[0001] The present invention relates to the treatment of hydrocarbon material with electromagnetic
energy, and more particularly to a method and apparatus for recovering fractions from
hydrocarbon material, facilitating the removal and cleansing of hydrocarbon fluids.
[0002] United States Patent Re. 31,241, reissued on May 17th, 1983, discloses a method and
apparatus for controlling the fluency of hydrocarbon fluids by using electromagnetic
energy.
[0003] In that document, there is disclosed a process including the steps of:
generating electromagnetic energy in the frequency range from about 300 megahertz
to about 300 gigahertz;
transmitting the generated electromagnetic energy to the hydrocarbon material;
sensing the temperature of the hydrocarbon material; and
periodically interrupting the generation of electromagnetic energy as required
to ensure that the sensed temperature remains within specified limits.
[0004] US-A-4,376,034 discloses a method in which a deflector of microwave energy sweeps
hydrocarbon material throughout the entire depth of the formation.
[0005] The present invention represents an improvement over the method and apparatus disclosed
in the aforementioned reissue patent for facilitating the removal of hydrocarbon fluids
as well as providing a novel method and apparatus for recovering fractions from hydrocarbon
fluids.
[0006] It is an object of the present invention to provide an improved method and apparatus
for heating hydrocarbon material with electromagnetic energy.
[0007] According to a first aspect of the invention, there is provided a method for sequentially
recovering fractions from hydrocarbon material, comprising the steps of:-
continuously generating electromagnetic energy in the frequency range of from about
300 megahertz to about 300 gigahertz;
deflecting the generated electromagnetic energy to the hydrocarbon material by
means of a deflector;
exposing the hydrocarbon material to the electromagnetic energy;
sensing the temperature of the hydrocarbon material at a plurality of selected
locations;
moving the deflector so as to deflect the electromagnetic energy to a plurality
of locations in the hydrocarbon material as a function of the sensed temperatures,
thereby exposing different locations of the hydrocarbon material to the electromagnetic
energy and controlling the heating of the hydrocarbon material as a function of the
temperatures sensed at the plurality of locations;
sequentially separating the hydrocarbon and other material into fractions; and
removing the resulting fractions.
[0008] A plurality of frequencies within the aforementioned frequency range or in combination
with frequencies outside this range may be utilized in accordance with the lossiness
of the fractions to be removed. The temperature of the high viscosity hydrocarbon
fluid may be precisely controlled by changing the broadcast location for the electromagnetic
energy to effectively sweep the hydrocarbon fluid to optimize oil production while
decreasing its viscosity to facilitate its separation and removal from a vessel. A
plurality of RF frequencies spaced far enough apart to preclude wave cancellation
and having varying field strengths may be used simultaneously in accordance with their
absorptivity by the various fractions to be recovered so as to achieve maximum efficiencies
in recovering the fractions.
[0009] In a preferred embodiment of the invention, the method further comprises the step
of providing an inert gas shield to prevent released gases from interfering with the
process.
[0010] According to a second aspect of the invention, there is provided apparatus for sequentially
recovering fractions from hydrocarbon material, comprising:
a container for the hydrocarbon material;
radio frequency generator means positioned proximate to the container for generating
electromagnetic energy in the frequency range of less than 300 megahertz to about
300 gigahertz for heating hydrocarbon material;
a radiotransparent applicator and conical deflector means positioned in said container;
waveguide means for coupling said radio frequency generator to said applicator;
a plurality of temperature sensing means arranged for detecting the temperature
of the hydrocarbon material at various levels within said container; and
means for moving said deflector within said container to change the broadcast location
to various levels to which the electromagnetic energy is directed for heating the
hydrocarbon material, the broadcast location being selected as a function of the temperature
detected at the various levels to facilitate the recovery of fractions from said material.
[0011] Preferably, the deflector is unidirectional and has a concave deflecting surface
to concentrate the deflected electromagnetic energy in a particular direction.
[0012] In a preferred embodiment, the apparatus comprises control signal means for activating
said moving means with a control signal propagated through said waveguide means, said
control signal having a different bandwidth than that of the electromagnetic energy
for heating the hydrocarbon material.
[0013] Reference will now be made, by way of example only, to the accompanying drawings,
in which:-
Fig. 1 is a side elevational view, with parts broken away, of an apparatus for providing
clean, separated oil from hydrocarbon fluids stored in vessels;
Fig. 2 is an enlarged side elevational view of the energy deflector of Fig. 1;
Fig. 3 is an enlarged side elevational view of another embodiment of the energy deflector;
Fig. 4 is an enlarged side elevational view of another embodiment of the energy deflector;
Fig. 5 is an enlarged side elevational view of another embodiment of the energy deflector;
Fig. 6 is an enlarged side elevational view of another embodiment of the energy deflector;
Fig. 7 is a side elevational view, with parts broken away, of an apparatus for in situ recovery of hydrocarbons from hydrocarbon material;
Fig. 8 is a schematic and side elevational view, with parts broken away, for in situ recovery of fractions from oil shale, coal, peat, lignite and tar sands, showing
the separation and scrubbing of the fractions;
Fig. 9 is an enlarged view of an applicator and deflector for in situ recovery of fractions from hydrocarbon material; and
Fig. 10 is an enlarged view of a coaxial waveguide applicator and pump for in situ recovery of fractions from hydrocarbon material.
[0014] Referring to Fig. 1, an apparatus in accordance with the present invention is illustrated
at 14 for use with a vessel or open or closed top oil storage tank 15 or mud pit.
The hydrocarbon fluid, such as oil, stored in the tank 15 often contains water, sulfur,
solids and other undesired constituents or contaminates, including bacterial and algae,
as well as scale and rust, all of which may be considered as basic sediment. Moreover,
during storage, the contamination and viscosity of the oil will often increase to
the point where the LACT (Lease Acquisition Custody Transfer) measurement is often
too great for pipeline acceptance.
