(19) |
 |
|
(11) |
EP 0 322 864 B1 |
(12) |
EUROPEAN PATENT SPECIFICATION |
(45) |
Mention of the grant of the patent: |
|
11.03.1992 Bulletin 1992/11 |
(22) |
Date of filing: 27.12.1988 |
|
(51) |
International Patent Classification (IPC)5: B65H 75/24 |
|
(54) |
Shaft for use with core
Spindel für eine Wickelhülse
Arbre pour le serrage de mandrins
|
(84) |
Designated Contracting States: |
|
BE DE FR GB IT |
(30) |
Priority: |
28.12.1987 JP 335205/87 28.12.1987 JP 335206/87
|
(43) |
Date of publication of application: |
|
05.07.1989 Bulletin 1989/27 |
(73) |
Proprietor: YAMAUCHI CORPORATION |
|
Hirakata
Osaka (JP) |
|
(72) |
Inventor: |
|
- Fukuyama, Yasuo
Hirakata-shi
Osaka (JP)
|
(74) |
Representative: Müller, Frithjof E., Dipl.-Ing. |
|
Patentanwälte
MÜLLER & HOFFMANN,
Innere Wiener Strasse 17 81667 München 81667 München (DE) |
(56) |
References cited: :
CA-A- 653 299 CH-A- 457 073 DE-U- 8 004 622 US-A- 3 825 167 US-A- 3 917 187 US-A- 4 436 252
|
CA-A- 654 990 DE-A- 2 041 860 US-A- 3 425 642 US-A- 3 834 257 US-A- 3 937 412 US-A- 4 632 328
|
|
|
|
|
|
|
|
|
Note: Within nine months from the publication of the mention of the grant of the European
patent, any person may give notice to the European Patent Office of opposition to
the European patent
granted. Notice of opposition shall be filed in a written reasoned statement. It shall
not be deemed to
have been filed until the opposition fee has been paid. (Art. 99(1) European Patent
Convention).
|
[0001] The present invention relates to a shaft for use with a core comprising a shaft body,
a pair of opposite journals, at least one elastomeric tube helically wound around
the shaft body, said tube being inflatable by the pressure of a fluid introduced there
into and holdable in its inflated state, and a tubular protective cover covering the
entire helical winding of the elastomeric tube and variable in diameter with the inflation
or contraction of the elastomeric tube.
[0002] US-A-3 917187 discloses an expanding mandrel having a shaft, a helical tube wound
around the shaft and an outer sleeve covering the tube. The CA-A-653 299 discribes
a shaft having a flexible tube wound around the shaft, which tube has a double layer
structure comprising an anular wall formed of a suitable rubberlike material and a
thin coating of a butyl rubber composition on the inner surface of the wall to increase
the imperviousness of the wall.
[0003] Examined Japanese Patent Publication No. 24296/82 already discloses a shaft for transmitting
a torque from a drive source to a paper tube or core. The disclosed shaft comprises
a shaft body having a journal at each of its opposite ends and formed with at least
one deep groove in its outer periphery, and at least one rubber tube accommodated
in the groove inwardly of the outer peripheral surface of the shaft body, inflatable
beyond the peripheral surface of the shaft body by the pressure of air introduced
into the tube and capable of retaining the inflated state. With this shaft, the arrangement
of the rubber tube on its outer periphery is restricted by the position of the groove,
so that the area of contact of the entire inflated rubber tube with the core inner
surface is not always sufficient for the transmission of torque. Moreover, since the
rubber tube is invariably in pressing contact with the grooved wall when inflated
by the pressure of air admitted into the tube, it is likely that the tube will not
fully bulge out from the groove as required. Consequently, there is the likelihood
that the torque transmission shaft will not be joined to the core during use, failing
to effect proper torque transmission.
[0004] The shaft according to the invention is characterized in that the tube is formed
by a double-layer structure comprising an abrasion resistant outer layer.
[0005] The present invention will be described in greater detail with reference to the accompanying
drawings.
