[0001] The present invention is generally concerned with apparatus including rotary sheet-feeding
means and processes for operating such apparatus. The invention is applicable to postage
meters and mailing machines.
[0002] US-A-4 016 467 discloses an electronic postage meter having angular velocity control
of the print drum. However, the angular velocity is not controlled to provide matching
between the peripheral drum velocity and the linear velocity of a mailpiece. Rather
the drum is driven at a preset angular velocity.
[0003] In U.S. Patent No. 2,934,009 issued April 26, 1960 to Bach, et al. and assigned to
the assignee of the present invention there is described a postage meter which includes
a drive mechanism connected by means of a drive train to a postage meter drum. The
drive mechanism includes a single revolution clutch for rotating the drum from a home
position and into engagement with a letter fed to the drum. The drum prints a postage
value on the letter while feeding the same downstream beneath the drum as the drum
returns to the home position. Each revolution of the single revolution clutch and
thus the drum, is initiated by the letter engaging a trip lever to release the helical
spring of the single revolution clutch. The velocity versus time profile of the peripherary
of a drum driven by the clutch approximates a trapezoidal configuration, having acceleration,
constant velocity and deceleration portions, fixed by the particular clutch and drive
train used in the application. This being the case, the throughput rate of any mailing
machine associated with the meter is dictated by the cycling speed of the postage
meter rather than by the speed with which the individual mailpieces are fed to the
postage meter. Further, although the single revolution clutch structure has served
as the workhorse of the industry for many years it has long been recognized that it
is a complex mechanism which is relatively expensive to construct and maintain, does
not precisely follow the ideal trapezoidal velocity vs. time motion profile which
is preferred for drum motion, tends to be unreliable in high volume applications,
and is noisy and thus irritating to customers.
[0004] Accordingly, an object of the invention is to provide a drive mechanism for rotary
means with the combination of a D.C. motor and a computer, arranged to cause the D.C.
motor to drive the rotary means substantially in accordance with an ideal trapezoidal-shaped
velocity versus time profile.
[0005] According to one aspect of the invention there is provided apparatus including rotary
means having a periphery adapted for feeding a sheet in a path of travel, comprising:
a) first means for sensing a time interval during which a sheet is linearly displaced
a predetermined distance in the path of travel; b) a d.c. motor coupled to the rotary
means for rotation thereof; c) second means for sensing angular displacement of the
rotary means; and d) computer means coupled to the first and second sensing means
and to the d.c. motor, the computer means comprising: i) means responsive to the first
sensing means for providing respective amounts representative of desired angular displacements
of the rotary means during successive sampling time periods, ii) means responsive
to the second sensing means for providing respective amounts representative of actual
angular displacements of the rotary means during successive sampling time periods,
and iii) means for compensating for the difference between desired and actual angular
displacements and generating a d.c. motor control signal for controlling rotation
of the motor to cause the linear displacement of the periphery of the rotary means
to substantially match the linear displacement of the sheet during respective sampling
time periods.
[0006] According to a further aspect of the invention, there is provided a process for use
with apparatus including rotary means wherein the rotary means includes a periphery
adapted for feeding a sheet in a path of travel, the process controlling rotation
of the rotary means in relation to the movement of the sheet, the process comprising:
a) sensing a time interval during which a sheet is linearly displaced a predetermined
distance in the path of travel and in response thereto providing amounts representative
of respective desired angular displacements of the rotary means during successive
sampling time periods; b) rotating the rotary means with a d.c. motor; c) sensing
angular displacement of the rotary means and in response thereto providing amounts
representative of respective actual angular displacements of the rotary means during
successive sampling time periods; and d) digitally compensating for the difference
between desired and actual angular displacements and generating a motor control signal
for controlling rotation of the rotary means to substantially match the linear displacement
of the sheet during respective sampling time periods.