Advantageously, the apparatus 14 not only heats the oil to decrease its viscosity
and increase its fluency, but also separates water, sulfur and basic sediment from
the oil in the tank 15, resulting in clean oil. The exiting gases, including sulfur,
may be collected via a collection line and holding tank (not shown) which are in communication
with the top of the tank 15.
[0015] The apparatus 14 includes a radio frequency (RF) generator 16 which includes a magnetron
17 or klystron, or other similar device, such as a solid state oscillator as disclosed
in the aforementioned reissue patent, which is capable of generating radio waves in
the frequency range of 300 megahertz to about 300 gigahertz and generally utilizing
from 1KW to 1MW or more of continuous wave power. It should be understood that a plurality
of magnetrons 17 or oscillators, or a klystron may be used to generate a plurality
of heating frequencies which are far enough apart to prevent interference and which
may have greater absorptivity to certain fractions which it is desired to remove.
The oscillator may be modified or another oscillator may be provided to generate a
frequency outside of this range for use with the aforementioned frequencies in accordance
with the lossiness of the fractions to be removed. The magnetron 17 is mechanically
coupled to an applicator 18 which is transparent to radio waves in the aforementioned
frequency range. The applicator 18 is in the shape of an elongated tube with an open
upper end 19 and a closed bottom end 20. The applicator is preferably constructed
from radiotransparent materials so that it is permeable to RF waves in the desired
frequency range but impermeable to liquids and gases. The applicator is attached to
a tubular waveguide 21 which passes through metal tank cover 22 that is bolted and
grounded to the tank 15 by a plurality of nuts and bolts 24.
[0016] A metal transition member 26, which includes a flanged end 28, is bolted to one end
of 90
o metal elbow 30 by bolts and nuts 32. The tubular end 33 of the transition member
26 is attached to the tubular waveguide 21. The other end 34 of the 90
o elbow 30 is bolted to one end of rectangular metal waveguide portion 36 by nuts and
bolts 38.
[0017] The other end of the rectangular waveguide 36 is coupled to WR x coaxial transition
member 40 with nuts and bolts 42. Flexible coaxial member 44 is fitted with flanged
ends 46 and 48 which have internal gas barriers to allow the flexible coaxial member
44 to be charged with an inert gas refrigerant, such as Freon, to increase its power
carrying capacity while preventing the flow of any gases emanating from the hydrocarbon
fluid back into the RF generator 16, which may result from a rupture or leakage in
the applicator 18. Flanged end 46 is coupled to the WR x coaxial transition member
52 with bolts and nuts 54. The flanged end of the coaxial x WR transition member 52
is coupled to the RF generator 16 through an extension 56.
[0018] A controller 58 controls the energization of the RF generator 16 and receives signals
from a plurality of temperature sensors 60 A-E arranged within the tank 15. The controller
58 is coupled to the sensors 60 A-E by wires or by fiberoptic transmission lines 62.
The sensors 60 A-E are vertically spaced at predetermined locations within the tank
15.
[0019] A generally conically shaped energy deflector 64 is arranged within the applicator
18 for upward and downward movement to control the broadcast locations for the electromagnetic
energy propagated through the applicator 18. This upward and downward movement is
provided by a motor 66 which drives a pulley 68 causing it to wind or unwind cable
70 attached to the energy deflector 64, thereby controlling the vertical broadcast
location of the deflector 64 within the tank 15. A separate frequency may be transmitted
through the waveguide 36 to activate the motor 66. Preferably, the energy deflector
64 is initially located near the bottom of the applicator 14 and moved gradually upward.
[0020] By broadcasting the energy in this manner, the magnetron 17 may run continuously
at full power to operate at the greatest efficiency, the temperature at various layers
within the hydrocarbon fluid are effectively controlled, so that the production of
oil is maximized, and the life of the magnetron 17 is prolonged.
[0021] The motor 66 is connected to a power source (not shown) through controller 58 by
line 72. The controller 58 activates the motor 66 to move the deflector 64 thereby
changing the broadcast location for the electromagnetic energy in response to the
temperatures sensed by sensors 60 A-E. The frequency and period of application of
the electromagnetic energy is controlled by the controller 58 which may be preset
or programmed for continuous or intermittent upward and downward cycling to achieve
homogeneous heating of the hydrocarbon fluid or localized heating to achieve the highest
yield or best production of oil at minimum energy cost. The broadcast location of
the energy deflector 64 may be preset to provide predetermined controlled continuous
or intermittent sweeping of the electromagnetic energy through the hydrocarbon fluid
by employing a conventional timer and limit stops for the motor 66.
[0022] Valves 74 A-D may be located in the vertical wall of the tank 15 to draw off the
oil after treatment with electromagnetic energy. After heating with electromagnetic
energy, as shown in Fig. 1, there is a bottom layer 76 which is essentially basic
sediment and water. Above the bottom layer 76 is an intermediate layer 78 which is
a mixture of mostly oil with some basic sediment and water. Finally, above the layer
78 is a top layer 80 which represents the resulting oil which has been cleansed and
is free of basic sediment and water. An access hatch 73 is provided for removing the
resulting basic sediment, which may include "drilling mud" solids. Any bacteria and
algae present in the hydrocarbon fluid are disintegrated by the RF waves, with their
remains forming part of the basic sediment.
[0023] To further aid circulation and cleansing of the layer of oil 80, a conventional conduction
heater 75, such as a gun barrel heater, may extend into the tank 15. Heater 75 circulates
hot gases through piping 77 to provide a low cost source of heat to further heat the
oil once the water and basic sediment has been separated from the oil and the oil
is sufficiently liquified or fluid for convection currents to flow. These convection
currents further aid in reducing the viscosity of the oil and removing fine sediment.
A spark arrester 79 is provided in the piping 77 to eliminate any sparks in the exiting
gases. The cleansed oil may be passed through a filter to remove any remaining fine
sediment.