Fig. 1 is a front view partly broken away and showing a core shaft embodying the invention;
Fig. 2 is an enlarged view showing the portion A in Fig. 1 in greater detail;
Fig. 3 is an enlarged view in section taken along the line III-III in Fig. 1 and showing
the shaft as inserted in a core with a clearance formed therebetween before a fluid
is introduced into the elastic tube of the shaft;
Fig. 4 is a view similar to Fig. 3 and showing the same with the protective cover
of the tube in intimate contact with the inner surface of the core after the fluid
has been introduced into the elastic tube;
Fig. 5 is an enlarged view in cross section showing the elastic tube which has inner
and outer two layers;
Fig. 6 is an enlarged fragmentary perspective view of the protective cover which comprises
an elastic sleeve and many strips integral with the outer surface of the sleeve and
having a plurality of ridges;
Fig. 7 is a fragmentary view partly in vertical section and showing another core shaft
embodying the invention;
Fig. 8 is a view in section taken along the line VIII-VIII in Fig. 7;
Fig. 9 is a fragmentary front view partly broken away and showing another core shaft
embodying the invention;
Fig. 10 is a view in section taken along the line X-X in Fig. 9;
Fig. 11 is a fragmentary front view partly broken away and showing a modified shaft
body; and
Fig. 12 is a fragmentary enlarged perspective view of a tubular protective cover including
stretchable portions and nonstretchable portions arranged alternately circumferentially
thereof.
[0006] With reference to Figs. 1 to 4, a core shaft 1 comprises a shaft body 2, a pair of
journals 3, 4 at the respective ends of the body 2, an elastic tube 5 helically closely
wound around the shaft body 2, inflatable by the pressure of a fluid introduced thereinto
and holdable in its inflated state, and a tubular protective cover 6 covering the
entire helical winding 5a of the tube 5 and variable in diameter with the inflation
or contraction of the elastic tube 5.
[0007] The shaft body 2 is a tube of carbon fiber reinforced plastics. Each journal 3 (4)
has integrally with its inner end a flange 7 (8) having a slightly smaller diameter
than the shaft body 2 and in contact with the end face thereof, and a plug 10 (11)
intimately fitted in a hollow portion 9 of the shaft body 2 at its end. An end ring
14 (15) having a step 12 (13) at its inner end is fitted around both the flange 7
(8) and the end of the shaft body 2 and is fastened to the flange 7 (8) with a setscrew
16. The end ring 14 (15) has the same outside diameter as the shaft body 2 and is
formed with a recess 17 at the portion thereof where the setscrew 16 is inserted therethrough
so that the screw head is positioned inwardly of the outer periphery of the end ring
14 (15). The elastic tube 5, which is generally elliptical in cross section, is made
of nitrile rubber, polyurethane rubber, butyl rubber or like rubber. Also usable for
the tube are thermoplastic polyurethane elastomer, thermoplastic polyester elastomer,
polyvinyl chloride resin, polyurethane resin or the like. As seen in Fig. 5, the tube
5 has a double-layer structure including an inner layer 18 and an abrasion-resistant
outer layer 19. The inner layer 18 may be made of chloroprene rubber or nitrile rubber,
and the outer layer 19 of polyurethane rubber, thermoplastic polyurethane elastomer
or thermoplastic polyamide elastomer. Preferably, the elastic tube 5 is made to have
a smaller modulus of elasticity circumferentially thereof than axially thereof by
incorporating into the material fibers oriented in parallel to the axis of the tube.