[0007] According to another aspect of the invention, there is provided apparatus including
rotary means having a periphery, the periphery including indicia printing means, and
the periphery being adapted for feeding a sheet in a path of travel, comprising: a)
first means for sensing a time interval during which a sheet having a leading edge
is linearly displaced a predetermined distance in the path of travel; b) a d.c. motor
coupled to the rotary means for rotation thereof; c) second means for sensing angular
displacement of the rotary means; and d) computer means coupled to the first and second
sensing means and to the d.c. motor, the computer means comprising: i) means responsive
to the first sensing means for providing respective amounts representative of desired
angular displacements of the rotary means during successive sampling time periods;
ii) means responsive to the second sensing means for providing respective amounts
representative of actual angular displacements of the rotary means during successive
sampling time periods; and iii) means for compensating for the difference between
desired and actual angular displacements and generating a d.c. motor control signal
for controlling rotation of the motor to cause the indicia printing means to initially
engage the sheet in the path of travel a predetermined marginal distance from the
leading edge of the sheet.
[0008] According to a further aspect of the invention, there is provided a process for use
with apparatus including rotary means, wherein the rotary means includes a periphery
having indicia printing means and is adapted for feeding a sheet having a leading
edge in a path of travel, the process controlling rotation of the rotary means for
controlling engagement of the indicia printing means with the sheet, the process comprising:
a) sensing a time interval during which a sheet is linearly displaced a predetermined
distance in the path of travel and in response thereto providing amounts representative
of respective desired angular displacements of the rotary means during successive
sampling time periods; b) rotating the rotary means with a d.c. motor; c) sensing
angular displacement of the rotary means and in response thereto providing amounts
representative of respective actual angular displacements of the rotary means during
successive sampling time periods; and d) digitally compensating for the difference
between desired and actual angular displacements and generating a motor control signal
for controlling rotation of the rotary means to cause the indicia printing means to
initially engage the sheet in the path of travel a predetermined distance from the
leading edge of the sheet.
[0009] For a better understanding of the invention, and to show how the same may be carried
into effect, reference will now be made, by way of example, to the accompanying drawings,
in which like reference numerals designate like or corresponding parts throughout
the several views, and in which:
Figure 1 is a schematic view of a postage meter mounted on mailing machine in accordance
with the invention;
Figure 2 is a schematic view of the mailing machine of Figure 1, showing the location
of the mailpiece sensors relative to the postage meter drum;
Figure 3 shows the relationship between the position of a sheet and the postage meter
drum as a function of time, and an ideal velocity versus time profile of the periphery
of the drum;
Figure 4 is a perspective view of the quadrature encoder mounted on a D.C. motor drive
shaft;
Figure 5 shows the output signals from the quadrature encoder of Fig. 4 for clockwise
and counter-clockwise rotation of the D.C. motor drive shaft;
Figure 6 is a schematic diagram of a preferred counting circuit for providing an eight
bit wide digital signal for the computer which numerically represents the direction
of rotation, and angular displacement, of the motor drive shaft, and thus the drum,
from its home position;
Figure 7 shows a power amplifier circuit for coupling the computer to the D.C. motor;
Figure 8 is a truth table showing the status of the transistors in the power amplifying
circuit for clockwise and counter-clockwise rotation of the D.C. motor;
Figure 9 shows the relationship between the encoder output signals for various D.C.
motor duty cycles;
Figure 10 shows a closed-loop servo system including the D.C. motor and computer;
Figure 11 is a block diagram portraying the laplace transform equations of the closed-loop
servo system shown in Fig. 10;
Figure 12 shows the equations for calculating the overall gain of the closed loop
servo system of Fig. 10 before (Fig. 2a) and after (Fig. 2b) including a gain factor
corresponding to the system friction at motor start up;
Figure 13 is a bode diagram including plots for the closed loop servo system before
and after compensation to provide for system stability and maximization of the system's
bandwidth;
Figure 14 shows the equation far calculating, in the frequency domain, the value of
the system compensator;
Figure 15 shows the equation for calculating the damping factor, overshoot and settling
time of the servo controlled system;
Figure 16 shows the equation for the laplace operator expressed in terms of the Z-transform
operator;
Figure 17 shows the equation for calculating the value of the system compensator in
the position domain;
Figure 18 shows the equations for converting the system compensator of Fig. 17 to
the position domain;
Figure 19 shows the equation of the output of the system compensator in the time domain;
Figure 20 is a block diagram of a preferred microprocessor for use in controlling
the D.C. Motor;
Figure 21 (including Figs. 21a, 21b and 21c) shows the time intervals during which
the motor control signal and its separable components are calculated to permit early
application of the signal to the motor;
Figure 22 (including Figs. 22a and 22b) is a block diagram of the computer according
to the invention; and
Figure 23 (including Figs. 23a-1, 23a-2, 23b and 23c) shows the flow charts portraying
the processing steps of the computer.
