[0001] This invention relates to nozzleless droplet ejectors and, more particularly, to
emission controllers (e. g., on/off switches and directional controllers) for such
ejectors. Droplet ejectors having emission controllers embodying this invention are
useful for liquid ink printing and similar applications.
[0002] Ink jet printing has the inherent advantage of being a plain paper compatible, direct-marking
technology. "Continuous stream" and "drop-on-demand" ink jet print heads have been
developed to exploit that advantage. Unfortunately, however, the nozzles which are
used in conventional ink jet print heads are expensive to manufacture and are a significant
source of maintenance problems.
[0003] Others have proposed nozzleless droplet ejectors for liquid ink printing. For example,
US-A-4,308, 547 describes a print head in which a piezoelectric transducer having
a hemispherically shaped focusing lens is submerged in a reservoir of ink to generate
a spherically focused ultrasonic pressure wave for exciting the ink near the surface
of the reservoir sufficiently to eject individual droplets of ink. DE-A-3 211 345
discloses a printhead having a planar piezoëlectric transducer for parametrically
exciting a pool of ink to produce a capillary wave on the ink surface. JP-A-6 164
456 uses a set of interdigitated electrodes for imposing a spatially periodic field
on the ink to create a surface wave. In both cases the desired droplets are pulled
from the crests of the capillary waves by an external field. These mechanisms of droplet
production are different from those of the present invention.
[0004] As a general rule, liquid ink printing requires substantial control over the timing
of the drop ejection process. The transducers of nozzleless print heads of the above-described
type may be driven by amplitude-modulated r.f. signals to provide the necessary timing
control, but the electronics needed to modulate a r.f. signal are expensive. Thus
the preferred approach is to provide timing controllers which operate independently
of the transducers. Under those circumstances, the transducer or transducers may be
driven by a relatively-inexpensive r.f. signal generator to excite the ink to a sub-threshold,
incipient energy level for droplet emission, thereby enabling the timing controller
or controllers to destabilize the excited ink selectively so that individual droplets
are ejected on command.
[0005] Some liquid ink printing processes, such as matrix printing, are easier and less
costly to implement if there also is provision for directionally steering the ink
droplets. In recognition of that, some transducers are configured to generate focused
acoustic waves having a directionally-controlled asymmetry.
[0006] In accordance with the present invention, a nozzleless droplet ejector for ejecting
droplets from a free surface of a pool of liquid, such as a pool of ink, comprises
a selectively energizable droplet emission controller for generating a freely propagating
capillary wave on the surface of the pool to provide on/off timing control and/or
ejection trajectory angle control for the ejector. The controller comprises a conductor
and a counter electrode which are immersed in the reservoir, whereby a capillary surface
wave is generated when a periodic voltage is applied across the conductor and the
counter electrode. In one embodiment, a focused ultrasonic pressure wave or the like
periodically perturbs the pressure acting on the free surface of the pool, and the
capillary wave supplied by the controller coherently interacts which that pressure
wave to provide the desired control.
[0007] Separate controllers may be provided for independently controlling the ejectors of
multiple ejector arrays. The functionality of these emission controllers is dependent
on the geometry of their conductors, so a few exemplary geometries are disclosed with
the understanding that there are others which may be used.
[0008] The present invention will now be described, by way of example, with reference to
the accompanying drawings, in which:
Figure 1 is a partially sectioned and fragmentary, schematic elevational view of a
nozzleless liquid droplet ejector array having emission controllers constructed in
accordance with the present invention;
Figure 2 is an enlarged simplified plan view of one of the capillary wave control
switches shown in Fig. 1, and
Figure 3 is an enlarged simplified plan view of a capillary controller which is similar
to the switch shown in Fig. 2, except that it has a segmented conductor to provide
angular trajectory control in addition to on/off control.
