[0001] The present invention relates to a circuit for the piloting of inductive loads, and
particularly for the control of the electro-injectors of a diesel-cycle internal combustion
engine, of the kind defined in the preamble of the amended Claim 1.
[0002] FR-A-2533263 discloses a circuit of this type for driving the fuel injectors in the
engine of a motor-vehicle. This known circuit is capable of operating the injectors
properly also at very high rotational speeds, but this is possible only if the voltage
supply is capable of delivering a sufficient current.
[0003] When a circuit of the above-defined kind is used for piloting the injectors of an
engine, the voltage supply is typically constituted by the battery of the motor vehicle.
In some circumstances, this battery is unable to deliver a sufficiently high current
for the piloting circuit to be able to energise the electro-injectors in the desired
manner. This may occur, for example, when the battery is not sufficiently charged
or when, for various reasons, the impedance "felt" by the battery is unusually high.
In such a situation, the prior-art circuit described above is unable to pilot the
electro-injectors in a satisfactory manner.
[0004] It is therefore an object of the present invention to produce a circuit of the type
specified above which is able to ensure the correct functioning of the electro-injectors
even when the supply is unable to deliver a current of sufficiently high intensity.
[0005] This object is achieved according to the invention by means of a circuit of the type
specified above, having the features defined in the characterising portion of Claim
1.
[0006] Further advantages of the present invention will become clear from the detailed description
which follows with reference to the appended drawings, provided by way of non-limiting
example, in which:
Figure 1 is an electrical diagram of a circuit according to the invention, and
Figure 2 is a graph which shows the ideal trace of the excitation current of the solenoid
for operating an electro-injector for diesel engines as a function of time, and
Figures 3 to 5 are three sets of graphs which illustrate states of the devices of
the circuit according to the invention and signals developed in the circuit in three
different operating conditions.
[0007] With reference to Figure 1, a circuit according to the invention for the piloting
of a plurality of inductive loads L
i comprises an input terminal 1 connected in use to a low-tension, direct-voltage supply
V
B, such as a battery. In particular, the inductive loads L
i may represent the solenoids for operating the electro-injectors of a diesel engine
for a motor vehicle.
[0008] In this case, the supply V
B is constituted by the battery of the motor vehicle.
[0009] A storage coil, indicated L₁, can be connected to the input terminal 1 through a
controlled electronic switch, generally indicated SW₁, which is open at rest. The
switch SW₁ has been shown as an interrupter with which a diode D₁ is connected in
parallel. This switch may be be constituted, for example, by an integrated MOSFET-type
transistor, and in that case the diode D₁ is constituted by its parasitic diode.
[0010] A diode whose anode is connected to earth and whose cathode is connected between
the storage coil L₁ and the controlled switch SW₁ is indicated R₁.
[0011] A further controlled switch SW₂, similar to SW₁ is connected between L₁ and earth
in the manner illustrated.
[0012] L₁ is connected to a first terminal of a capacitor C whose other terminal is connected
to earth. A plurality of branch circuits is connected in parallel with C and each
includes an inductive load L
i in series with which a controlled electronic switch SW
i of a similar type to SW₁ and SW₂ is connected. A respective capacitor C
i may be connected in parallel with each load L
i for quenching it, that is, for rapidly cancelling out the current in the corresponding
load L
i when the latter is deactivated.
[0013] A resistor and a capacitor, indicated R
c and C
c, are connected in parallel with each other between the earth and a junction N to
which are connected the cathodes of diodes D
c, each of which has its anode connected between a load L
i and the associated controlled switch SW
i. The diodes D
c together form an OR-type circuit.
[0014] A further controlled switch SW₄, similar to the above, is connected between the junction
N and the input 1.
[0015] An electronic control unit produced in known manner is indicated ECU and comprises,
for example, a microprocessor unit and input/output interface circuits. The unit ECU
has a series of inputs connected to the earth of the circuit described above, to the
positive pole of the supply V
B, and to a sensor S which is adapted to provide electrical signals indicative of the
current flowing in the storage coil L₁ during operation. The sensor S may be constituted,
for example, by a Hall-effect sensor. As an alternative to this solution, the non-earth
terminal of the capacitor C may be connected to the unit ECU for detecting the current
flowing in L₁: the voltage established across the terminals of C at particular stages
of operation is related to the intensity of the current flowing in L₁.