[0010] As shown in Fig. 1, the apparatus in which the invention may be incorporated generally
includes an electronic postage meter 10 which is suitably removably mounted on a conventional
mailing machine 12, so as to form therewith a slot 14 (Fig. 2) through which sheets,
including mailpieces 16, such as envelopes, cards or other sheet-like materials, may
be fed in a downstream path of travel 18.
[0011] The postage meter 10 (Fig. 1) includes a keyboard 30 and display 32. The keyboard
30 includes a plurality of numeric keys, labeled 0-9 inclusive, a clear key, labeled
"c" and a decimal point key, labeled ".", for selecting postage values to be entered;
a set postage key, labeled "s", for entering selected postage values; and an arithmetic
function key, labeled "

", for adding subsequently selected charges (such as special delivery costs) to a
previously selected postage value before entry of the total value. In addition, there
is provided a plurality of display keys, designated 34, each of which are provided
with labels well known in the art for identifying information stored in the meter
10, and shown on the display 32 in response to depression of the particular key 34,
such as the "postage used", "postage unused", "control sum", "piece count", "batch
value" and "batch count" values. A more detailed description of the keys of the keyboard
30 and the display 32, and their respective functions may be found in U.S. Patent
No. 4,283,721 issued August 11, 1981 to Eckert, et al. and assigned to the assignee
of the present invention.
[0012] In addition, the meter 10 (Fig. 1) includes a casing 36, on which the keyboard 30
and display 32 are conventionally mounted, and which is adapted by well known means
for carrying a cyclically operable, rotary, postage printing drum 38. The drum 38
(Fig. 2) is conventionally constructed and arranged for feeding the respective mailpieces
16 in the path of travel 18, which extends beneath the drum 38, and for printing entered
postage on the upwardly disposed surface of each mailpiece 16. For postage value selecting
purposes, the meter 10 (Fig. 1) also includes a conventional postage value selection
mechanism 40, for example, of the type shown in U.S. Patent No. 4,287,825 issued September
8, 1981 to Eckert, et al. and assigned to the assignee of the present invention. The
mechanism 40 which is operably electrically coupled via the postage meter's computer
41 to the keyboard 30 and display 32, includes a first stepper motor 42 for selecting
any one of a plurality of racks 43, associated on a one for one basis with each of
the print wheels 44, and a second stepper motor 45 for actuating each selected rack
43 for positioning the appropriate printing element of the associated print wheel
44. The rack selection stepper motor 42, which is referred to by skilled artisans
as a bank selector motor, is appropriately energized via power lines 46 from the computer
41 for selecting the appropriate rack; and the rack actuating stepper motor 45, which
is referred to by skilled artisans as a digit selector motor, is appropriately energized
via power lines 47 from the computer 41 to move the selected rack for selecting the
appropriate digit element of the associated print wheel 44. A more detailed description
of the value selection mechanism 40 may be found in the aforesaid U.S. Patent No.
4,287,825.
