(19) |
 |
|
(11) |
EP 0 285 722 B1 |
(12) |
EUROPEAN PATENT SPECIFICATION |
(45) |
Mention of the grant of the patent: |
|
02.01.1992 Bulletin 1992/01 |
(22) |
Date of filing: 16.09.1987 |
|
|
(54) |
An air cured composite coating and method for applying same
Luftgehärtete Kompositbeschichtung und Verfahren zu ihrer Anwendung
Revêtement composite cuit à l'air et son procédé de fabrication
|
(84) |
Designated Contracting States: |
|
AT BE CH DE ES FR GB GR IT LI LU NL SE |
(30) |
Priority: |
07.04.1987 US 35346 18.08.1987 GB 8719463
|
(43) |
Date of publication of application: |
|
12.10.1988 Bulletin 1988/41 |
(73) |
Proprietor: PLASMA COATINGS, INC. |
|
Waterbury
Connecticut 06725-0006 (US) |
|
(72) |
Inventor: |
|
- Carlo, Gary R.
Connecticut
06795 (US)
|
(74) |
Representative: Archer, Philip Bruce et al |
|
Urquhart-Dykes & Lord
European Patent Attorneys
New Priestgate House
57 Priestgate Peterborough
Cambridgeshire PE1 1JX Peterborough
Cambridgeshire PE1 1JX (GB) |
(56) |
References cited: :
FR-A- 1 523 222
|
US-A- 3 010 843
|
|
|
|
|
- PATENT ABSTRACTS OF JAPAN, vol. 10, no. 103 (C-340)[2160], 18th April 1986; & JP-A-60
234 960 (SEIKO DENSHI KOGYO K.K.) 21-11-1985
- PATENT ABSTRACTS OF JAPAN, vol. 7, no. 77 (C-159)[1222], 30th March 1983; & JP-A-58
9971 (SUWA SEIKOSHA K.K.) 20-01-1983
- PATENT ABSTRACTS OF JAPAN, vol. 9, no. 301 (C-316)[2024], 28th November 1985; & JP-A-60
138 064 (SHOWA DENKO K.K.) 22-07-1985
|
|
|
|
Note: Within nine months from the publication of the mention of the grant of the European
patent, any person may give notice to the European Patent Office of opposition to
the European patent
granted. Notice of opposition shall be filed in a written reasoned statement. It shall
not be deemed to
have been filed until the opposition fee has been paid. (Art. 99(1) European Patent
Convention).
|
[0001] The present invention relates to a composite coating which imparts an abrasion resistant
release surface to a substrate and a method for applying the coating to the substrate.
More particularly, the present invention relates to an air cured composite coating
comprising a porous metal matrix and a silicone impregnant which seals the porosity
of the matrix.
[0002] Composite coatings applied to substrates to enhance their abrasion resistence and
release properties are old in the art. Prior art composite coatings usually include
either a ceramic or a metal matrix applied to a substrate, with the matrix being impregnated
with a silicone polymer or fluorocarbon polymer release agent. The major drawback
to all the prior art composite coatings is that they must be heat cured at temperatures
near or above 260 degrees Celcius (500 degrees fahrenheit). Heat curing of the composite
coating presents significant problems where the substrate is of substantial size or
weight or where the substrate is a component of a larger machine. Where the substrate
is large and/or heavy, it may be expensive to ship the substrate to a distant coating
facility. Further, when the substrate is a component of a larger machine, productivity
of the machine is lost while the component is removed from the machine and sent away
to be coated.
[0003] There is disclosed in U.S.3,010,843 a coating and a method of applying same as defined
in the pre-characterising portions of claims 1 and 6 hereof.
[0004] According to the invention there is provided a coating and a method of applying same
as defined in claims 1 and 6 hereof.
[0005] In the described embodiments there is provided a composite coating which imparts
an abrasion resistant release surface to a substrate where, because the composite
coating is air cured, it can be applied on site. That is, because the composite coating
does not require oven-heating for proper curing, the substrate does not have to be
shipped to a distant coating facility. The air cured composite coating comprises a
porous metal matrix impregnated with a silicone to seal the porosity of the matrix.
The coating is continuously operable to temperatures of up to 204 degrees Celcius
(400 degrees fahrenheit) and exhibits a hardness of up to 72 Rc.
[0006] In the accompanying drawings:-
Fig. 1 is a semi-schematic, enlarged, cross-sectional view of a substrate having a
composite layer produced in accordance with the present invention.
Fig. 2 is an enlarged cross-section of Fig. 1 on the line 2-2.
[0007] In accordance with the present invention, a porous metal matrix is initially formed
on a substrate and then impregnated with a film forming, polymerizable, silicon impregnate
which is polymerized in situ to serve as a release agent. The resulting composite
coating thus formed has the abrasion resistance of the metal matrix and the release
properties of the impregnating silicon.