[0024] By utilizing the method and apparatus of the present invention, clean oil is readily
and easily separated from basic sediment and water. This is accomplished by heating
the hydrocarbon fluid in the tank 15 with electromagnetic energy which causes the
water molecules which are normally encapsulated within the oil to expand rupturing
the encapsulated oil film. Heating can be accomplished with radio frequency waves
because water has a greater dielectric constant and greater loss tangent than oil,
which results in a high lossiness, thereby allowing it to absorb significantly more
energy than the oil in less time resulting in rapid expansion of the volume of the
water molecules within the oil film, causing the oil film to rupture. The water molecules
then combine into a heavier than oil mass which sinks to the bottom of the tank, carrying
most of the sediment present in the oil with it. However, to further facilitate removal
of the basic sediment, particularly fines, brine or salt water may be spread across
the surface of the top layer of oil 80 after the viscosity of the oil 80 has been
lowered, through heating with electromagnetic energy in accordance with the present
invention. The heavier salt water will rapidly gravitate through the layer 80 of oil
toward the bottom of the tank 15, carrying the fine sediment with it.
[0025] Layers 76, 78 and 80 have resulted from treating hydrocarbon fluid containing oil,
basic sediment and water stored in tank 15, by sweeping the fluid with electromagnetic
energy in accordance with the apparatus in Fig. 1 having a power output of 50 KW for
approximately 4 hours. However, it should be understood that the power output and
time of exposure will vary with the volume of the tank 15, the constituents or contaminates
present in the hydrocarbon fluid, and the length of time during which the hydrocarbon
fluid has been stored in the tank 15.
[0026] Since hydrocarbons, sulfurs, chlorides, water (fresh or saline), and sediment and
metals remain passive, reflect or absorb electromagnetic energy at different rates,
exposure of the hydrocarbon fluid to electromagnetic energy in accordance with the
present invention will separate the aforementioned constituents from the original
fluid in generally the reverse order of the constituents listed above. Further, acids
and condensible and non-condensible gases are also separated at various stages during
the electromagnetic energy heating process. The optimum frequencies, loss tangents
and boiling points for the various fractions present in the hydrocarbon material which
it is desired to recover can be obtained from Von Hippel,
TABLES OF DIELECTRIC MATERIALS, (1954), published by John Wiley & sons, Inc., and
ASHRAE HANDBOOK OF FUNDAMENTALS, (1981), published by The American Society of Heating, Refrigerating and Air Conditioning
Engineers, Inc.
[0027] Referring to Fig. 2, the applicator 18 and energy deflector 64 are shown enlarged
relative to that illustrated in Fig. 1. The deflector 64 is suspended within the applicator
by the dielectric cable 70 which is constructed of radiotransparent materials which
are strong, heat resistant and have a very low dielectric constant and loss tangent.
The height of the energy deflector 64 will determine the angle of deflection of the
electromagnetic energy.
[0028] Referring to Fig. 3, an alternative embodiment for the deflector 64 shown in Fig.
1 is illustrated as 82. The deflector 64 shown in Fig. 1 is illustrated as 82. The
deflector 82 has a greater angle of deflection (lesser included angle) than the deflector
64 to cause the deflected waves to propagate from the applicator 18 in a slightly
downward direction below a horizontal plane through the deflector 82. This embodiment
enables the radio frequency to penetrate into payzones which may be positioned below
the end of a well bore, when the method and apparatus is utilized for
in situ heating in a geological substrate.
[0029] The energy deflector 82 is suspended by a fiberoptic cable 84 which provides temperature
readings. In this respect, individual fiberoptic strands of the cable 84 are oriented
to detect conditions at various locations in a vessel or borehole. The information
transmitted to the remote ends of the fiberoptic strands can be converted into digital
signals converter for recording and/or controlling power output levels and positioning
of the deflector 82. For example, it may be desired to provide a vertical sweep pattern
of the RF energy in response to the temperature gradients sensed by the fiberoptic
strands. The frequency for use with the fiberoptic strands is selected to be sufficiently
different from the frequency of the RF generator 16 to prevent interference or cancellation.
[0030] Referring to Fig. 4, the radiotransparent applicator 18 is is brazed to waveguide
21 at 88 for downhole applications where the high temperatures encountered would be
detrimental to a fiberglass applicator.
[0031] Arranged within the applicator 18 is another embodiment of an energy deflector designated
88 which is constructed of pyroceram or other dielectric material with a helical wound
band of reflective material 90, such as stainless steel. Instead of providing the
aforementioned band of metal 90, a spiral portion of the alumina or silicon nitride
energy reflector 88 may be sintered and metallized to provide the desired reflective
band.
[0032] Other means may be employed to raise and lower the deflector to accomplish the sweeping
function, including hydraulic, vacuum, air pressure and refrigerant expansion lifting
systems. Further, the waveguide coupling from the RF generator 16 may also be utilized
to send control signals from the controller to the motor or other mechanism for raising
and lowering the RF deflector. The frequency for such control signals must be selected
to be sufficiently different from the frequency or frequencies selected for the electromagnetic
energy which heats the hydrocarbon fluid to prevent interference or cancellation.
[0033] Referring to Fig. 5, another form of energy deflector shown at 91 is essentially
a right triangle in cross section with a concave surface 93 for focusing all of the
deflected electromagnetic energy in a particular direction to heat a predetermined
volume in a vessel or a particular payzone or coal seam in subsurface applications.
[0034] Referring to Fig. 6, another form of energy deflector shown at 94 includes interconnected
segments 95A-95D which provide one angle for deflection of the electromagnetic energy
when the deflector is abutting the applciator 18 and another angle of deflection for
the electromagnetic energy when the cable 70 is pulled upwardly causing the segments
95A-95D to retract. Other means may be employed to change the angle of deflection
of the deflector 94, such as a remote controlled motor.
[0035] The disposal of drilling fluids known as "drilling mud" has become a severe problem
for the oil industry. The apparatus shown in Fig. 1, modified to incorporate any of
the energy deflectors illustrated in Figs 2-6, may be utilized to reconstitute drilling
mud for reuse by application of radio frequency waves to remove the excess liquids
and leave a slurry of bentonite, barite salts, etc.