[0013] The computer 41 for the postage meter 10 generally comprises a conventional, microcomputer
system having a plurality of microcomputer modules including a control or keyboard
and display module, 41a, an accounting module 41b and a printing module 41c. The control
module 41a is both operably electrically connected to the accounting module 41b and
adapted to be operably electrically connected to an external device via respective
two-way serial communications channels, and the accounting module 41b is operably
electrically connected to the printing module 41c via a corresponding two-way serial
communication channel. In general, each of the modules 41a, 41b and 41c includes a
dedicated microprocessor 41d, 41e or 41f, respectively, having a separately controlled
clock and programs. And two-way communications are conducted via the respective serial
communication channels utilizing the echoplex communication discipline, wherein communications
are in the form of serially transmitted single byte header-only messages, consisting
of ten bits including a start bit followed by an 8 bit byte which is in turn followed
by a stop bit, or in the form of a multi-byte message consisting of a header and one
or more additional bytes of information. Further, all transmitted messages are followed
by a no error pulse if the message was received error free. In operation, each of
the modules 41a, 41b and 41c is capable of processing data independently and asynchronously
of the other. In addition, to allow for compatibility between the postage meter 10
and any external apparatus, all operational data transmitted to, from and between
each of the three modules 41a, 41b and 41c, and all stored operator information, is
accessible to the external device via the two-way communication channel, as a result
of which the external apparatus (if any) may be adapted to have complete control of
the postage meter 10 as well as access to all current operational information in the
postage meter 10. In addition, the flow of messages to, from and between the three
internal modules 41a, 41b and 41c is in a predetermined, hierarchical direction. For
example, any command message from the control module 41a is communicated to the accounting
module 41b, where it is processed either for local action in the accounting module
41b and/or as a command message for the printing module 41c. On the other hand, any
message from the printing module 41c is communicated to the accounting module 41b
where it is either used as internal information or merged with additional data and
communicated to the control module 41c. And, any message from the accounting module
41b is initially directed to the printing module 41c or to the control module 41a.
A more detailed description of the various prior art modules 41a, 41b and 41c, and
various modifications thereof, may be found in U.S Patent Nos. 4,280,180; 4,280,179;
4,283,721 and 4,301,507; each of which patents is assigned to the assignee of the
present invention.
[0014] The mailing machine 12 (Fig. 2), which has a casing 19, includes a A.C. power supply
20 which is adapted by means of a power line 22 to be connected to a local source
of supply of A.C. power via a normally open main power switch 24 which may be closed
by the operator. Upon such closure, the mailing machine's D.C. power supply 26 is
energized via the power line 28. In addition, the mailing machine 12 includes a conventional
belt-type conveyor 49, driven by an A.C. motor 50, which is connected for energization
from the A.C. power supply 20 via a conventional, normally open solid state, A.C.
motor, relay 52, which is timely energized by a computer 500 for closing the relay
52. Upon such closure the A.C. motor 50 drives the conveyor 49 for feeding mailpieces
16 to the drum 38. To facilitate operator control of the switch 24, the mailing machine
preferably includes a keyboard 53 having a "start" key 53a and a "stop" key 53b, which
are conventionally coupled to the main power switch 24 to permit the operator to selectively
close and open the switch 24. Assuming the computer 500 has timely energized the relay
52, the A.C. motor 50 is energized from the A.C. power supply 20. Whereupon the conveyor
49 transports the individual mailpieces 16, at a velocity corresponding to the angular
velocity of the motor 50, in the path of travel 18 to the postage printing platen
54.
[0015] According to the invention, the machine 12 includes first and second sensing devices
respectively designated 56 and 58, which are spaced apart from each other a predetermined
distance d₁, i.e., the distance between points A and B in the path of travel 18. Preferably,
each of the sensing devices 56 and 58, is an electro-optical device which is suitably
electrically coupled to the computer 500; sensing device 56 being connected via communication
line 60 and sensing device 58 being connected via communication line 62. The sensing
devices 56, 58 respectively respond to the arrival of a mailpiece 16 at points A and
B by providing a signal to the computer 500 on communication line 60 from sensing
device 56 and on communication line 62 from sensing device 58. Thus, the rate of movement
or velocity V1 of any mailpiece 16 may be calculated by counting the elapsed time
t
v (Fig. 3) between arrivals of the mailpiece 16 at points A and B, and dividing the
distance d₁, by the elapsed time t
v. To that end, the computer 500 is programmed for continuously polling the communications
lines 60 and 62 each time instant T
n at the end of a predetermined sampling time period, T, preferably T=1 millisecond,
and to commence counting the number of time instants T
n when the leading edge of a given mailpiece 16 is detected at point A, as evidenced
by a transition signal on communication line 60, and to end counting the time instants
T
n when the given mailpiece 16 is detected at point B, as evidenced by a transition
signal on communication line 62. Since the distance d₁, is a mechanical constant of
the mailing machine 12, the velocity of the mailpiece may be expressed in terms of
the total number N
t of time instants T
n which elapse as the given mailpiece traverses the distance d₁. For example, assuming
a maximum velocity of 61 inches per second, d₁=2.75 inches and T=1 millisecond; the
total number N
t of elapsed time instants T
n may be found by dividing d₁=2.75 inches by V1=61 inches per second to obtain N
t=45, i.e., the total number of time instants T
n which elapse between arrivals of the mailpiece at points A and B. Thus, the number
N
t=45 corresponds to and is representative of a mailpiece velocity of V1=61 inches per
second.