[0008] Referring to Fig. 1, a substrate coated with the air cured composite coating of the
present invention is shown generally at 10. The substrate 12, such as an idler roller
or drum, carries the composite coating, represented at 14. As shown in Fig. 2, the
composite coating comprises a porous metal matrix which in cross section exhibits
a multitude of depressions 16 and plateaus 18 formed therein. A film forming, polymerized,
silicone impregnate 20 fills the depressions 16 in the matrix 14 and penetrates into
the matrix to seal its porosity. It is also preferred that an excess of the impregnate
20 extends above the plateaus 18 to completely cover the matrix 14.
[0009] In accordance with the present invention, the metallic matrix is applied to the substrate
12 in a flame spraying process. The material of the metal matrix 14 may vary widely
within the scope of the invention, and can be of any metal which is of powder form,
for example metals from the group consisting of stainless steel, nickel, nickel chromium,
and molybdenum. The metal matrix 14 is deposited onto the substrate 10 to a depth
of from 0.0051 to 0.025 millimetres (0.002 to 0.010 of an inch), depending upon the
purpose for which the coated substrate is employed.
[0010] Further, and in accordance with the present invention, the silicone may be applied
to the metal matrix 14 such that the silicone fills the depressions 16, extends above
the plateaus 18 and penetrates into the matrix 14. It is permitted to polymerize in
situ at ambient temperatures for a period of from 16 to 24 hours. As noted above,
this is the major advantage of the present invention over prior art composite release
coatings; the coating can be applied and air cured on site, eliminating the need for
heat-curing in an oven.
[0011] The composite coating which results has a hardness of up to 72 Rc and a surface finish
of from 6.35 to 17.78 micrometres (250 to 700 microinches). The composite exhibits
thermal stability at continuous operating temperatures of up to 204 degrees Celcius
(400 degrees fahrenheit) and intermittent operating temperatures of up to 260 degrees
Celcius (500 degrees fahrenheit). The composite coating also provides 2 1/2 - 3 times
longer release life than composite coatings utilizing fluorocarbon release agents.
In the case of certain adhesives, absolute release is offered with no adhesive transfer
onto the release surface, whereas resistance as well as adhesive transfer is apparent
when used with the above mentioned fluorocarbon release coatings. It also has a high
coefficient of friction which is desirable for web tracking.
1. A composite coating for imparting an abrasion resistant release surface to a substrate,
said composite coating comprising:
a porous metal matrix thermally sprayed onto said substrate to a depth of 0.051
to 0.025 millimetres (0.002 to 0.010 of an inch), said matrix comprising a metal of
powdered form, and
a film of silicone impregnating said matrix to seal the porosity of the matrix,
characterised in that
said metal matrix has a multitude of depressions and plateaus formed therein, and
said film of silicone fills said depressions and extends above said plateaus to
completely cover said matrix, and
said film of silicone has been air cured at ambient temperatures so as to have
a surface hardness of up to 72 Rc, and maintains thermal stability at a continuous
operating temperature of up to 204 degrees celsius (400 degrees farenheit) and maintains
thermal stability at an intermittent operating temperature of up to 260 degrees celsius
(500 degrees farenheit).
2. The composite coating of claim 1 characterised in that the metal of powdered form
is selected from the group consisting of stainless steel, nickel, nickel chromium,
and molybdenum.
3. The composite coating of claim 1 or claim 2 characterised in that said coating has
a surface finish in the range of 6.35 to 17.78 micrometres (250 to 700 micro-inches).
4. The composite coating of any one of claims 1 to 3 characterised in that said air cured
silicone has been polymerised within a period of 16 to 24 hours.
5. A method of applying a composite coating to a substrate, comprising the steps of:
providing a substrate,
applying a porous metal matrix to said substrate to a depth of 0.051 to 0.025 millimetres
(0.002 to 0.0010 of an inch) in a flame spraying process, said metal matrix comprising
a metal of powdered form,
impregnating a film of silicone into said metal matrix to seal the porosity of
said matrix, and
curing said silicone impregnated into said matrix,
characterised in that
said metal matrix has a multitude of depressions and plateaus formed therein,
said film of silicone fills said depressions of said metal matrix and extends above
said plateaus thereof to completely cover said matrix,
said curing of said silicone being carried out by air curing at ambient temperature
for a period of 16 to 24 hours.
6. A method according to claim 5 characterised in that said metal matrix is applied to
said substrate by a metal spraying technique.
1. Kompositbeschichtung, um einem Substrat eine abriebfeste Trennfläche zu verleihen,
wobei die Kompositbeschichtung aufweist:
eine poröse Metallmatrix, die thermisch auf das Substrat in einer Dicke von 0,051
- 0,025 mm (0,002 - 0,010 inch) aufgesprüht ist, wobei die Matrix ein Metall in gepulverter
Form aufweist, und
einen Film aus Silikon, der die Matrix imprägniert, um die Porosität der Matrix abzudichten,
dadurch gekennzeichnet, daß
die Metallmatrix eine Vielzahl von Vertiefungen und darin gebildeten Ebenen hat, und
der Film aus Silikon die Vertiefungen füllt und sich über die Ebenen erstreckt, um
die Matrix vollständig abzudecken, und
der Film aus Silikon bei Umgebungstemperaturen luftgehärtet wurde, um eine Oberflächenhärte
von bis zu 72 Rc zu haben, und eine Wärmestabilität bei fortlaufenden Betriebstemperaturen
bis zu 204° C (400° F) aufrechterhält sowie eine Wärmestabilität bei kurzzeitigen
Betriebstemperaturen von bis zu 260° C (500° F) aufrecht erhält.