Examples of useful fibers are cotton fiber, polyamide fiber, aromatic polyamide fiber
and like stable fibers. The tube 5 has nonhelical portions 5b and 5c at the respective
sides of the helical winding 5a. The left nonhelical portion 5b, which is shorter
than the right nonhelical portion 5c, extends into a flat-bottomed recessed portion
20 formed in the outer periphery of the shaft body 2. A fluid channel 22 extends from
the bottom of a cavity 21 formed in the outer end of the left journal 3 almost to
the inner end of the plug 10 axially of the journal 3 and communicates with a fluid
channel 23 extending radially through the journal 3 and communicating with the recess
20 of the shaft body 2. The left nonhelical portion 5b is held in communication with
these channels 22, 23 through a hollow connector 24. The connector 24 comprises a
block 25 bearing on the bottom of the recessed portion 20, a vertical leg 26 fitted
in a hole formed in the circumferential wall of the shaft body 2, an externally threaded
portion 27 extending downward from the leg 26 and screwed in an internally threaded
portion formed in the plug 10, a hexagonal head 28 integral with the top of the block
25, and a horizontal spigot 29 fitted in the left-end opening of the tube 5. The connector
24 has a fluid channel extending through the spigot 29, bent at a right angle within
the block 25 and further extending through the leg 26 and the externally threaded
portion 27 to communicate with the radial channel 23 of the plug 10. A joint 31 having
an automatic shutoff valve 30 is formed with an externally threaded portion 32 which
is screwed in an internally threaded portion formed in the journal 3 at the outer
open end of the fluid channel 22. The joint 31 pairs up with another joint (not shown)
having an automatic shutoff valve and attached to the forward end of a hose which
is connected to a pressure fluid source. The joint 31 on the shaft 1 serves as a male
member, and the joint on the hose as a female member. When the two joints are fitted
together for connection, the valves abut against each other and are thereby pushed
inward, automatically bringing the fluid channels thereof into communication with
each other. When the joints are separated, the valves are returned to the original
state by the respective return springs within the joints, whereby the valves are automatically
closed. The longer right nonhelical portion 5c of the tube 5 extends into the hollow
portion 9 through a hole 33 formed in the peripheral wall of the shaft body 2. A plug
34 is fitted in the right-end opening of the tube 5 and is fastened over the tube
end with bands 35, whereby the opening is closed. A plurality of tubes may be helically
closely wound around the shaft body 2 and closed each at one-end opening thereof,
with the openigs at the other ends thereof communicating with the fluid channel 22.
[0008] The protective cover 6 comprises an elastic sleeve 36, and a multiplicity of strips
37 each in the form of a slender plate and integral with the outer surface of the
elastic sleeve 36. The strips 37 are made of a harder material than the sleeve 36,
extend nearly over the entire length of the sleeve axially thereof and arranged at
a spacing circumferentially thereof. While the elastic sleeve 36 is amde of polyurethane-polyvinyl
chloride copolymer, also usable are other materials including nitrile rubber, polyurethane
rubber, butyl rubber and like rubbers, elastomers, up to 90 degrees in JIS A hardness,
of thermoplastic polyurethane, polyester, polyamide, polystyrene, polyolefin and polyurethane-polyamide,
polyvinyl chloride resin, and blend of polyurethane rubber and nitrile rubber. While
the strips 37 are made of ABS resin, also usable are semi-rigid polyvinyl chloride
resin, elastomers, at least 50 degrees in Shore D hardness, of thermoplastic polyurethane,
polyester, polyamide, polystyrene, polyolefin and polyurethane-polyamide, etc. In
the case where synthetic resins are used for both the elastic sleeve 36 and the strips
37, it is desirable to integrally form the cover 6 by two-color extrusion. Otherwise,
the strips are adhered to the sleeve.
[0009] The shaft body 2 has fitted therearound a cover end holding ring 38 (39) having the
same outside diameter as the end ring 14 (15) and positioned adjacent thereto, and
a cover end support ring 40 (41) adjacent to the ring 38 (39) and positioned closer
the helical tube winding 5a. The support ring 40 (41) has toward its outer end a step
42 (43) and a tapered portion 44 (45) adjacent thereto. The holding ring 38 (39) is
interposed between the end ring 14 (15) and the support ring 40 (41) and joined to
these rings by shiplap. The holding ring 38 (39) has an inner peripheral flared portion
46 (47) opposed to the tapered portion 44 (45) of the support ring 40 (41) and spaced
apart therefrom by a small clearance. The shiplapped joint between the holding ring
38 (39) and the support ring 40 (41) is fastened to the shaft body 2 with a setscrew
48. The ends of the elastic sleeve 36 of the protective cover 6 slightly project beyond
the respective ends of the strips 37. The protective cover 6 covers the entire winding
5a of the tube 5 and has its opposite ends fitted over the support rings 40, 41. Each
projection 49 of the sleeve 36 beyond the strips 37 is held between the tapered portion
44 (45) of the support ring 40 (41) and the flared portion 46 (47) of the holding
ring 38 (39).