[0009] Turning now to the drawings, and at this point especially to Fig. 1, there is an
array of liquid droplet ejectors 11
a and 11
b comprising a plurality of acoustic transducers 12
a and 12
b which are submerged in a liquid-filled reservoir 13. The transducers 12
a and 12
b are laterally displaced from each other and are driven by an r.f. power supply (not
shown) to launch ultrasonic pressure waves 14
a and 14
b into the reservoir 13, so that the pressure waves come to generally-circular foci
on laterally-offset centers 15
a and 15
b, respectively, at or near the surface 16 (i.e., the liquid/air interface) of the
reservoir 13. Known transducers may be employed periodically to perturb the pressure
acting on the free surface 16 of the reservoir or pool 13, so the transducers 12
a and 12
b are illustrated schematically. Indeed, there are mechanical, electrical, thermal,
pnuematic and other alternatives to the transducers 12
a and 12
b which may be employed to provide a focused (e.g., circularly-focused or linearly-focused)
periodic pressure perturbance, on the free surface 16 of the reservoir 13. Furthermore,
while only two ejectors 11
a and 11
b are shown, it will be understood that the number of transducers may be increased
to form larger arrays. The ejector packing density is limited primarily by the transducer
center-to-transducer center spacing that is required to prevent objectionable levels
of "crosstalk" between adjacent ejectors, such as between the ejectors 11
a and 11
b.
[0010] In a printer, of course, the reservoir 13 is filled with liquid ink 17. Moreover,
a suitable record medium 18, such as plain paper, is located above the reservoir 13,
with just a narrow air gap 19 separating it from the ink/air interface or surface
16. Typically, the ejectors 11
a and 11
b are assembled in a linear array, so the record medium 18 is advanced in an orthogonal
cross-line direction (into or out of the plane of Fig. 1) relative to the ejectors
11
a and 11
b while a two-dimensional image is being printed. As will be appreciated, the individual
picture elements or "pixels" of such an image are determined by (1) the time dependent
on/off switching of the individual ejectors, such as the ejectors 11
a and 11
b, and (2) in some cases, by the time dependent steering of the individual droplets
of ink.
[0011] In accordance with the present invention, relatively inexpensive and easily fabricated
capillary wave control devices 21
a and 21
b are provided for controlling the on/off timing of the ejectors 11
a and 11
b, respectively, and/or for steering the droplets of ink emitted thereby. The control
devices 21
a and 21
b comprise electrical conductors 22
a and 22
b and counter-electrodes 23
a and 23
b, respectively,which are immersed in the liquid 17. The conductors 22
a and 22
b are located near (for example, within about 10 mm of) the focal centers 15
a and 15b of the pressure waves 14
a and 14
b, respectively. The counter-electrodes 23
a and 23
b should be nearby and preferably are concentric with the electrodes 22
a and 22
b, respectively. Typically, the counter-electrodes 23
a and 23
b are returned to a suitable reference potential (hereinafter, "ground potential").
Furthermore, a switched power supply 25 (Fig.2), which is also referenced to the ground
potential, has electrically independent outputs coupled to the conductors 22
a and 22
b for applying appropriately and independently timed voltage pulses thereto. Alternatively,
the controllers 21
a and 22
b could be driven by an a.c. power supply having appropriate control circuitry.
[0012] Electric field gradients associated with the applied potential between the conductors
22
a and 22
b and the counter-electrodes 23
a and 23
b exert a dielectric body force on the liquid 17. This results in a disturbance at
the liquid surface 16 which subsequently propagates as a free capillary wave on the
surface 16. Generation of capillary waves is accomplished with moderately high voltage
(e.g., 300 volts or so) pulses of brief duration (e.g., on the order of 500 µsecs)
being periodically applied across the conductors 22
a and 22
b and the counter-electrodes 23
a and 23
b. The voltage and time limits, if any, of this wave generation process have not been
determined, so it is noted in the interest of completeness that the foregoing examples
are based on data from experiments conducted in water. However, the experimental data
indicate that the emission control is most effective if the conductors 22
a and 22
b are located just below the free surface 16 of the liquid 17. For example, as shown,
the conductors 22
a and 22
b may be supported on an electrical insulator 26, such as a ′Mylar′ (reg. trade mark)
sheet, so that they are covered by a thin film of liquid 17. A sufficiently thin sheet
26 will allow essentially unimpeded passage of the pressure waves 14
a and 14
b.