[0036] Referring to Fig. 7, an apparatus 150 is shown positioned in an injection well 152
located adjacent at least one producing well 154. The apparatus 150 includes an RF
generator 158 which is electrically coupled to a power source (not shown). A magnetron
160 positioned within the RF generator 158 radiates microwave energy from an antenna
or probe 162 into waveguide section 164 for propagation. A waveguide extension 166
has one end coupled to the waveguide section 164 with bolts and nuts 168 and its other
end coupled to a waveguide to coaxial adapter 170 with bolts and nuts 172. A flexible
coaxial waveguide 174 is coupled at one end to the adapter 170 through a gas barrier
fitting 176. The other end of waveguide 174 is coupled to a coaxial to waveguide adapter
178 through a gas barrier member 180. A transformation member 182 is coupled at one
end to the adapter 178 with bolts and nuts 184. The other end of the transformation
member 182 is coupled to a tubular waveguide 186. A radiotransparent applicator 188
is attached to the tubular waveguide 186 at 187. The applicator 188 and energy deflector
(not shown) may include any of the types illustrated in Figs. 2-6 for broadcasting
RF waves. Further, the energy deflector will be coupled to a raising and lowering
means, e.g., of the type illustrated in Fig. 1.
[0037] The waveguide 186 is positioned within a casing 190 formed in the well 152. The well
head 191 is capped by a sealing gland 192 which effectively seals the waveguide 186
therein. A plurality of thermocouples 194 are positined in the well 152 between the
casing 190 and the waveguide 186 and extend to a location adjacent the bottom of the
well 152. Leads 196, which connect the thermocouples 194 to a controller (not shown)
extend through a packer seal 198. The packer seal 198 would not be used if it is desired
to produce the resulting oil, water and gases through the annular space 199 between
the casing 190 and waveguide 186. In the absence of the packer seal 198, the expansion
of the oil, water and gases will drive the same up through the annulus 199 until the
constituents in the immediate vicinity of the applicator 188 are removed. Subsequently,
the annulus 199 can be packed off with the packer seal 198 and the hydrocarbons further
heated to drive the resulting oil, water and gas to the producing well 154. For example,
if the temperature of the oil is increased to 400
oF, there is approximately a 40% increase in the volume of the oil.
[0038] The RF energy emanating from the applicator 188, as represented by the arrows, heats
the hydrocarbon material in the geological substrate causing the release of water,
gases, and oil, with the hot oil, water and gas flowing into the bottom of the producing
well 154 after the deflected RF energy melts sufficiently through the solidified oil
to establish a flow path to the producing well 154. The pump set 200 pumps the oil,
water and gas mixture through a perforated gas pipe 202, centered in the well casing
210 by centralizer 204 and production string 206 located in well casing 210 to a takeout
pipe 208. Specifically, the pump set 200 moves a sucker rod 212 up and down in the
production string 206 to draw oil, water and gas through the production string into
the take-out pipe 208.
[0039] The injection well 152 illustrated in Fig. 7 may be fitted with supplementary drive
means, such as pressurized steam or carbon dioxide for injection into the geological
substrate through the annulus 199 formed between the well casing 190 and the waveguide
186 to aid in further heating the hydrocarbon material, but more importantly to drive
the heated water, gas and oil to the producing well 154. Carbon dioxide may be employed
as the driving medium.
[0040] Referring to Fig. 8, there is shown apparatus 220 for
in situ production of oil, gas water and sulfur from oil shale, coal, peat, lignite or tar
sands by co-generation. A well 222 is formed through the overburden 224 and into the
bedding plane 226. The well 222 includes a steel casing 230 and a waveguide 232 positioned
within the casing and coupled to a radiotransparent applicator 234 housing an energy
deflector 236, as described in Figs. 1-6. Means to raise and lower the energy deflector
236 described in Fig. 1 should be included, but the same has been eliminated for clarity.
The waveguide 232 is affixed to the well head 238 with a packing gland seal 240 and
to transition elbow 242 which includes a gas barrier. Coupled to the remote end of
the transition elbow 242 is a flexible coaxial waveguide 244 which is coupled to an
RF generator 246 which includes a magnetion, klystron or solid state oscillator (not
shown). Current is supplied to the RF generator 246 from an electric generator 248
driven by a turbine 250. High pressure steam is supplied to the turbine 250 from a
boiler 252.
[0041] Low pressure extraction steam which exits from the turbine 250 is supplied to the
annulus 254 between the casing 230 and the waveguide 232 in the well 222 by a steam
line 251. The application of low pressure steam to the oil shale, coal, peat, lignite
or tar sands, in addition to the RF energy serves to decrease the viscosity of the
kerogen or oil in the formation, causing the water, oil and gas to expand and flow
into the open hole pump 256, where it is forced upwardly under tis own expansion and
by the steam pressure to the surface with the oil and gas entering exit oil line 258
and the steam entering steam return line 260. The steam entering the steam return
line 260 can be demineralized in demineralizer 262, condensed in condensate tank 264
and resupplied to the boiler 252.
[0042] The entering oil and gas is transmitted from the oil line 258 to a conventional liquid/gas
separator 261. The separated oil is then transmitted to a storage tank for pipeline
transmission.
[0043] Referring to Fig. 9, a canted or angled energy deflector 280 has a particular use
in a well bore 282 in which the payzone 284 is inclined or offset relative to the
well bore 282 so that the radio frequency energy can be directed to the seam or payzone
284. The deflector 280 is arranged at the bottom of an applicator 286 which is coupled
to a waveguide 288 with an E.I.A. flange 290. A corrosion resistant covering 292 surrounds
the waveguide 288 and flange 290. Extending downwardly from the casing 292 is a perforated
liner 294 which is transparent to RF waves and protects the applicator 286.