[0010] Fig. 3 shows the shaft 1 of the invention as it is merely inserted in the hollow
portion 51 of a core 50 before a fluid is introduced into the elastic tube 5, with
a large clearance formed within the hollow portion 51 of the core 50 around the shaft
1. Each of the journals 3, 4 is supported by an unillustrated bearing. In this state,
the joint on the hose connected to the pressure fluid source is joined to the joint
31 as already stated to apply fluid pressure to the tube 5. Although compressed air
is used as the pressure fluid, helium gas or other gas, or a liquid such as water
or oil is alternatively usable. When the pressure fluid is introduced into the elastic
tube 5, the tube 5 is inflated to increase the outside diameter of the helical winding
5a thereof, causing the protective cover 6 to intimately contact the inner surface
of the core 50 defining the hollow portion 51 as seen in Fig. 4. When the joint 31
of the shaft 1 is thereafter separated from the joint of the hose, the valve of the
joint 31 automatically closes to hold the tube 5 inflated. When the shaft 1 is connected
to a torque source to use the core for winding a material thereon, the torque of the
shaft 1 is transmitted to the core 50 for the core to rotate with the shaft 1. To
remove the shaft 1 from the core 50, the valve 30 of the joint 31 is pushed in from
outside against the force of spring, whereupon the valve 30 is opened to release the
fluid pressure from the tube 5 via the fluid channels 22, 23 and the valve opening.
The shaft 1 is connected to a brake device when the core 50 is used for unwinding.
[0011] The tubular protective cover 6 protects the helical tube winding 5a. With an increase
in the outside diameter of the helical winding 5a when the tube 5 is inflated, the
protective cover 6 similarly increases in diameter and comes into intimate contact
with the inner surface of the core 50, so that the cover 6 also serves to perfectly
join the shaft 1 to the core 50. Since the multiplicity of strips 37 of the protective
cover 6 are made of a harder material than the elastic sleeve 36, the strips 37 permit
the cover 6 to retain its shape, rendering the shaft 1 smoothly insertable into or
removable from the core hollow portion 51. For this purpose, the strip 37 is preferably
formed on its outer surface with a plurality of ridges 52 extending longitudinally
thereof as seen in Fig. 6.
[0012] Figs. 7 and 8 show another core shaft embodying the invention. The tube 5 of this
embodiment has a flexible linear member 53 extending therethrough over its entire
length and useful for winding the tube 5 helically and holding the tube in shape.
The linear member 53, although inserted through the tube 5, may alternatively be embedded
in the wall of the tube 5. Although a copper wire is used as the flexible linear member
53, other metal wire such as an aluminum wire is also usable. A polyamide yarn, polyester
yarn or like yarn is similarly usable. A protective cover 54 comprises an elastic
sleeve 55, and a multiplicity of strips 56 each in the form of an elongated metal
plate, adhered to the outer surface of the sleeve 55, extending axially thereof and
arranged at a spacing circumferentially thereof. The strip 56 is resilient. In reverse
relation to the first embodiment, each strip 56 projects at its opposite ends beyond
the respective ends of the elastic sleeve 55. Each of support rings 40, 41 is formed
in the upper surface of its inner end with a step 77, around which the end of the
sleeve 55 is fitted. Formed in each of tapered outer peripheral surfaces 44, 45 of
these support rings 40, 41 are grooves 76 having fitted therein the projections 75
of the strips 56 at the end of each, the projections 75 being movable when the tube
5 is inflated. With the exception of these features, the second embodiment is the
same as the first.
[0013] Figs. 9 and 10 show another core shaft embodying the invention. This embodiment has
an elastic tube 57 which is circular in cross section and is helically wound as at
57a. A support ring 58 is secured to the shaft body 2 at each side of the winding
57a. A protective cover 59 is fitted at its opposite ends around the support rings
58. The cover 59 is in the form of a sleeve which is axially cut at one portion and
is made of such a material that it is deformable to a larger diameter but can restore
itself. Although the cover 59 of this embodiment is made of polycarbonate, also usable
for the cover are other materials such as polyvinyl chloride resin, polyamide, polyethylene,
iron and stainless steel. Each open end of the shaft body 2 is internally threaded
and has screwed therein an externally threaded portion 61 of a journal 60 at its inner
end. A hexagonal flange 62 formed on the journal 60 at the outer end of the threaded
portion 61 bears against the end face of the shaft body 2.