[0016] Assuming normal operation of the transport system and calculation of the value of
V1 having been made, the time delay t
d (Fig. 3) before arrival of the mailpiece 16 at point C may be calculated by dividing
the distance d₂ between points B and C by the mailpiece's velocity V1, provided the
distance d₂ is known. Since the integral of the initial, triangularly-shaped, portion
of the velocity versus time profile is equal to one-half of the value of the product
of T
a and V₁, and is equal to the arc d₃ described by point E on the drum 38, as the drum
38 is rotated counter-clockwise to point D, the distance between points C and D is
equal to twice the arcuate distance d₃. Accordingly, d₂ may be conventionally calculated,
as may be the time delay t
d for the maximum throughput velocity. Assuming rotation of the drum 38 is commenced
at the end of the time delay t
d and the drum 38 is linearly accelerated to the velocity V1 to match that of the mailpiece
16 in the time interval T
a during which point E on the drum 38 arcuately traverses the distance d₃ to point
D, Ta may be conventionally calculated. In addition, assuming commencement of rotation
at the end of the time delay t
d and that the drum 38 is linearly accelerated to the velocity V1 during the time interval
Ta, the mailpiece 16 will arrive at point D coincident with the rotation of point
E of the outer periphery 73 the drum 38 to point D, with the result that the leading
edge 73a of the drum's outer periphery 73, which edge 73a extends transverse to the
path of travel 18 of the mailpiece 16, will engage substantially the leading edge
of the mailpiece 16 for feeding purposes and the indicia printing portion 73b of the
periphery 73 will be marginally spaced from the leading edge of the mailpiece 16 by
a distance d₄ which is equal to the circumferential distance between points E and
F on the drum 38. Since the circumferential distance d₅ on the drum 38 between points
E and G is fixed, the time interval Tc during which the drum 38 is rotated at the
constant velocity V1 may also be calculated. When point G on the drum 38 is rotated
out of engagement with the mailpiece 16, the drum 38 commences deceleration and continues
to decelerate to rest during the time interval Td. The distance d₆ which is traversed
by point G, as the drum 38 is rotated to return point E to its original position of
being spaced a distance d₃ from point D, is fixed, and, Td may be chosen to provide
a suitable deceleration rate for the drum, preferably less than Ta. In addition, a
reasonable settling time interval Ts is preferably added to obtain the overall cycling
time Tct of the drum 38 to allow for damping any overshoot of the drum 38 before commencing
the next drum cycle. For a typical maximum drum cycle time period Tct of 234 milliseconds
and a maximum mailpiece transport rate of 61 inches per second, typical values for
the acceleration, constant velocity, deceleration and settling time intervals are
Ta=37 milliseconds, T
c=124 milliseconds, Td=24 milliseconds and Ts=234-185=49 milliseconds. Utilizing these
values, the required acceleration and deceleration values for the drum 38 during the
time intervals Ta and Td may be conventionally calculated. In addition, since the
integral of the velocity versus time profile is equal to the distance traversed by
the circumference of the drum 38 during a single revolution of the drum 38, the desired
position of the drum 38 at the end of any sampling time period of T=1 millisecond
may be calculated. For target velocities V1 which are less than the maximum throughput
velocity, it is preferably assumed that integral of, and thus the area under, the
velocity versus time profile remains constant, and equal to the area thereof at the
maximum throughput velocity, to facilitate conventional calculation of the values
of the time delay t
d, the time intervals Ta, Tc and Td, and the acceleration and decceleration values
for each of such lesser velocities V1.