[0016] A further alternative solution for the detection of the current flowing in L₁ could
be constituted, for example, by a shunt resistor connected in series with L₁ and connected
to the ECU.
[0017] The unit ECU has a plurality of outputs connected in order to the control inputs
of the switches SW₁, SW₂, SW₃ and SW
i.
[0018] In order to pilot the electro-injectors of a diesel engine, the unit ECU may be provided
with further electrical input signals, such as, for example, the rate of revolution
of the engine, etc.
[0019] Before describing the operation of the circuit shown in Figure 1, some considerations
concerning the ideal trace of the current I
Li in the solenoid for operating an electro-injector for a diesel engine will be put
forward. This ideal behaviour is shown in Figure 2 as a function of time t. The ideal
curve illustrated has a rising slope
a followed by a stage
b of substantially constant high-current intensity I
max, followed by a transition
c towards a holding current level I
h. This current is maintained for a certain period of time (section
d of the curve) and is then followed by the "quenching" of the current (stage
e) with possible inversion and definitive cancelling out of the current (stage
f).
[0020] For optimal and exact control of the injection it is necessary that the actuation
time of individual injectors be precisely controllable. For this purpose, therefore,
it is necessary that the times during which the current rises and subsequently falls
are extremely short, and less than the minimum injection time by at least one order
of magnitude.
[0021] With reference to Figures 1, 3 and 4, we shall now see how the circuit according
to the invention is able to make the current rise rapidly in a particular load each
time that load is to be activated.
[0022] Figure 3 shows the states of SW₁, SW₂ and of the switch SW
i associated with the load L
i to be energised, and the traces of the current I
L1 in the storage coil, of the voltage V
C across the capacitor C and of the current I
Li in the load.
[0023] In order to make a current pass into the load L
i, the unit ECU causes the switches SW₁ and SW₂ to close at a time t
O. All the other switches remain open. In this condition, an increasing current flows
in the storage coil L₁, as shown in Figure 3.
[0024] At a subsequent time t₁, SW₁ and SW₂ are opened, whilst the switch SW
i associated with the load to be energised is closed. In this condition, the storage
inductor L₁ is disconnected from the supply but is connected to the capacitor C with
which it forms a resonant circuit. This resonant circuit is discharged to the load
L
i associated with the switch SW
i which is closed. The current I
Li decays in the manner illustrated, whilst the voltage across the capacitor C(i) increases
and then decreases until it reaches zero at a time t₂. The current in the selected
load therefore increases from the time t₁ until it reaches a maximum value at the
time t₂, and then starts to decay, as shown in Figure 3. In order to extend the period
for which the current persists at high-intensity levels in the load, the unit ECU
may be arranged to cause successive openings and closings of SW₁ after the time t₂,
with resultant "chopping" of the current I
Li, as shown by the broken line in Figure 3.
[0025] The rapid transfer of energy from the supply to the generic load L
i by means of storage in L₁ and the consequent discharge of the resonant circuit L
1-C can be achieved, provided that the supply V
B is able to deliver a current of sufficient intensity.
[0026] According to the invention, the control unit ECU may be arranged to detect the intensity
of the current which can be delivered by the supply. This may be achieved by the acquisition
of the signals provided by the sensor S, or by the reading of the voltage across C
when SW₁ and SW₂ are open, or even by the reading of the voltage across a shunt resistor
arranged in series with the storage coil L₁. When the current delivered by the supply
is less than a predetermined value, the unit ECU can also determine (and possibly
signal for diagnostic purposes) whether the inadequacy of the current is due to a
low charge level of the supply or to an anomaly in the circuitry connected to the
supply, by reading the voltage V
B of the supply.