[0014] The tube 57 has a nonhelical portion 57b which is secured by a fastener 64 to a flat
portion 63 of the circular support ring 58 and which extends into the hollow portion
9 of the shaft body 2 through a hole 65 in the shaft body peripheral wall. The journal
60 has a fluid channel 66 extending centrally therethrough. A hollow connector 67
inserted in the channel 66 as attached to the journal inner end has a spigot 68, to
which the open left end of the tube 57 is fastened with bands 69. As in the embodiment
of Fig. 1, the outer end of the fluid channel 66 is provided with a joint 31 having
an automatic shutoff valve 30. Each nonhelical portion 57b of the tube 57 is covered
with a nonstretchable member 70. An adhesive cloth tape, used as the nonstretchable
member 70, is closely wound around the nonhelical portion 57b, whereby the tube 57
is prevented from inflation at this portion. The nonstretchable member may alternatively
be a metal wire which is closely wound on the nonhelical portion, or a thermally shrinkable
synthetic resin tube which is thermally shrunk as fitted around the nonhelical portion.
With the exception of the above features, the third embodiment is substantially the
same as the embodiment of Fig. 1.
[0015] As shown in Fig. 11, the outer peripheral surface of the shaft body 2 may be formed
with a shallow helical groove 71 for guiding the elastic tube 57 when it is wound
on the body 2. Fig. 12 shows a protective cover 72 in the form of a tube which comprises
a multiplicity of stretchable portions 73 and a multiplicity of non-stretchable portions
74 extending longitudinally of the cover and arranged alternately circumferentially
thereof. The stretchable portions 73 can be made of thermoplastic polyurethane elastomer,
thermoplastic polyester elastomer, polyvinyl chloride resin, polyurethane resin or
the like. It is suitable to prepare the nonstretchable portions 74 from polypropylene.
The stretchable portions 73 and the nonstretchable portions 74 are formed integrally
by two-color extrusion.
1. A shaft for use with a core comprising a shaft body (2), a pair of opposite journals
(3 and 4), at least one elastomeric tube (5) helically wound around the shaft body
(2), said tube (5) being inflatable by the pressure of a fluid introduced thereinto
and holdable in its inflated state, and a tubular protective cover (6) covering the
entire helical winding (5a) of the elastomeric tube (5) and viable in diameter with
the inflation or contraction of the elastomeric tube (5), characterized in that the tube is formed by a double-layer structure comprising an abrasion resistant
outer layer (19).
2. Shaft as claimed in claim 1, characterized in that the shaft body (2) is in the form of a tube made of carbon fiber reinforced
plastic.
3. Shaft as claimed in claim 1, characterized in that the shaft body (2) is formed in its outer peripheral surface with a shallow
helical groove (71) for guiding the elastomeric tube (5) when the tube (5) is wound
around the shaft body (2).
4. Shaft as claimed in claim 1, characterized in that the tube (5) is made of rubber.
5. Shaft as claimed in claim 1, characterized in that the inner layer (18) is made of a material selected from the group consisting
of chloroprene rubber and nitrile rubber, the outer layer (19) being made of a material
selected from the group consisting of polyurethane rubber, thermoplastic polyurethane
elastomer and thermoplastic polyamide elastomer.
6. Shaft as claimed in claim 1, characterized in that the elastomeric tube (5) has a smaller modulus of elasticity circumferentially
thereof than axially thereof such that upon inflation, it will expand circumferentially
but have little expansion in the axial direction.
7. Shaft as claimed in claim 6, characterized in that the elastomeric tube (5) has incorporated in the material fibers oriented
in parallel to the longitudinal axis thereof.
8. Shaft as claimed in claim 1, characterized in that the tube (5) is provided in its interior with a flexible linear member (53)
extending over the entire length thereof and serving to hold the tube (5) in its helically
wound shape.
9. Shaft as claimed in claim 1, characterized in that the tube (5) comprises a nonhelical portion (5b and 5c) at each side of its
helical winding (5a).
10. Shaft as claimed in claim 9, characterized in that the nonhelical portion (57b) is covered with a nonstretchable member (70).
11. Shaft as claimed in claim 10, characterized in that the nonstretchable member (70) is a cloth tape helically closely wound around
the nonhelical portion (57a) of the tube (57).
12. Shaft as claimed in claim 10, characterized in that the nonstretchable member (70) is a metal wire.
13. Shaft as claimed in claim 10, characterized in that the nonstretchable member is a thermally shrinkable synthetic resin tube
shrunk by heating to fit around the tube.