[0013] As will be understood, the capillary waves propagate radially with respect to the
conductors 22
a and 22
b at the capillary surface wave velocity, ν, in the liquid 17, and they are damped
as a function of time because of the viscosity of the liquid 17. Their wavelength,
λ, is dependent on the dominant Fourier transform component(s) of the voltage pulses
applied to the conductors and is given to a first approximation by λ ≈ ν/Δt, where
Δt equals the width of the pulses applied to the conductors 22
a and 22
b. The damping of the capillary waves is an important consideration for determining
the maximum permissible radial displacement of the conductors 22
a and 22
b from the pressure wave focal centers 15
a and 15
b, respectively. The radial propagation of the capillary waves and the pulse width
dependency of their wavelengths, on the other hand, are relevant to optimizing the
configuration of the conductors 22
a and 22
b and to selecting the phase and the width of the pulses applied thereto for the specific
emission control tasks which the control devices 21
a and 21
b are intended to perform.
[0014] More particularly, as best shown in Fig. 2, the conductor 22
a and its associated counter-electrode 23
a have constant radius, ring-like configurations and are generally circularly symmetric
with respect to the focused pressure wave 14
a (i.e., concentric with its focal center 15
a). Thus, a capillary wave launched by them converges, as indicated by the arrows,
to a symmetrical focus at approximately the focal center 15
a of the pressure wave 14
a, thereby enabling the controller 21
a to provide axial on/off switching control for the ejector 11
a(Fig.1). The relative phase relationship of the focused capillary and pressure waves
determines whether they interact constructively (additively) or destructively (subtractively).
For example, the controller 21
a may be employed to "turn on" the ejector 11
a if the amplitude of the pressure wave 14
a is selected to excite the liquid 17 upon which it is focused (i.e., the liquid within
the waist of the pressure wave 14
a) to be near but below the threshold of incipient droplet formation. In this case,
the ejector 11
a would be operated in a "normally-off" mode. While the circular symmetry of the conductor
22
a is well suited to the switching function of the controller 21
a, other symmetrical geometries could be employed, including equilateral polygon-shaped
conductors. The symmetrical focus of the capillary wave is the key to providing axial
on/off control for the ejector 11
a.
[0015] Referring to Fig. 3, there is another controller 31 which is constructed in accordance
with this invention to provide on/off switching and angular trajectory control for
a nozzleless droplet ejector, such as the representative ejector 11a (Fig. 1). As
will be seen, the controller 31 is similar to the controller 21
a (Fig. 2), except that its ring-like conductor 32 comprises a plurality of electrically
independent segments 33 and 34 which are selectively addressable by a switched power
supply 35. When the power supply simultaneously applies equal amplitude voltage pulses
to all of the conductor segments 33 and 34, the capillary waves launched by them converge
to a generally symmetrical focus at or near the focal center 15
a of the pressure wave 14
a (Fig. 1), thereby causing the controller 31 to perform essentially the same axial
on/off switching function as the controller 21
a. When, however, the conductor segments 33 and 34 are differentially driven, such
as if voltage pulses are applied to one of them but not the other, the capillary wave
or waves come to an asymmetrical focus, thereby altering the angular trajectory of
any droplets which are then being emitted by the ejector 11
a. The phase of the asymmetrically focused capillary wave may be selected to switch
the ejector 11
a on, or the on/off control for the ejector 11
a may be provided by means not shown. Dividing the conductor 32 into two diametrically
opposed, independently-addressable, segments 33 and 34, such as shown, allows the
angular trajectory of the ejected droplets to be controlled along an axis parallel
to the center line of the segments 33 and 34 over a range on the order of ±30° (at
a droplet diameter of about 100µm) with respect to longitudinal axis of the ejector
or, in other words, with respect to an axis normal to the plane of the record medium
18. Smaller diameter droplets are capable of being steered over even wider angles.
If multiaxial trajectory control is desired, the conductor 32 may be divided into
a larger number of individually-addressable segments. Furthermore, it will be understood
that the conductor 32 may be composed of individually-addressable, polygonally-arranged
segments, without materially altering its performance.