[0017] For computer implementation purposes, the computer 500 is programmed as hereinbefore
discussed to continously poll the communication lines 60 and 62, from the sensing
devices 56 and 58, respectively, each time interval T
n, and count the time intervals T
n between arrivals of the mailpiece 16 at points A and B as evidenced by a transition
signals on lines 60 or 62. Further, the computer 500 is programmed to calculate the
current velocity of the mailpiece 16 in terms of the total number N
t of the counted time intervals T
n, store the current velocity and, preferably, take an average of that velocity and
at least the next previously calculated velocity (if any) to establish the target
velocity V1. In addition, it is preferable that precalculated values for the time
delay td, acceleration and decceleration corresponding to each of a plurality of target
velocities be stored in the memory of the computer 500 for fetching as needed after
calculation of the particular target velocity. In this connection it is noted that
the velocity at any time "t" of the drum 38 may be expressed by adding to the original
velocity V
o each successive increment of the product of the acceleration and time during each
time period of T=1 millisecond, each successive increment of constant velocity and
each successive increment of the product of the decceleration and time during each
time period T. Preferably, the acceleration and decceleration values are each stored
in the form of an amount corresponding to a predetermined number of counts per millisecond
square which are a function of the actual acceleration or deceleration value, as the
case may be, and of the scale factor hereinafter discussed in connection with measuring
the actual angular displacement of the motor drive shaft 122; whereby the computer
500 may timely calculate the desired angular displacement of the motor drive shaft
122 during any sampling time interval T. In this connection it is noted that the summation
of all such counts is representative of the desired linear displacement of the circumference
of the drum 38, and thus of the desired velocity versus time profile of drum rotation
for timely accelerating the drum 38 to the target velocity V1, maintaining the drum
velocity at V1 for feeding the particular mailpiece 16 and timely decelerating the
drum 38 to rest.
[0018] The postage meter 10 (Fig. 1) additionally includes a conventional, rotatably mounted,
shaft 74 on which the drum 38 is fixedly mounted, and a conventional drive gear 76,
which is fixedly attached to the shaft for rotation of the shaft 74.
[0019] According to the invention, the mailing machine 12 (Fig. 1) includes an idler shaft
80 which is conventionally journaled to the casing 19 for rotation, and, operably
coupled to the shaft 80, a conventional home position encoder 82. The encoder 82 includes
a conventional circularly-shaped disc 84, which is fixedly attached to the shaft 80
for rotation therewith, and an optical sensing device 86, which is operably coupled
to the disc 84 for detecting an opening 88 formed therein and, upon such detection,
signalling the computer 500. The machine 12, also includes an idler gear 90 which
is fixedly attached to the shaft 80 for rotation therewith. Further, the machine 12
includes a D.C. motor 120, which is suitably attached to the casing 19 and has a drive
shaft 122. The machine 12 also includes a pinion gear 124, which is fixedly attached
to the drive shaft 122 for rotation by the shaft 122. The gear 124 is disposed in
driving engagement with the idler gear 90. Accordingly, rotation of the motor drive
shaft 122 in a given direction, results in the same direction of rotation of the drum
drive shaft 76 and thus the drum 38. Preferably, the pinion gear 124 has one-fifth
the number of teeth as the drum drive gear 76, whereas the idler gear 90 and drum
drive gear 76 each have the same number of teeth. With this arrangement, five complete
revolutions of the motor drive shaft 122 effectuate one complete revolution of the
drum 38, whereas each revolution of the gear 90 results in one revolution of the gear
76. Since there is a one-to-one relationship between revolutions, and thus incremental
angular displacements, of the drum shaft 74 and idler shaft 90, the encoder disc 84
may be mounted on the idler shaft 90 such that the disc's opening 88 is aligned with
the sensing device 86 when the drum 38 is disposed in its home position to provide
for detection of the home position of the drum shaft 74, and thus a position of the
drum shaft 74 from which incremental angular displacements may be counted.