14. Shaft as claimed in claim 1, characterized in that the protective cover (6) is an elastic sleeve.
15. Shaft as claimed in claim 1, characterized in that the protective cover (59) is a sleeve axially cut at one portion and made
of a material permitting the sleeve to deform to a larger diameter and to restore
itself.
16. Shaft as claimed in claim 1, characterized in that the protective cover (6) comprises an elastic sleeve (36), and a multiplicity
of strings (37) each in the form of a slender plate and integral with the outer surface
of the elastic sleeve (36), the strips (37) being made of a harder material than the
elastic sleeve (36), extending almost over the entire length of the sleeve (36) axially
thereof and arranged at a spacing circumferentially thereof.
17. Shaft as claimed in claim 16, characterized in that each of the strips (37) has on its outer surface a plurality of ridges (52)
extending lingitudinally thereof.
18. Shaft as claimed in claim 1, characterized in that the protective cover (72) is a tubular member comprising a multiplicity of
stretchable portions (73) and a multiplicity of nonstretchable portions (74) extending
longitudinally of the cover (72), formed integrally and arranged alternately circumferentially
thereof.
19. Shaft as claimed in claim 18, characterized in that the stretchable portions (73) are formed of a material from the group consisting
of thermoplastic polyurethane elastomer, thermoplastic polyester elastomer, polyvinyl
chloride resin and polyurethane resin, and wherein said nonstretchable portions (74)
are formed of polypropylene.
1. Spindel für eine Wickelhülse mit einem Wellenkörper (2), zwei gegenüberliegenden
Lagrnm (3) und (4), wenigstens einem elastomeren Schlauch (5), der schraubenförmig
um den Wellenkörper (2) gewickelt ist und durch den Druck eines in den Schlauch eingeleiteten
Fluids ausgedehnt und in der ausgedehnten Stellung gehalten werden kann, und einer
schlauchförmigen Schutzdecke (6), die die gesamte schraubenförmige Wicklung (5a) des
elastomeren Schlauchs (5) abdeckt und einen mit der Ausdehnung oder Zusammenziehung
des elastomeren Schlauches (5) veränderlichen Durchmesser aufweist, dadurch gekennzeichnet, daß der Schlauch aus doppellagigem Material ist und eine abriebfeste äußere Schicht
(19) aufweist.
2. Spindel nach Anspruch 1, dadurch gekennzeichnet, daß der Wellenkörper (2) die Form eines Rohres aus mit Kohlenstoff-Fasern verstärktem
Kunststoff aufweist.
3. Spindel nach Anspruch 1, dadurch gekennzeichnet, daß der Wellenkörper (2) auf der äußeren Umfangsfläche eine flache schraubenförmige
Nut (71) zum Führen des um den Wellenkörper (2) gewickelten Schlauches (5) aufweist.
4. Spindel nach Anspruch 1, dadurch gekennzeichnet, daß der Schlauch (5) aus Gummi besteht.
5. Spindel nach Anspruch 1, dadurch gekennzeichnet, daß die innere Schicht (18) aus einem Material aus der Gruppe Chloropren-Gummi und
Nitril-Gummi besteht, und daß die äußere Schicht (19) aus einem Material aus der Gruppe
Polyurethan-Gummi, thermoplastisches Polyurethan-Elastomer und thermoplastisches Polyamid-Elastomer
besteht.
6. Spindel nach Anspruch 1, dadurch gekennzeichnet, daß der elastomere Schlauch (5) einen geringeren Elastizitätsmodus in Umfangsrichtung
als in Axialrichtung aufweist, derart, daß beim Befüllen des Schlauches dieser sich
im Umfangsrichtung dehnt, in Axialrichtung jedoch nur wenig dehnt.
7. Spindel nach Anspruch 1, dadurch gekennzeichnet, daß in das Material des elastomeren Schlauches (5) parallel zu dessen Längsachse
gerichtet Fasern eingebettet sind.
8. Spindel nach Anspruch 1, dadurch gekennzeichnet, daß der Schlauch (5) im Inneren mit einem flexiblen, linearen Teil (53) versehen
ist, das sich über die gesamte Länge erstreckt und dazu dient, den Schlauch (5) in
der schraubenförmig gewickelten Form zu halten.