[0027] In any case, when the unit ECU detects that the current which can be delivered by
the supply is less than a predetermined threshold, it puts into operation a second
procedure for the transfer of current to the load L
i selected from time to time. In this procedure, which will now be described with reference
to Figures 1 and 4, the unit ECU causes successive simultaneous closures of SW₁ and
SW₂, as indicated at the times t₀, t₂ and t₄ in Figure 4. The switches SW₃ and SW
i, however, are kept open.
[0028] Upon each closure of SW₁ and SW₂, the current in the storage coil L
i increases until, as at the times t₁, t₃ and t₅, the switches are opened. Upon each
opening of SW₁ and SW₂, the voltage across the capacitor C is increased. The diode
R₂ prevents the discharge of C during the stage of storage in L₁. The diode P₂ also
serves to protect SW₂ when the capacitor C is subsequently discharged.
[0029] The voltage across C therefore rises in steps and can be brought to a level greater
than that of the supply, until a level V
S is reached (Figure 4) which is sufficient to cause the rapid passage of a high current
to the selected load. This injection of current takes place at the time t₆ in Figure
4 (which, at the limit, may be made to coincide with t
s) when the switch SW
i associated with the selected load is closed while all the other switches are open.
[0030] The first operating mode of the circuit of Figure 1, described with reference to
Figure 3, is preferable since it is more convenient from an energy point of view.
However, this operating mode is only possible if the supply is able to deliver sufficent
current. When this does not occur, the circuit according to the invention nevertheless
enables a rapid injection of current to the loads to be achieved by the charging and
subsequent discharging of the capacitor C, as described with reference to Figure 4.
The charging of C obviously takes a certain time, which depends on the intensity of
the current which can be delivered by the supply. The unit ECU is correspondingly
programmed to start the charging of C correspondingly in advance of the time (t₆ in
Figure 4) at which the passage of current to the selected load must be triggered.
[0031] In practice, the circuit of Figure 1 requires a single large-capacitance capacitor
(the capacitor C) which is used for the injection of the current to the loads L
i in a predetermined sequential order actuated by the unit ECU by means of corresponding
sequential piloting of the switches SW
i.
[0032] Capacitors C
i of considerably smaller capacitance are consequently sufficient to achieve any final
inversion of the current in the loads.
[0033] Two ways in which the circuit of Figure 1 can cause a current to pass rapidly into
a generic load to achieve the portions a and b of the ideal curve of Figure 2 have
been described above. This current can be made to flow at the desired holding level
(section d of the ideal curve shown in Figure 2) by the opening of the switch SW₁
or the switch SW
i associated with the load. In order subsequently to cancel out the current I
Li (stage
2) SW
i is opened. In this condition, a voltage is developed across the load which rises
to high values in a short time. A clamping circuit is provided for limiting the value
of this voltage and is constituted by the capacitor C
c to which the resistor R
c can be connected. It should be noted that this is a single circuit connected to all
the loads L
i by means of the diodes D
c which are connected so as to form an OR circuit.
[0034] Together with the switch SW₃, the "clamping" circuit described above also enables
the partial recovery of the reactive energy of the load which is excited from time
to time, enabling this energy to be recycled towards the supply V
B. This energy recovery, which will now be described, takes place essentially each
time a switch SW
i is opened after the injection of current to the associated load L. This can occur
essentially in three circumstances, that is, when the current in the load L
i is changed from the maximum level to the holding level (section
c of the ideal curve of Figure 2), when the current in the load is quenched (section
e of Figure 2) and, although to a lesser extent, during the stages when the current
in the load is being chopped, such as, for example, those described with reference
to Figure 3.
[0035] Figure 5 shows examples of the traces of the current I
i in a load and of the voltage V
c across the clamping capacitor, and the corresponding stages of the switch SW
i associated with the load in question and of the switch SW₃. With reference to this
Figure, when, at a time t₀, SW₃ is closed as a result of a command provided by the
unit ECU and the switch SW
i associated with the energised load is closed, the current I
Li decays, whilst the voltage across the clamping capacitor rises. When the current
I
H is reached in the load (a condition which can be detected by the unit ECU, for example,
by means of a further Hall-effect sensor associated with L
i) at the time t₁, the unit ECU causes the switch SW
i which was previously been opened, to close again and opens SW₃. In these conditions,
the clamping capacitor remains charged at the voltage to which it has previously been
brought.