[0020] For sensing actual incremental angular displacements of the motor drive shaft 122
(Fig. 1) from a home position, and thus incremental angular displacements of the drum
38 from its rest or home position as shown in Fig. 2, there is provided a quadrature
encoder 126 (Fig. 1). The encoder 126 is preferably coupled to the motor drive shaft
122, rather than to the drum shaft 74, for providing higher mechanical stiffness between
the armature of the d.c. motor 120 and the encoder 126 to avoid torsional resonance
effects in the system. The encoder 126 includes a circularly-shaped disc 128, which
is fixedly attached to the motor drive shaft 122 for operably connecting the encoder
126 to the motor 120. The disc 128 (Fig. 4) which is otherwise transparent to light,
has a plurality of opaque lines 130 which are formed on the disc 128 at predetermined,
equidistantly angularly-spaced, intervals along at least one of the dics's opposed
major surfaces. Preferably the disc 128 includes one hundred and ninety-two lines
130 separated by a like number of transparent spaces 132. In addition, the encoder
126 includes an optical sensing device 134, which is conventionally attached to the
casing 19 and disposed in operating relationship with respect to the disc 128, for
serially detecting the presence of the respective opaque lines 130 as they successively
pass two reference positions, for example, positions 136ra and 136rb, and for responding
to such detection by providing two output signals, one on each of communications lines
136a and 136b, such as signal A (Fig. 5) on line 136a and signal B on line 136b. Since
the disc 128 (Fig. 4) includes 192 lines 130 and the gear ratio of the drum drive
gear 76 (Fig. 1) to the motor pinion gear 124 is five-to-one, nine hundred and sixty
signals A and B (Fig. 5) are provided on each of the communications lines 136a and
136b during five revolutions of the motor drive shaft 122, and thus, during each cycle
of rotation of the drum 38. Since the angular distance between successive lines 130
(Fig. 4) is a constant, the time interval between successive leading edges (Fig. 5)
of each signal A and B is inversely proportional to the actual velocity of rotation
of the motor drive shaft (Fig. 1) and thus of the drum 38. The encoder 126 is conventionally
constructed and arranged such that the respective reference positions 136a and 136b
(Fig. 4) are located with respect to the spacing between line 130 to provide signals
A and B (Fig. 5) which are 90 electrical degrees out of phase. Accordingly, if signal
A lags signal B by 90° (Fig. 5) the D.C. motor shaft 122 (Fig. 1), and thus the drum
38, is rotating clockwise, whereas if signal A leads signal B by 90° (Fig. 5) the
shaft 122 and drum 38 are both rotating counter-clockwise. Accordingly, the angular
displacement in either direction of rotation of the drum 38 (Fig. 1) from its home
position may be incrementally counted by counting the number of pulses A or B, (Fig.
5) as the case may be, and accounting for the lagging or leading relationship of pulse
A (Fig. 5) with respect to pulse B.
[0021] The quadrature encoder communication lines, 136a and 136b (Fig. 1), may be connected
either directly to the computer 500 for pulse counting thereby or to the computer
500 via a conventional counting circuit 270 (Fig. 6), depending on whether or not
the internal counting circuitry of the computer 500 is or is not available for such
counting purposes in consideration of other design demands of the system in which
the computer 500 is being used. Assuming connection to the computer 500 via a counting
circuit 270, the aforesaid communications lines, 136a and 136b are preferably connected
via terminals A and B, to the counting circuit 270.
[0022] In general, the counting circuit 270 (Fig. 6) utilizes the pulses A (Fig. 5) to generate
a clock signal and apply the same to a conventional binary counter 274 (Fig. 6), and
to generate an up or down count depending on the lagging or leading relationship of
pulse A (Fig. 5) relative to pulse B and apply the up or down count to the binary
counter 274 (Fig. 6) for counting thereby. More particularly, the pulses A and B (Fig.