[0044] Referring to Fig. 10, a coaxial waveguide arrangement is illustrated at 300 for
in situ production of oil through a small diameter well bore 302. The well bore 302 includes
a casing 304 and a perforated radiotransparent liner 306 which extends downwardly
therefrom. A coaxial waveguide 308 is positioned within the well bore 302 and coupled
to a radiotransparent applicator 310 with an E.I.A flange 312. A fiberglass or other
corrosion resistant covering 314 surrounds the waveguide 308 and the flange 312. The
waveguide 308 includes a hollow central conductor 316 which is maintained in a spaced
relationship from an outer conductor 317 with dielectric spacers 319, only one of
which is shown. The conductor 316 extends through the applicator 310 for interconnection
with a submersible pump 318 positioned within the liner 306. The interior of the central
conductor 316 includes a fiberglass or polyethylene lining 320 to provide a production
conduit through which oil is pumped to the surface. The pumped oil helps to cool the
inner conductor 316 by absorbing heat therefrom which in turn helps to maintain a
lower viscosity in the producing oil by further heating it. The cooling effect of
the oil on the central conductor 316 prevents overheating and dielectric breakdown
of the dielectric spacers 319.
[0045] The pump 318 is electrically driven, receiving power through a power cable 322. The
pump 318 may be pneumatically or hydraulically operated or actuated by a magnetic
field produced by RF waves which have a different frequency than that of the RF waves
used for heating. The coaxial waveguide 308 is smaller in diameter than the waveguide
illustrated in Fig. 9 to allow access to wells 302 having small diameter bores.
[0046] Preferably, the pump 318 is supported by support wires 324 or rods coupled between
eyelets 323 affixed to the pump and eyelets 315 affixed to the flange 312. A dielectric
oil pipe 326 has one end coupled to the pump 318 with a flange 328 and passes through
a central opening 330 in the energy deflector 332. A liquid tight seal is applied
therebetween. The other end of the oil pipe 326 is coupled to the central conductor
316 with a dielectric coupling member 334.
[0047] The RF waves propagated through the waveguide 308 are radiated or broadcast outwardly
from the portion of the central conductor, designated 336, which functions as a 1/4
wave monopole antenna. Any Rf waves that travel past the antenna 336 are deflected
by the energy deflector 332.
1. A method for sequentially recovering fractions from hydrocarbon material, comprising
the steps of:-
continuously generating electromagnetic energy in the frequency range of from about
300 megahertz to about 300 gigahertz;
deflecting the generated electromagnetic energy to the hydrocarbon material by
means of a deflector;
exposing the hydrocarbon material to the electromagnetic energy;
sensing the temperature of the hydrocarbon material at a plurality of selected
locations;
moving the deflector so as to deflect the electromagnetic energy to a plurality
of locations in the hydrocarbon material as a function of the sensed temperatures,
thereby exposing different locations of the hydrocarbon material to the electromagnetic
energy and controlling the heating of the hydrocarbon material as a function of the
temperatures sensed at the plurality of locations;
sequentially separating the hydrocarbon and other material into fractions; and
removing the resulting fractions.
2. A method as claimed in claim 1, wherein the hydrocarbon material is coal, tar sands,
oil shale, peat, lignite, or oil.
3. A method as claimed in claim 1 or 2, including the step of providing a plurality of
the most efficient energy absorption frequencies of the desired fractions for their
separation from said material.
4. A method as claimed in claim 3, wherein one of the frequencies at which electromagnetic
energy is provided is below 300 megahertz.
5. A method as claimed in any preceding claim, including the step of varying the frequency
or frequencies at which electromagnetic energy is generated, in order to provide the
most efficient energy absorption, for separation of the desired fraction from the
hydrocarbon material.
6. A method as claimed in any preceding claim, including the step of periodically sweeping
the hydrocarbon material with electromagnetic energy, commencing near the bottom of
the hydrocarbon material and moving upwardly.
7. A method as claimed in any preceding claim, including the step of providing an inert
gas shield to prevent released gases from interfering with the process.
8. A method as claimed in any preceding claim, for recovering fractions from hydrocarbon
material found in a geological substrate.
9. A method as claimed in claim 8, including the step of applying pressurized gas to
the geological substrate to facilitate removal of the fractions.
10. A method as claimed in any preceding claim, including the step of varying the locations
to which the generated electromagnetic energy is deflected to control temperatures
within said material to prevent any water present from reaching its boiling point.
11. A method as claimed in any preceding claim, wherein the step of removing fractions
comprises the step of removing separated oil from said material leaving water, sulfur
and basic sediment residual.
12. A method as claimed in claim 11, including the steps of:
sensing a plurality of local temperatures in the hydrocarbon material; and
deflecting said energy to the selected locations by moving the deflector location
with a radiotransparent applicator.
13. A method as claimed in claim 11 or 12, including the step of varying the frequency
and field strength of said energy for the most efficient absorption for separating
the oil, water and basic sediment.
14. Apparatus for sequentially recovering fractions from hydrocarbon material, comprising:
a container for the hydrocarbon material;
radio frequency generator means positioned proximate to the container for generating
electromagnetic energy in the frequency range of less than 300 megahertz to about
300 gigahertz;
a radiotransparent applicator and conical deflector means positioned in said container;
waveguide means for coupling said radio frequency generator to said applicator;
a plurality of temperature sensing means arranged for detecting the temperature
of the hydrocarbon material at various levels within said container; and
means for moving said deflector within said container to change the broadcast location
to various levels to which the electromagnetic energy is directed as a function of
the temperature detected at the various levels to facilitate the recovery of fractions
from said material.
15. Apparatus as claimed in claim 14, wherein said moving means includes a motor, and
a controller electrically coupled to said motor, said motor being coupled to said
deflector means for moving said deflector means in response to energization of said
motor by said controller.
16. Apparatus as claimed in claim 14 or 15, wherein said deflector means is shaped so
that the electromagnetic energy will propagate outwardly and downwardly from said
deflector means below a horizontal plane through said deflector means, the apparatus
further including means for varying the angle of deflection.