[0036] When, at the time t₂, the unit ECU subsequently opens SW
i, the current in the load decays rapidly, whilst the voltage V
c across the clamping capacitor rises rapidly, as shown in Figure 5, until the unit
ECU closes SW₃ at the time t₃ and the voltage V
C consequently decreases rapidly.
[0037] During the stages when the current in the load which is energised from time to time
is decaying, the closure of SW₃ enables part of the reactive energy stored in the
load to be returned to the supply, by virtue of the concomitant action of the clamping
circuit.
[0038] This characteristic may be of considerable interest for applications of the circuit
according to the invention in the automotive field, particularly in motor cars provided
with batteries and/or with relatively low power-recharging systems.
[0039] As far as R
c is concerned, this is only necessary (to dissipate the energy stored in C
c) if the circuit according to the invention is not arranged to recover the reactive
energy. In this case, resistors, each connected in parallel with a diode D
c, may be provided in place of R
c.
[0040] Further possible applications of the circuit according to the invention are, for
example, for controlling the relays which scan the punched cards or tapes in Jacquard-type
textile machines, for controlling the electro-injectors of an Otto-cycle engine, for
controlling the printing heads of matrix printers, etc.
1. A circuit for the piloting of inductive loads (L
i), particularly for operating the electro-injectors of a diesel-cycle internal combustion
engine, comprising:
an input (1) for connection to a low-tension supply (VB),
a storage coil (L₁) for storing energy delivered by the supply (VB), and
electronic switching means (SW₁, SW₂, SWi) for controlling the connection between the input (1), the storage coil (L₁) and
each of the loads (Li) in a predetermined manner to achieve a rapid transfer of current to each of the
loads selectively,
a capacitor (C) which is arranged in parallel with the branch circuits containing
the loads (Li), and which is connected to the coil (L₁) and the electronic switching means (SW₁,
SW₂, SWi), and
an electronic control unit (ECU) for piloting the electronic switching means (SW₁,
SW₂, SWi) according to a first operative mode in which, to transfer current into one of the
loads (Li), the switching means cause in succession, after the connection of the storage coil
(L₁) to the supply (VB):
the connection of the storage coil (L₁) to the capacitor (C) so as to form a resonant
circuit, and then the discharge of the resonant circuit (L₁, C) into the load (Li);
characterised in that it also includes sensor means (S) for providing electrical signals
indicative of the current delivered by the supply (VB), and in that the control unit (ECU) is connected to the sensor means (S) and is
arranged to pilot the electronic switching means (SW₁, SW₂, SWi) in the first operative mode when the current delivered by the supply is greater
than a predetermined value and in a second operative mode when the current delivered
by the supply is less than a predetermined value; the unit (ECU) and said switching
means (SW₁, SW₂) being adapted to control the connection of the capacitor (C) and
of the storage coil (L₁) to the supply (VB) so as to form a voltage-boosting means (C, L₁, R₂) in the second operative mode,
so as to charge the capacitor (C) to a predetermined voltage level greater than the
voltage of the supply, and then the discharge of the energy stored in the capacitor
(C) into a selected load (Li).
2. A circuit according to Claim 1, further including a current-inversion capacitor
(Ci) in parallel with each load (Li) for enabling the current in the corresponding load (Li) to be cancelled out rapidly, characterised in that each of the inversion capacitors
(Ci) has a smaller capacitance than that of the said capacitor (C).
3. A circuit according to Claim 1, characterised in that the sensor means comprise
a shunt resistor in series with the storage coil (L₁).
4. A circuit according to Claim 1, characterised in that the sensor means comprise
a galvanometric-effect sensor (S), particularly a Hall-effect sensor.
5. A circuit according to Claim 1, characterised in that the control unit (ECU) is
adapted to detect the voltage across the capacitor (C).