9. Spindel nach Anspruch 1, dadurch gekennzeichnet, daß der Schlauch (5) einen nicht-schraubenförmigen Abschnitt (5b) und (5c) an jeder
Seite der schraubenförmigen Wicklung (5a) aufweist.
10. Spindel nach Anspruch 9, dadurch gekennzeichnet, daß der nichtschraubenförmige Abschnitt (57b) mit einem nicht-dehnbaren Teil (70)
überzogen ist.
11. Spindel nach Anspruch 10, dadurch gekennzeichnet, daß das nichtdehnbare Teil (70) ein Stoffband ist, das schraubenförmig und eng um
den nicht-schraubenförmigen Abschnitt (57a) des Rohres (57) gewickelt ist.
12. Spindel nach Anspruch 10, dadurch gekennzeichnet, daß das nichtdehnbare Teil (70) ein Metalldraht ist.
13. Spindel nach Anspruch 10, dadurch gekennzeichnet, daß das nichtdehnbare Teil ein Rohr aus thermisch schrumpfbarem Kunstharz ist, das
durch Erwärmung auf den Schlauch aufgeschrumpft ist.
14. Spindel nach Anspruch 1, dadurch gekennzeichnet, daß die Schutzdecke (6) eine elastische Hülse ist.
15. Spindel nach Anspruch 1, dadurch gekennzeichnet, daß die Schutzdecke (59) eine Hülse ist, die axial in einem Bereich eingeschnitten
ist und aus Material besteht, das eine Verformung der Hülse zu einem großen Durchmesser
und eine Rückfederung ermöglicht.
16. Spindel nach Anspruch 1, dadurch gekennzeichnet, daß die Schutzdecke (6) eine elastische Hülse (36) und eine Anzahl von Bändern (37)
umfaßt, die die Form einer schlanken, mit der äußeren Oberfläche der elastischen Hülse
(36) verbundenen Platte aufweisen, wobei die Bänder (37) aus einem härteren Material
als die elastische Hülse (36) bestehen und sich im wesentlichen über die gesamte Länge
der Hülse (36) in deren Axialrichtung erstrecken und in Umfangsrichtung in Abständen
liegen.
17. Spindel nach Anspruch 16, dadurch gekennzeichnet, daß die Streifen (37) auf ihrer äußeren Oberfläche eine Anzahl von Rippen (52) in
Längsrichtung aufweisen.
18. Spindel nach Anspruch 1, dadurch gekennzeichnet, daß die Schutzdecke (72) schlauchförmig ist und eine Anzahl von dehnbaren Bereichen
(73) sowie eine Anzahl von nicht-dehnbaren Bereichen (74) in ihrer Längsrichtung aufweist,
die miteinander verbunden und abwechselnd in Umfangsrichtung angeordnet sind.
19. Spindel nach Anspruch 18, dadurch gekennzeichnet, daß die dehnbaren Bereiche (73) aus einem Material aus der Gruppe thermoplastischer
Polyurethan-Elastomere, thermoplastischer Polyester-Elastomere, Polyvinylchlorid und
Polyurethan bestehen und daß die nicht-dehnbaren Bereiche (74) aus Polypropylen bestehen.
1. Arbre pour le serrage d'un mandrin comprenant un corps d'arbre (2), une paire de
tourillons opposés (3 et 4), au moins un tube d'élastomère (5) enroulé hélicoïdalement
autour du corps d'arbre (2), ledit tube (5) pouvant être gonflé par la pression d'un
fluide introduit dans celui-ci et maintenu dans son étant gonflé, et un couvercle
de protection tubulaire (6) recouvrant la totalité de l'enroulement hélicoïdal (5a)
du tube élastomère (5) et ayant un diamètre variable avec le gonflage ou le retrait
du tube d'élastomère (5), caractérisé en ce que le tube est formé par une structure
à double couche comprenant une couche extérieure résistante à l'abrasion (19).
2. Arbre selon la revendication 1, caractérisé en ce que le corps d'arbre (2) présente
la forme d'un tube constitué d'une matière plastique renforcée par des fibres de carbone.