17. Apparatus as claimed in claim 16, wherein said deflector means is unidirectional,
having a concave deflecting surface to concentrate the deflected electromagnetic energy
in a particular direction.
18. Apparatus as claimed in one of claims 14 to 17, wherein said waveguide means includes
a flexible coaxial portion having gas barriers arranged therein so that the flexible
coaxial portion may be charged with a refrigerant to increase the power carrying capacity
of said waveguide means to prevent the flow of any gases emanating from said hydrocarbon
material back into said radio frequency generator means.
19. Apparatus as claimed in one of claims 14 to 18 wherein said moving means includes
a fiberoptic cable coupled to said deflector means, said fiberoptic cable including
individual fiberoptic stands oriented to detect the temperature conditions at various
locations within the container.
20. Apparatus as claimed in one of claims 14 to 19, wherein said radio frequency generator
means provides a plurality of frequencies in accordance with fractions desired to
be removed to provide the most efficient energy absorption frequencies for separation
of the fractions from the hydrocarbon material.
21. Apparatus as claimed in one of claims 14 to 20, including control signal means for
activating said moving means with a control signal propagated through said waveguide
means, said control signal having a different bandwidth than that of the electromagnetic
energy for heating the hydrocarbon material.
1. Un procédé de récupération séquentielle de fractions d'une matière à base d'hydrocarbure,
comprenant les opérations consistant à :
former de manière continue de l'énergie électromagnétique dans la gamme de fréquences
d'environ 300 mégahertz à environ 300 gigahertz ;
dévier l'énergie électromagnétique ainsi formée vers la matière à base d'hydrocarbure
au moyen d'un déflecteur ;
exposer la matière à base d'hydrocarbure à l'énergie électromagnétique ;
détecter la température de la matière à base d'hydrocarbure au niveau d'un ensemble
d'emplacements sélectionnés ;
déplacer le déflecteur afin de dévier l'énergie électromagnétique vers un ensemble
d'emplacements dans la matière à base d'hydrocarbure en fonction des températures
détectées, en exposant ainsi différents emplacements de la matière à base d'hydrocarbure
à l'énergie électromagnétique et en commandant le chauffage de la matière à base d'hydrocarbure
en fonction des températures détectées au niveau de l'ensemble des emplacements ;
séparer séquentiellement la matière à base d'hydrocarbure et autre en fractions ;
et
éliminer les fractions résultantes.
2. Un procédé comme revendiqué à la revendication 1, dans lequel la matière à base d'hydrocarbure
est du charbon, des sables asphaltiques, du schiste bitumineux, de la tourbe, de la
lignite, ou du pétrole.
3. Un procédé comme revendiqué à la revendication 1 ou 2, comprenant l'opération consistant
à créer un ensemble de fréquences d'absorption d'énergie les plus efficaces des fractions
désirées en vue de leur séparation de ladite matière.
4. Un procédé comme revendiqué à la revendication 3, dans lequel une des fréquences à
laquelle l'énergie électromagnétique est créée est en-dessous de 300 mégahertz.
5. Un procédé comme revendiqué dans une revendication précédente quelconque, comprenant
l'opération consistant à faire varier la ou les fréquences auxquelles l'énergie électromagnétique
est formée de façon à créer l'énergie d'absorption la plus efficace en vue d'une séparation
de la fraction désirée de la matière à base d'hydrocarbure.
6. Un procédé comme revendiqué dans une revendication précédente quelconque, comprenant
l'opération consistant à balayer de manière périodique la matière à base d'hydrocarbure
avec une énergie électromagnétique, en commençant près du fond de la matière à base
d'hydrocarbure et en se déplaçant vers le haut.
7. Un procédé comme revendiqué dans une revendication précédente quelconque, comprenant
l'opération consistant à créer un écran protecteur en gaz inerte afin d'empêcher les
gaz dégagés d'interférer avec le processus.
8. Un procédé comme revendiqué dans une revendication précédente quelconque, pour récupérer
des fractions d'une matière à base d'hydrocarbure trouvée dans un substrat géologique.
9. Un procédé comme revendiqué à la revendication 8, comprenant l'opération consistant
à appliquer un gaz sous pression au substrat géologique afin de faciliter l'élimination
des fractions.
10. Un procédé comme revendiqué dans une revendication précédente quelconque, comprenant
l'opération consistant à faire varier les emplacements auxquels l'énergie électromagnétique
formée est déviée afin de commander les températures à l'intérieur de ladite matière
pour empêcher à une quelconque eau présente d'atteindre son point d'ébullition.
11. Un procédé comme revendiqué dans une revendication précédente quelconque, dans lequel
l'opération consistant à éliminer des fractions comprend l'opération consistant à
éliminer le pétrole séparé de l'eau quittant la matière, du soufre et du résidu sédimentaire
de base.
12. Un procédé comme revendiqué à la revendication 11, comprenant les opérations consistant
à :
détecter un ensemble de températures locales dans la matière à base d'hydrocarbure
; et
dévier ladite énergie vers les emplacements sélectionnés en déplaçant l'emplacement
du déflecteur à l'aide d'un applicateur radiotransparent.
13. Un procédé comme revendiqué à la revendication 11 ou 12, comprenant l'opération consistant
à faire varier la fréquence et l'intensité de ladite énergie en vue de l'absorption
la plus efficace pour séparer le pétrole, l'eau et le sédiment de base.