2. Kompositbeschichtung nach Anspruch 1, dadurch gekennzeichnet, daß das Metall in gepulverter
Form gewählt ist aus der Gruppe, die aus rostfreiem Stahl, Nickel, Chromnickel und
Molybdän besteht.
3. Kompositbeschichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daS die Beschichtung
eine Oberflächen-Deckschicht im Bereich von 6,35 - 17,78 µm (250 bis 700 Mikroinch)
hat.
4. Kompositbeschichtung nach einem der Ansprüche 1 - 3, dadurch gekennzeichnet, daß das
luftgehärtete Silikon in einer Zeitdauer von 16 - 24 Stunden polymerisiert wurde.
5. Verfahren zum Aufbringen einer Kompositbeschichtung auf ein Substrat, mit den folgenden
Schritten: Bereitstellen eines Substrats,
Aufbringen einer porösen Metallmatrix auf das Substrat in einer Dicke von 0,051 -
0,025 mm (0,002 - 0,0010 inch) in einem Flammsprüh-Verfahren, wobei die Metallmatrix
ein Metall in gepulverter Form aufweist,
Imprägnieren eines Films aus Silikon in die Metallmatrix, um die Porosität der Matrix
abzudichten, und Aushärten des in die Matrix imprägnierten Silikon,
dadurch gekennzeichnet, daß
die Metallmatrix eine Vielzahl von Vertiefungen und darin gebildeten Ebenen hat,
der Film aus Silikon die Vertiefungen der Metallmatrix füllt und sich über ihre Ebenen
erstreckt, um die Matrix vollständig zu bedecken,
wobei das Aushärten des Silikon durch Lufthärtung bei Umgebungstemperaturen während
einer Zeitdauer von 16 - 24 Stunden durchgeführt wird.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß die Metallmatrix durch ein
Metallsprüh-Verfahren auf das Substrat aufgebracht wird.
1. Revêtement composite pour engendrer une surface non adhésive et résistant à l'abrasion
sur un substrat, ledit revêtement composite comprenant :
une matrice métallique poreuse appliquée par pulvérisation thermique sur ledit
substrat, à une épaisseur de 0,051 à 0,025 mm (0,002 à 0,010 inch), ladite matrice
comprenant un métal sous forme de poudre, et
un film de silicone imprégnant ladite matrice pour fermer la porosité de la matrice,
caractérisé en ce que
ladite matrice métallique comporte un très grand nombre de creux et de plateaux
formés dans cette matrice,
ledit film de silicone remplit lesdits creux et s'étend au-dessus desdits plateaux
de manière à recouvrir complètement ladite matrice, et
ledit film de silicone est durci à l'air à des températures ambiantes de façon
à avoir une dureté de surface atteignant 72 Rc, il conserve une stabilité thermique
à une température de fonctionnement continu atteignant 204°C (400°F) et il conserve
une stabilité thermique à une température de fonctionnement intermittent atteignant
260°C (500°F).
2. Revêtement composite suivant la revendication 1, caractérisé en ce que le métal sous
forme de poudre est choisi dans le groupe comprenant l'acier inoxydable, le nickel,
le nickel-chrome et le molybdène.
3. Revêtement composite suivant la revendication 1 ou la revendication 2, caractérisé
en ce que ledit revêtement présente un fini de surface dans la plage de 6,35 à 17,78
µm (250 à 700 micro-inches).
4. Revêtement composite suivant l'une quelconque des revendications 1 à 3, caractérisé
en ce que ledit silicone durci à l'air a été polymérisé pendant une durée de 16 à
24 heures.
5. Procédé d'application d'un revêtement composite à un substrat, comprenant les opérations
de :
préparation d'un substrat,
application d'une matrice métallique poreuse audit substrat, à une épaisseur de
0,051 à 0,025 mm (0,002 à 0,0010 inch) par un traitement de pulvérisation à la flamme,
ladite matrice métallique comprenant un métal sous forme de poudre,
imprégnation d'un film de silicone dans ladite matrice métallique , pour fermer
la porosité de ladite matrice, et
durcissement dudit silicone imprégné dans la dite matrice,
caractérisé en ce que
ladite matrice métallique comporte un très grand nombre de creux et de plateaux
formés dans cette matrice,
ledit film de silicone remplit lesdits creux de ladite matrice métallique et s'étend
au-dessus desdits plateaux de manière à recouvrir complètement ladite matrice,
ledit durcissement dudit silicone étant effectué par durcissement à l'air à température
ambiante pendant une durée de 16 à 24 heures.
6. Procédé suivant la revendication 5, caractérisé en ce que ladite matrice métallique
est appliquée audit substrat par une technique de pulvérisation de métal.