6. A circuit according to any one of the preceding claims, comprising a plurality
of branch circuits in parallel with each other, each of which includes a load (L
i), and in which the electronic switching means comprise
a first switch (SW₁) between the supply (VB) and the storage coil (L₁),
a second switch (SW₂) in parallel with the branch circuits, and
a control switch (SWi) in each of the branch circuits, between the corresponding load (Li) and the supply (VB),
characterised in that it also includes clamping circuit means (Rc, Dc) for limiting and possibly dissipating the voltage generated by each of the loads
(Li) when the associated control switch (SWi) cuts off the current flowing into the load (Li).
7. A circuit according to Claim, 6, characterised in that the clamping circuit means
comprise a clamping circuit of the parallel-RC type, and in that the loads (Li) are connected to the clamping circuit by means of an OR circuit (Dc).
8. A circuit according to any one of the preceding claims, characterised in that it
also includes energy-recovery circuit means (SW₃, Rc, Cc) controlled by the unit (ECU) and adapted to enable part of the reactive energy stored
in the load (Ri) to be recycled towards the supply (Vb) each time a load (L) is deactivated.
9. A circuit according to Claims 7 and 8, characterised in that the recover circuit
means include a further electronic switch (SW₃) connected between the clamping circuit
(Rc, Cc) and the supply (VB) and controlled by the electronic unit (ECU).
1. Schaltung zum Ansteuern von iduktiven Lasten (L
i), insbesonders zum Antreiben von Elektroeinspritzventilen eines Dieselmotors mit:
― einem Eingang (1) für den Anschluß an eine Niederspannungsversorgung (VB),
― einer Speicherspule (L₁) zum Speichern der von der Versorgung (VB) gelieferten Energie, und
― elektronischen Schaltern (SW₁, SW₂, SWi) zur Steuerung der Verbindung zwischen dem Eingang (1), der Speicherspule (L₁) und
jeder Last (Li) in einer vorbestimmten Weise, um eine schnelle Übermittlung von Strom zu jeder der
ausgewählten Lasten zu erreichen,
― einem Kondensator (C), der parallel zu den die Lasten (Li) enthaltenden Zweigschaltungen angeordnet ist und der mit der Spule (L₁) und den
elektronischen Schaltern (SW₁, SW₂, SWi) verbunden ist, und
― einer elektronischen Steuereinheit (ECU) zum Ansteuern der elektronischen Schalter
(SW₁, SW₂, SWi) gemäß einem ersten Betriebsmodus, bei dem die Schalter, um Strom in eine der Lasten
(Li) zu leiten, nach dem Verbinden der Speicherspule (L₁) mit der Versorgung (VB) in Aufeinanderfolge bewirken:
die Verbindung der Speicherspule (L₁) mit dem Kondensator (C), so daß ein Schwingkreis
gebildet wird, und anschließend die Entladung des Schwingkreises (L₁, C) in die Last
(Li); dadurch gekennzeichnet, daß sie außerdem Sensoren (S) umfaßt, welche dazu dienen,
elektrische Signale zu erzeugen, die den von der Versorgung (VB) gelieferten Strom anzeigen, und daß die Steuereinheit (ECU) mit den Sensoren (S)
verbunden und dazu vorgesehen ist, die elektronischen Schalter (SW₁, SW₂, SWi) in dem ersten Betriebsmodus anzusteuern, wenn der von der Versorgung gelieferte
Strom höher ist als ein vorbestimmter Wert, und in einem zweiten Betriebsmodus, wenn
der von der Versorgung gelieferte Strom niedriger ist als ein vorbestimmter Wert;
wobei die Einheit (ECU) und die besagten Schalter (SW₁, SW₂) dazu geeignet sind, die
Verbindung des Kondensators (C) und der Speicherspule (L₁) mit der Versorgung (VB) so zu steuern, daß in dem zweiten Betriebsmodus ein spannungserhöhendes Glied (C,
L₁, R₂) gebildet wird, so daß der Kondensator (C) bis auf einen vorbestimmten Spannungspegel,
der höher ist als die Versorgungsspannung, aufgeladen wird und anschließend die in
dem Kondensator (C) gespeicherte Energie in eine bestimmte Last (Li) entladen wird.