14. Appareil pour la récupération séquentielle de fractions à partir de matière à base
d'hydrocarbure, comprenant :
un récipient pour la matière à base d'hydrocarbure ;
des moyens formant générateur de fréquences radioélectriques placés près du récipient
afin de former une énergie électromagnétique dans la gamme de fréquences de moins
d'environ 300 mégahertz à environ 300 gigahertz ;
des moyens formant applicateur radiotransparent et déflecteur conique placés dans
ledit récipient ;
des moyens formant guide d'ondes pour coupler ledit générateur de fréquences radioélectriques
audit applicateur ;
un ensemble de moyens de détection de température prévu pour détecter la température
de la matière à base d'hydrocarbure à différents niveaux à l'intérieur dudit récipient
; et
des moyens pour déplacer ledit déflecteur à l'intérieur dudit récipient afin de changer
l'emplacement de la transmission vers différents niveaux auxquels l'énergie électromagnétique
est dirigée en fonction de la température détectée aux différents niveaux afin de
faciliter la récupération de fractions à partir de ladite matière.
15. Appareil comme revendiqué à la revendication 14, dans lequel lesdits moyens de déplacement
comprennent un moteur ainsi qu'un dispositif de commande couplés électriquement audit
moteur, ledit moteur étant couplé auxdits moyens formant déflecteur afin de déplacer
lesdits moyens formant déflecteur en réponse à l'actionnement dudit moteur par ledit
dispositif de commande.
16. Appareil comme revendiqué à la revendication 14 ou 15, dans lequel lesdits moyens
formant déflecteur sont conformés de manière que l'énergie électromagnétique se propage
vers l'extérieur et vers le bas à partir desdits moyens formant déflecteur en dessous
d'un plan horizontal traversant lesdits moyens formant déflecteur, l'appareil comprenant
en outre des moyens pour faire varier l'angle de déflection.
17. Appareil comme revendiqué à la revendication 16, dans lequel lesdits moyens formant
déflecteur sont unidirectionnels, en présentant une surface déflectrice concave pour
concentrer, dans une direction particulière, l'énergie électromagnétique déviée.
18. Appareil comme revendiqué dans une des revendications 14 à 17, dans lequel lesdits
moyens formant guide d'ondes comprennent une partie coaxiale souple présentant des
barrières à gaz montées à l'intérieur afin que la partie coaxiale souple puisse être
chargée de réfrigérant afin d'augmenter la capacité de transport d'énergie des moyens
formant guide d'ondes pour empêcher l'écoulement de tous gaz émanant de ladite matière
à base d'hydrocarbure en retour dans lesdits moyens formant générateur de fréquences
radioélectriques.
19. Appareil comme revendiqué dans une des revendications 14 à 18, dans lequel lesdits
moyens de déplacement comprennent un câble à fibres optiques couplé auxdits moyens
formant déflecteur, ledit câble à fibres optiques comprenant des brins individuels
de fibres optiques orientés pour détecter les conditions de température à divers emplacements
à l'intérieur du récipient.
20. Appareil comme revendiqué dans une des revendications 14 à 19, dans lequel lesdits
moyens formant générateur de fréquences radioélectriques créent un ensemble de fréquences
selon les fractions que l'on désire éliminer afin de créer les fréquences d'absorption
d'énergie les plus efficaces pour une séparation des fractions de la matière à base
d'hydrocarbure.
21. Appareil comme revendiqué dans une des revendications 14 à 20, comprenant des moyens
formant un signal de commande pour activer lesdits moyens de déplacement avec un signal
de commande propagé à travers lesdits moyens formant guide d'ondes, ledit signal de
commande présentant une largeur de bandes différente de celle de l'énergie électromagnétique
permettant de chauffer la matière à base d'hydrocarbure.
1. Ein Verfahren zum aufeinanderfolgenden Gewinnen von Fraktionen aus einem Kohlenwasserstoffmaterial,
bei welchem
kontinuierlich elektromagnetische Energie im Frequenzbereich von etwa 300 MHz bis
etwa 300 GHz erzeugt wird,
die erzeugte-elektromagnetische Energie mittels eines Deflektors zum Kohlenwasserstoffmaterial
hin abgelenkt wird,
das Kohlenwasserstoffmaterial der elektromagnetischen Energie ausgesetzt wird,
die Temperatur des Kohlenwasserstoffmaterials an mehreren ausgewählten Stellen
erfaßt wird,
der Deflektor in Abhängigkeit von den erfaßten Temperaturen so bewegt wird, daß
er die elektromagnetische Energie zu mehreren Stellen im Kohlenwasserstoffmaterial
hin ablenkt, womit verschiedene Stellen des Kohlenwasserstoffmaterials der elektromagnetischen
Energie ausgesetzt werden und die Erwärmung des Kohlenwasserstoffmaterials in Abhängigkeit
von den an der Mehrzahl von Stellen erfaßten Temperaturen geregelt wird,
anschließend der Kohlenwasserstoff und anderes Material in Fraktionen aufgespalten
wird und
die erhaltenen Fraktionen entfernt werden.
2. Verfahren nach Anspruch 1, worin das Kohlenwasserstoffmaterial Kohle, Teersand, Ölschiefer,
Torf, Lignit oder Öl ist.
3. Verfahren nach Anspruch 1 oder 2, bei welchem für die Abtrennung der gewünschten Fraktionen
vom Kohlenwasserstoffmaterial der Schritt des Bereitstellens mehrerer der wirksamsten
Energieabsorptionsfrequenzen vorgesehen wird.
4. Verfahren nach Anspruch 3, worin eine der Frequenzen, bei welcher elektromagnetische
Energie beigestellt wird, unterhalb 300 MHz liegt.
5. Verfahren nach irgendeinem vorhergehenden Anspruch, bei welchem der Schritt der Veränderung
der Frequenz oder der Frequenzen, bei welcher bzw. bei welchen elektromagnetische
Energie beigestellt wird, verändert wird, um die für die Abtrennung der gewünschten
Fraktion vom Kohlenwasserstoffmaterial wirksamste Energieabsorption zu erzielen.
6. Verfahren nach irgendeinem vorhergehenden Anspruch, welches den Schritt des periodischen
Überstreichens des Kohlenwasserstoffmaterials mit elektromagnetischer Energie, beginnend
nahe beim Boden des Kohlenwasserstoffmaterials und in Aufwärtsbewegung, umfaßt.