3. Arbre selon la revendication 1, caractérisé en ce que le corps d'arbre (2) présente,
dans sa surface périphérique extérieure, une rainure hélicoïdale peu profonde (71)
pour guider le tube élastomère (5) lorsque le tube (5) est enroulé autour du corps
d'arbre (2).
4. Arbre selon la revendication 1, caractérisé en ce que le tube (5) est constitué
de caoutchouc.
5. Arbre selon la revendication 1, caractérisé en ce que la couche intérieure (18)
est en un matériau choisi dans le groupe constitué par le caoutchouc chloroprène et
le caoutchouc nitrile, la couche extérieure (19) étant en un matériau choisi dans
le groupe constitué par le caoutchouc polyuréthane, l'élastomère de polyuréthane,
thermoplastique et l'élastomère de polyamide thermoplastique.
6. Arbre selon la revendication 1, caractérisé en ce que le tube élastomère (5) présente
dans le sens, circonférentiel, un module d'Young inférieur à celui qu'il présente
dans le sens axial d'une manière telle qu'après gonflage, il se dilatera circonférentiellement
mais avec peu de dilatation dans le sens axial.
7. Arbre selon la revendication 6, caractérisé en ce que le tube élastomère (5) comporte,
incorporées dans le matériau, des fibres orientées parallèlement à son axe longitudinal.
8. Arbre selon la revendication 1, caractérisé en ce que le tube (5) est pourvu intérieurement
d'un élément linéaire souple (53) s'étendant sur la longueur entière de celui-ci et
servant à maintenir le tube (5) dans sa forme hélicoïdalement enroulée.
9. Arbre selon la revendication 1, caractérisé en ce que le tube (5) comprend une
partie non hélicoïdale (5b et 5c) sur chaque côté de son enroulement hélicoïdal (5a).
10. Arbre selon la revendication 9, caractérisé en ce que la partie non hélicoïdale
(57b) est recouverte d'un élément non-extensible (70).
11. Arbre selon la revendication 10, caractérisé en ce que l'élément non-extensible
(70) est une bande de tissu enroulée hélicoïdalement, de façon serrée, autour de la
partie non hélicoidale (57a) du tube (57).
12. Arbre selon la revendication 10, caractérisé en ce que l'élément non-extensible
(70) est un fil métallique.
13. Arbre selon la revendication 10, caractérisé en ce que l'élément non-extensible
est un tube de résine synthétique thermorétractable, rétractée par chauffage pour
s'ajuster autour du tube.
14. Arbre selon la revendication 1, caractérisé en ce que le couvercle de protection
(6) est un manchon élastique.
15. Arbre selon la revendication 1, caractérisé en ce que le couvercle de protection
(59) est un manchon axialement coupé sur une partie et constitué d'un matériau permettant
au manchon de se déformer à un diamètre plus large et de revenir à l'état initial
de lui-même.
16. Arbre selon la revendication 1, caractérisé en ce que le couvercle de protection
(6) comprend un manchon élastique (36) et une multiplicité de bandes (37) chacune
sous la forme d'une plaque mince solidaire de la surface extérieure du manchon élastique
(36), les bandes (37) étant constituées d'un matériau plus dur que le manchon élastique
(36), s'étendant à peu près sur la longueur entière du manchon (36) dans le sens axial
de celui-ci et étant disposées à intervalles sur la circonférence dudit manchon.
17. Arbre selon la revendication 16, caractérisé en ce que chacune des bandes (37)
comporte, sur sa surface extérieure, plusieurs arêtes (52) s'étendant dans sa direction
longitudinale.
18. Arbre selon la revendication 1, caractérisé en ce que le couvercle de protection
(72) est un élément tubulaire comprenant une multiplicité de parties extensibles (62)
et une multplicité de parties non-extensibles (74) s'étendant dans la direction longitudinale
du couvercle (72), mutuellement solidaires et disposées en alternance dans le sens
de la circonférence de celui-ci.
19. Arbre selon la revendication 18, caractérisé en ce que les parties extensibles
(73) sont formées d'un matériau appartenant au groupe constitué par l'élastomère de
polyuréthane thermoplastique, l'élastomère de polyester thermoplastique, la résine
de poly (chlorure de vinyle) et la résine de polyuréthane, et dans lequel lesdites
parties non-extensibles (74) sont en polypropylène.