerrohr und dem Auslaßverteilerrohr bildet, wodurch ein Druckunterschied
quer zum Material von dem Zufuhrverteilerrohr zu dem Auslaßverteilerrohr hervorgerufen
werden kann.
8. Gerät nach den Ansprüchen 1 bis 7, dadurch gekennzeichnet, daß die Ventilvorrichtung
erste und zweite Zweiweg-Ventile einschließt, wobei die Auslaßöffnung des ersten Ventils
in dem ersten Verteilerrohrsystem angeordnet ist, die Auslaßöffnung des zweiten Ventils
in dem zweiten Verteilerrohrsystem angeordnet ist, und dritte und vierte Dreiweg-Ventile,
von denen jedes eine Auslaßöffnung aufweist, die in dem dritten Verteilerrohrsystem
angeordnet sind, eine in dem Zuführverteilerrohrsystem und die andere in dem Auslaßverteilerrohrsystem,
wobei die Zuführöffnung zur Druckquelle geschlossen ist und die Zuführöffnung jedes
der Ventile mit der Druckquelle verbunden ist.
9. Gerät nach den Ansprüchen 1 bis 8, dadurch gekennzeichnet, daß die Bahn zwei Stiftreihen
(230, 232) aufweist, und die Stifte jeder Reihe Seite an Seite angeordnet sind und
in Längsrichtung einen Abstand voneinander aufweisen, wobei ihre Achsen vertikal und
parallel zueinander angeordnet sind, die Stiftreihen die erste und zweite Einspannfläche
definieren, in denen die Reihen mit seitlichem Abstand voneinander in einer Entfernung
angeordnet sind, die es erlaubt, daß das ausgeteilte Material zwischen den gegenüberliegenden
Stiftflächen der Stiftreihen vorbeilaufen kann, wobei die Stiftreihen den Verschiebungsbereich
definieren, in dem die Reihen einen seitlichen Abstand voneinander aufweisen und die
Länge der einen Stiftreihe wesentlich größer als die Länge der anderen Stiftreihe
ist.
10. Gerät nach Anspruch 9, dadurch gekennzeichnet, daß das Gerät obere und untere Abschlußglieder
aufweist und der verengte Durchgang zumindest zum Teil durch die Abstände in Längsrichtung
zwischen benachbarten Stiften einer Stiftreihe, den vertikalen Abständen zwischen
der oberen Fläche des Materials und der unteren Fläche des oberen Abschlußgliedes
und dem vertikalen Abstand zwischen der unteren Fläche des Materials und der inneren
Fläche des unteren Abschlußgliedes definiert ist.