[0016] In view of the foregoing, it will be seen that the present invention provides relatively
reliable and inexpensive ejection controllers for nozzleless droplet ejectors of various
types. These controllers may be design optimized to perform a variety of different
control functions. For example, they can be employed not only as on/off switches and/or
angular trajectory controllers as described herein, but also as droplet ejection velocity
controllers. Thus, while the controllers may be used to substantial advantage in nozzleless
liquid ink printers of the above-described type, it will be understood that the broader
aspects of the invention are not limited to printing,
1. A nozzleless droplet ejector including a reservoir (13) for a pool (17) of liquid
with a free surface (16), and means (12) for launching a pressure wave into the pool
such that the pressure wave comes to a focus approximately at the free surface, including
a droplet-emission controller (21) for generating a capillary wave on the liquid surface,
the ejector including:
an electrical conductor (22) and an adjacent counter-electrode (23), the conductor
being adapted to be immersed at least partially in the liquid, near the surface level,
and proximate to the focus of a pressure wave, and
means (25) coupled across the conductor and the counter-electrode for applying
a periodic voltage there across on command, to cause a freely-propagating surface
wave to radiate from the conductor, which wave is intended to interact with said pressure
wave to control at least one characteristic of the emitted droplets.
2. The ejector of Claim 1, wherein the pressure wave excites the liquid upon which it
is focused to an energy level which is offset from a threshold energy level for destabilizing
the liquid, and wherein
the capillary wave causes the energy level of the excited liquid to cross over
the threshold level, whereby the droplet-emission controller provides on/off control
for the ejector.
3. The elector of Claim 1 or 2, wherein the conductor (22) is symmetrical with respect
to the focus of the pressure wave and is electrically continuous, whereby the droplet-emission
controller provides axial on/off timing control for the ejector.
4. The ejector of Claim 1 or 2, wherein the conductor (22) is asymmetrical with respect
to the focus of the pressure wave, whereby the controller provides angular trajectory
control fort the emitted droplets.
5. The ejector of Claim 4, wherein the conductor has two or more electrically-independent
segments (33, 34), and wherein the means for applying the periodic voltage include
means for selectively addressing the segments, whereby the voltage is able to be applied
to the segments selectively.
6. The ejector of Claim 1 or 2, wherein the conductor has two or more electrically-independent
segments (33, 34) which are symmetrical with respect to the focus of the pressure
wave, whereby an axial ejection trajectory is provided when the pulses are applied
simultaneously to both or all of the segments.
7. The ejector of Claim 6, wherein the conductor is circularly symmetrical with respect
to the focus of the pressure wave.
8. A printer having a nozzleless droplet ejector as claimed in any preceding claim.
1. Ejecteur de gouttelettes sans ajutage, comprenant un réservoir (13) pour un bain (17)
de liquide avec une surface libre (16), et un moyen (12) pour lancer une onde de pression
dans le bain de façon que l'onde de pression vienne à un foyer approximativement à
la surface libre, comprenant un contrôleur (21) d'émission de gouttelettes pour produire
une onde capillaire sur la surface du liquide, l'éjecteur comportant :
- un conducteur électrique (22) et une contre-électrode adjacente (23), le conducteur
étant destiné à être immergé au moins en partie dans le liquide, à proximité du niveau
de la surface, et dans le voisinage du foyer d'une onde de pression, et
- un moyen (25) accouplé entre le conducteur et la contre-électrode pour appliquer
entre ceux-ci sur ordre une tension périodique afin de provoquer la radiation à partir
du conducteur d'une onde de surface se propageant librement, onde qui est destinée
à agir mutuellement avec ladite onde de pression pour commander au moins une caractéristique
des gouttelettes émises.
2. Ejecteur selon la revendication 1, dans lequel l'onde de pression excite le liquide
sur lequel elle est focalisée à un niveau d'énergie qui est décalé par rapport à un
niveau d'énergie de seuil, afin de destabiliser le liquide et dans lequel :
- l'onde capillaire a pour effet que le niveau d'énergie du liquide excité traverse
le niveau du seuil, d'où il résulte que le contrôleur d'émission des gouttelettes
fournit une commande à l'ouverture/fermeture pour l'éjecteur.
3. Ejecteur selon la revendication 1 ou 2, dans lequel le conducteur (22) est symétrique
par rapport au foyer de l'onde de pression et est électriquement continu, d'où il
résulte que le contrôleur de l'émission des gouttelettes fournit une commande axiale
de la synchronisation à l'ouverture/fermeture pour l'éjecteur.
4. Ejecteur selon la revendication 1 ou 2, dans lequel le conducteur (22) est asymétrique
par rapport au foyer de l'onde de pression, d'où il résulte que le contrôleur fournit
une commande de trajectoire angulaire pour les gouttelettes émises.