2. Schaltung nach Anspruch 1, die weiters einen mit jeder Last (Li) parallelgeschalteten Kondensator (Ci) umfaßt, der der Stromumkehr dient, um zu ermöglichen, daß der Strom in der entsprechenden
Last (Li) schnell gelöscht werden kann, dadurch gekennzeichnet, daß jeder dieser invertierend
wirkenden Kondensatoren (Ci) eine geringere Kapazität besitzt als der besagte Kondensator (C).
3. Schaltung nach Anspruch 1, dadurch gekennzeichnet, daß die Sensoren einen mit der
Speicherspule (L₁) in Serie geschalteten Parallelwiderstand umfassen.
4. Schaltung nach Anspruch 1, dadurch gekennzeichnet, daß die Sensoren einen auf einem
galvanometrischen Effekt beruhenden Sensor (S), insbesonders einen Halleffekt-Sensor
umfassen.
5. Schaltung nach Anspruch 1, dadurch gekennzeichnet, daß die Kontrolleinheit (ECU)
dazu geeignet ist, die an dem Kondensator (C) anliegende Spannung zu ermitteln.
6. Schaltung nach einem der vorhergehenden Ansprüche, die eine Vielzahl einander parallelgeschalteter
Zweigschaltungen umfaßt, von denen jede eine Last (L
i) enthält, und bei der die elektronischen Schalter:
― einen ersten Schalter (SW₁) zwischen der Versorgung (VB) und der Speicherspule (L₁),
― einen zweiten Schalter (SW₂) parallel mit den Zweigschaltungen, und
― einen Steuerschalter (SW₁) in jeder Zweigschaltung zwischen der entsprechenden Last
(Li) und der Versorgung (VB)
umfassen, dadurch gekennzeichnet, daß sie außerdem als Klemmschaltung wirkende Mittel
(Rc, Dc) umfaßt, die der Begrenzung und möglichen Dissipation der von jeder Last (Li) erzeugten Spannung dienen, wenn der zugehörige Steuerschalter (SW₁) den Stromfluß
in die Last (Li) unterbricht.
7. Schaltung nach Anspruch 6, dadurch gekennzeichnet, daß die Mittel zur Klemmung
aus einer Klemmschaltung vom RC-Parallelschaltungstyp bestehen und daß die Lasten
(Li) über eine ODER-Schaltung (Dc) mit der Klemmschaltung verbunden sind.
8. Schaltung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß
sie ebenfalls Mittel zur Energierückgewinnung (SW₃, Rc, CC) beinhaltet, die von der ECU-Einheit gesteuert werden und ermöglichen, daß ein Teil
der in der Last (Li) gespeicherten reaktiven Energie in die Versorgung (Vb) rückgeführt wird, und zwar jedesmal, wenn eine Last (Li) ausgeschaltet wird.
9. Schaltung nach Anspruch 7 und 8, dadurch gekennzeichnet, daß die der Rückgewinnung
dienende Schaltung einen weiteren elektronischen Schalter (SW₃) umfaßt, der zwischen
der Klemmschaltung (Rc, Cc) und der Versorgung (VB) angeschlossen ist und von der elektronischen Einheit (ECU) gesteuert wird.