7. Verfahren nach irgendeinem vorhergehenden Anspruch, bei welchem der Schritt eines
Inertgasschildes vorgesehen ist, um freigesetzte Gase an einer Teilnahme am Verfahren
zu hindern.
8. Verfahren nach irgendeinem vorhergehenden Anspruch zum Gewinnen von Fraktionen aus
einem in einem geologischen Substrat gefundenen Kohlenwasserstoffmaterial.
9. Verfahren nach Anspruch 8, bei welchem der Schritt der Anwendung von unter Druck stehendem
Gas auf das geologische Substrat vorgesehen ist, um das Entfernen der Fraktionen zu
erleichtern.
10. Verfahren nach irgendeinem vorhergehenden Anspruch, bei welchem der Schritt der Veränderung
jener Stellen vorgesehen ist, zu welchem hin die erzeugte elektromagnetische Energie
abgelenkt wird, um die Temperaturen innerhalb des Kohlenwasserstoffmaterials so zu
regeln, daß allenfalls vorhandenes Wasser am Erreichen seines Siedepunkts gehindert
wird.
11. Verfahren nach irgendeinem vorhergehenden Anspruch, worin der Schritt des Entfernens
von Fraktionen den Schritt des Entfernens abgetrennten Öls vom Kohlenwasserstoffmaterial
umfaßt, wobei als Rückstand Wasser, Schwefel und basisches Sediment verbleibt.
12. Verfahren nach Anspruch 11, bei welchem
im Kohlenwasserstoffmaterial mehrere örtliche Temperaturen erfaßt werden und
die erwähnte Energie zu den ausgewählten Stellen hin durch Bewegen des Deflektorortes
mittels eines strahlungsdurchläßigen Applikators abgelenkt wird.
13. Verfahren nach Anspruch 11 oder 12, welches den Schritt des Veränderns der Frequenz
und der Feldstärke der erwähnten Energie zwecks wirksamster Absorption umfaßt, um
Öl, Wasser oder basisches Sediment zu trennen.
14. Vorrichtung zum aufeinanderfolgenden Gewinnen von Fraktionen aus Kohlenwasserstoffmaterial
mit
einem Behälter für das Kohlenwasserstoffmaterial,
einem in Nähe des Behälters befindlichen Radiofrequenzgenerator zum Erzeugen elektromagnetischer
Energie im Bereiche von weniger als 300 MHz bis etwa 300 GHz,
einem strahlungsdurchläßigen Applikator und einem konischen Deflektor innerhalb
des Behälters,
einem den Radiofrequenzgenerator mit dem Applikator koppelnden Wellenleiter,
mehreren Temperaturfühlern zum Erfassen der Temperatur des Kohlenwasserstoffmaterials
an verschiedenen Niveaus innerhalb des Behälters und
Einrichtungen zum Bewegen des Deflektors innerhalb des Behälters, um zwecks Erleichterung
der Gewinnung von Fraktionen aus dem Kohlenwasserstoffmaterial die Bestrahlungsstelle,
auf welche die elektromagnetische Energie gerichtet wird, in Abhängigkeit von der
an den verschiedenen Niveaus erfaßten Temperatur auf die verschiedenen Niveaus zu
bringen.
15. Vorrichtung nach Anspruch 14, worin die Einrichtung zum Bewegen des Deflektors einen
Motor und einen an den Motor elektrisch gekuppelten Regler aufweist, wobei der Motor
mit dem Deflektor so gekuppelt ist, daß der Deflektor in Abhängigkeit von der Energiezufuhr
zum Motor durch den Regler bewegt wird.
16. Vorrichtung nach Anspruch 14 oder 15, worin der Deflektor so geformt ist, daß sich
die elektromagnetische Energie aus dem Deflektor nach außen und nach unten unter eine
durch den Deflektor gelegte Horizontalebene ausbreitet, und worin die Vorrichtung
weiters eine Einrichtung zum Verändern des Ablenkwinkels aufweist.
17. Vorrichtung nach Anspruch 16, worin der Deflektor unidirektional ist und eine konkave
Ablenkfläche aufweist, um die abgelenkte elektromagnetische Energie in eine bestimmte
Richtung zu konzentrieren.
18. Verfahren nach irgendeinem der Ansprüche 14 bis 17, worin der Wellenleiter einen flexiblen
koaxialen Teil mit darin angeordneten Gasbarrieren aufweist, so daß der flexible axiale
Teil mit einem Kühlmittel beschickt werden kann, um die Leistungstransportfähigkeit
des Wellenleiters zu erhöhen und um ein Rückströmen von aus dem Kohlenwasserstoffmaterial
abgegebenen Gasen in den Radiofrequenzgenerator zu verhindern.
19. Vorrichtung nach irgendeinem der Ansprüche 14 bis 18, worin die Einrichtung zum Bewegen
des Deflektors ein an den Deflektor gekuppeltes optisches Faserkabel aufweist und
das optische Faserkabel einzelne faseroptische Stränge aufweist, die so orientiert
sind, daß die Temperaturbedingungen an verschiedenen Stellen innerhalb des Behälters
erfaßt werden.
20. Vorrichtung nach irgendeinem der Ansprüche 14 bis 19, worin der Radiofrequenzgenerator
entsprechend den abzutrennenden Fraktionen mehrere Frequenzen zur Verfügung stellt,
um die wirksamsten Energieabsorptionsfrequenzen für das Abtrennen der Fraktionen vom
Kohlenwasserstoffmaterial beizustellen.
21. Vorrichtung nach irgendeinem der Ansprüche 14 bis 20, welche eine Steuersignaleinrichtung
zum Aktivieren der Einrichtung zum Bewegen des Deflektors mittels eines über den Wellenleiter
weitergeleiteten Steuersignals aufweist, wobei das Steuersignal eine andere Bandbreite
besitzt als die elektromagnetische Energie zum Erwärmen des Kohlenwasserstoffmaterials.