5. Ejecteur selon la revendication 4, dans lequel le conducteur comporte deux segments
ou davantage (33, 34) électriquement indépendants, et dans lequel le moyen pour appliquer
la tension périodique comprend un moyen pour adresser sélectivement les segments,
d'où il résulte que la tension peut être appliquée aux segments de façon sélective.
6. Ejecteur selon la revendication 1 ou 2, dans lequel le conducteur comporte deux segments
ou davantage (33, 34) électriquement indépendants, qui sont symétriques par rapport
foyer de l'onde de pression, d'où il résulte qu'une trajectoire d'éjection axiale
est fournie lorsque les impulsions sont appliquées simultanément aux deux segments
ou à tous les segments.
7. Ejecteur selon la revendication 6, dans lequel le conducteur est circulairement symétrique
par rapport au foyer de l'onde de pression.
8. Imprimante comportant un éjecteur de gouttelettes sans ajutage, selon l'une quelconque
des revendications précédentes.
1. Düsenlose Tröpfchenausstoßvorrichtung mit einem Behälter (13) für ein Flüssigkeitsbad
(17) mit einer freien Oberfläche (16) und einer Einrichtung (12) zum Lancieren einer
Druckwelle in das Bad in der Weise, daß die Druckwelle annähernd bei der freien Oberfläche
zu einem Fokus kommt, umfassend eine Tröpfchenemissions-Steuereinrichtung (21) zur
Erzeugung einer Kapillarwelle an der Flüssigkeitsoberfläche, gekennzeichnet durch:
einen elektrischen Leiter (22) und eine benachbarte Gegenelektrode (23), wobei
der Leiter dafür vorgesehen ist, wenigstens teilweise in die Flüssigkeit eingetaucht
zu werden nahe dem Oberflächenniveau und nächst dem Fokus einer Druckwelle, und
eine Einrichtung (25), die mit dem Leiter und der Gegenelektrode gekoppelt ist,
um an diese auf Befehl eine periodische Spannung anzulegen, um zu veranlassen, daß
eine sich frei ausbreitende Oberflächenwelle von dem Leiter abstrahlt, welche Welle
mit der Druckwelle in Wechselwirkung treten soll, um wenigstens einen Kennwert der
emittierten Tröpfchen zu steuern.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Druckwelle die Flüssigkeit,
auf welche sie fokussiert ist, auf ein Energieniveau erregt, welches gegen ein Schwellen-Energieniveau
versetzt ist, um die Flüssigkeit zu destabilisieren, und daß die Kapillarwelle bewirkt,
daß das Energieniveau der erregten Flüssigkeit das Schwellenniveau überschreitet,
wodurch die Tröpfchenemissions-Steuereinrichtung eine ein/aus-Steuerung für die Ausstoßvorrichtung
vorsieht.
3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Leiter (22) symmetrisch
zu dem Fokus der Druckwelle ist und elektrisch kontinuierlich ist, wodurch die Tröpfchenemissions-Steuereinrichtung
eine axiale ein/aus-Zeitsteuerung für die Ausstoßvorrichtung vorsieht.
4. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Leiter (22) asymmetrisch
zu dem Fokus der Druckwelle ist, wodurch die Steuereinrichtung eine Winkeltrajektoriensteuerung
für die emittierten Tröpfchen vorsieht.
5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, daß der Leiter zwei oder mehr
elektrisch unabhängige Segmente (33,34) aufweist, und daß die Einrichtung zum Anlegen
der periodischen Spannung eine Einrichtung zum wahlweisen Adressieren der Segmente
umfaßt, wodurch die Spannung in der Lage ist, wahlweise an die Segmente angelegt zu
werden.
6. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Leiter (22) zwei
oder mehr elektrisch unabhängige Segmente (33,34) aufweist, welche zu dem Fokus der
Druckwelle symmetrisch sind, wodurch eine axiale Ausstoßtrajektorie gebildet wird,
wenn die Impulse gleichzeitig an beide oder sämtliche Segmente angelegt werden.
7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, daß der Leiter kreissymmetrisch
zu dem Fokus der Druckwelle ist.
8. Drucker, welcher eine düsenlose Tröpfchenausstoßvorrichtung nach einem der vorhergehenden
Ansprüche aufweist.