1. Circuit de commande de charges inductives (L
i), en particulier pour faire fonctionner des injecteurs électriques d'un moteur à
combustion interne à cycle Diesel, comprenant:
une entrée (1) pour la liaison à une alimentation à basse tension (VB),
une bobine d'accumulation (L₁) pour accumuler de l'énergie fournie par l'alimentation
(VB), et
des moyens de commutation électronique (SW₁, SW₂, SWi), pour commander de manière prédéterminée la liaison entre l'entrée (1), la bobine
d'accumulation (L₁) et chacune des charges (Li), afin d'obtenir un passage rapide, de façon sélective, du courant allant à chacune
des charges,
un condensateur (C) mis en parallèle avec les circuits de ramification contenant les
charges (Li) et relié à la bobine (L₁) et aux moyens de commutation électronique (SW₁, SW₂, SWi), et
une unité de commande électronique (ECU) pour commander les moyens de commutation
électronique (SW₁, SW₂, SWi) suivant un premier mode de fonctionnement, dans lequel, pour transférer du courant
dans l'une des charges (Li), les moyens de commutation provoquent successivement, après la liaison de la bobine
d'accumulation (L₁) à l'alimentation (VB):
la liaison de la bobine d'accumulation (L₁) au condensateur (C), pour former un circuit
de résonance, et, ensuite, la décharge du circuit de résonance (L₁, C) dans la charge
(Li);
caractérisé en ce qu'il comprend également un moyen de capteur (S) pour produire des
signaux électriques représentatifs du courant fourni par l'alimentation (VB), et l'unité de commande (ECU) étant reliée au moyen de capteur (S) et disposée pour
commander les moyens de commutation électronique (SW₁, SW₂, SWi) suivant le premier mode de fonctionnement lorsque le courant fourni par l'alimentation
est supérieur à une vapeur prédéterminée et suivant un second mode de fonctionnement
lorsque le courant fourni par l'alimentation est inférieur à une valeur prédéterminée;
l'unité (ECU) et lesdits moyens de commutation (SW₁, SW₂) étant adaptés pour commander
la liaison du condensateur (C) et de la bobine d'accumulation (L₁) à l'alimentation
(VB), de façon à former un moyen survolteur (C, L₁, R₂) dans le second mode de fonctionnement,
de façon à charger le condensateur (C) à un niveau de tension prédéterminé, supérieur
à la tension de l'alimentation, et ensuite à décharger l'énergie stockée dans le condensateur
(C) dans une charge (Li) sélectionnée.
2. Circuit selon la revendication 1, comprenant en outre un condensateur à inversion
de courant (Ci), placé en parallèle avec chaque charge (Li), pour permettre au courant passant dans la charge (Li) correspondante de tomber rapidement à zéro, caractérisé en ce que chacun des condensateurs
à inversion (Ci) présente une capacité inférieure à celle dudit condensateur (C).
3. Circuit selon la revendication 1, caractérisé en ce que le moyen de capteur comprend
une résistance de shunt, placée en série avec la bobine d'accumulation (L₁).
4. Circuit selon la revendication 1, caractérisé en ce que le moyen de capteur comprend
un capteur à effet galvanométrique (S), en particulier un capteur à effet Hall.
5. Circuit selon la revendication 1, caractérisé en ce que l'unité de commande (ECU)
est adaptée pour détecter la tension passant dans le condensateur (C).
6. Circuit selon l'une quelconque des revendications précédentes, comprenant une pluralité
de circuits de ramification, placés en parallèle entre eux, chacun comprenant une
charge (L
i), et dans lequel les moyens de commutation électronique comprennent
un premier interrupteur (SW₁) mis en circuit entre l'alimentation (VB) et la bobine d'accumulation (L₁),
un second interrupteur (SW₂) mis en circuit en parallèle avec les circuits de ramification,
et
un interrupteur de commande (SWi) mis en circuit dans chacun des circuits de ramification, entre la charge correspondante
(Li) et l'alimentation (VB),
caractérisé en ce qu'il comprend également des moyens circuit de blocage (Rc, Dc), pour limiter et si possible dissiper la tension produite par chacune des charges
(Li) lorsque l'interrupteur de commande (SWi) associé coupe le courant passant dans la charge (Li).
7. Circuit selon la revendication 6, caractérisé en ce que le moyen de circuit de
blocage comprend un circuit de blocage du type RC en parallèle, et les charges (Li) sont reliées au circuit de blocage grâce à un circuit OU (Dc).
8. Circuit selon l'une quelconque des revendications précédentes, caractérisé en ce
qu'il comprend également des moyens de circuit de récupération d'énergie (SW₃, Rc, Cc), commandés par l'unité (ECU) et adapté pour permettre de recycler vers l'alimentation
(VB) une partie de l'énergie réactive stockée dans la charge (Ri), chaque fois qu'une charge (Li) est désactivée.
9. Circuit selon les revendications 7 et 8, caractérisé en ce que les moyens de circuit
de récupération comprennent un interrupteur électronique (SW₃) supplémentaire, relié
entre le circuit de blocage (Rc, Cc) et l'alimentation (VB) et commandé par l'unité électronique (ECU).