5) which are applied to the counting circuit terminals A and B (Fig. 6) are respectively
fed to Schmidt trigger inverters 276A and 276B. The output from the inverter 276A
is fed directly to one input of an XOR gate 278 and additionally via an R-C delay
circuit 280 and an inverter 282 to the other input of the XOR gate 278. The output
pulses from the XOR gate 278, which acts as a pulse frequency doubler, is fed to a
conventional one-shot multivibrator 284 which detects the trailing edge of each pulse
from the XOR gate 278 and outputs a clock pulse to the clock input CK of the binary
counter 274 for each detected trailing edge. The output from the Schmidt trigger inverters
276A and 276B are respectively fed to a second XOR gate 286 which outputs a low logic
level signal (zero), or up-count, to the up-down pins U/D of the binary counter 274
for each output pulse A (Fig. 5) which lags an output pulses B by 90 electrical degrees.
On the other hand the XOR gate 286 (Fig. 6) outputs a high logic level (one) or down-count,
to the up-down input pins of the binary counter 274 for each encoder output pulse
A (Fig. 5) which leads an output pulse B by 90° electrical degrees. Accordingly, the
XOR gate 286 (Fig. 6) provides an output signal for each increment of angular displacement
of the encoded shaft 122 (Fig. 1) and identifies the direction, i.e., clockwise or
counter-clockwise, of rotation of the encoded shaft 122. The binary counter 274 (Fig.
6) counts the up and down count signals from the XOR gate 286 whenever any clock signal
is received from the multivibrator 284, and updates the binary output signal 272 to
reflect the count.
[0023] Accordingly, the counting circuit 270 converts the digital signals A and B, which
are representative of incremental angular displacements of the drive shaft 122 in
either direction of rotation thereof, to an eight bit wide digital logic output signal
272 which corresponds to a summation count at any given time, of such displacements,
multiplied by a factor of two, for use by the computer 500. Since the angular displacement
of the shaft 122 from its home position is proportional to the angular displacement
of the drum 38 from its home position, the output signal 272 is a count which is proportional
to the actual linear displacement of the outermost periphery of the drum 38 at the
end of a given time period of rotation of the drum 38 from its home position. For
a typical postage meter drum 38, having a circumference, i.e., the arc described by
the outermost periphery of the drum 38 in the course of revolution thereof, of 9.42
inches, which is connected to the motor drive shaft 122 via a mechanical transmission
system having a 5:1 gear ratio between the motor 120 and drum 38, wherein the encoder
disc 128 has 192 lines; the counting circuit 270 will provide an output of 2 x 192
= 384 counts per revolution of the shaft 122, and 5 x 384 = 1920 counts per revolution
of the drum 38 which corresponds to 203.82 counts per inch of linear displacement
of the periphery of the drum. Accordingly, the maximum mailpiece transport velocity
of V1 = 61(10⁻³) inches per millisecond may be multiplied by a scale factor of 203.82
counts per inch to express the maximum transport velocity in terms of counts per millisecond,
or, counts per sampling time period T where T=1 millisecond; i.e., 61(10⁻³) inches
per millisecond times 203.82 counts per inch = 12.43 counts per sampling time period
T. Similarly, any other target velocity V1, or any acceleration or deceleration value,
may be expressed in terms of counts per sampling time interval T, or counts per square
millisecond, as the case may be, by utilization of the aforesaid scale factor.
[0024] For energizing the D.C. motor 120 (Fig. 1) there is provided a power amplifying circuit
300. The power amplifying circuit 300 (Fig. 7) is conventionally operably connected
to the motor terminals 302 and 304 via power lines 306 and 308 respectively. The power
amplifying circuit 300 preferably comprises a conventional, H-type, push-pull, control
signal amplifier 301 having input leads A, B, C and D, a plurality of optical-electrical
isolator circuits 303 which are connected on a one-for-one basis between the leads
A-D and four output terminals of the computer 500 for coupling the control signals
from the computer 500 to the input leads A, B, C, and D of the amplifier 301, and
a plurality of conventional pull-up resistors 305 for coupling the respective leads
A-D to the 5 volt source. The amplifier 301 includes four conventional darlington-type,
pre-amplifier drive circuits including NPN transistors T1, T2, T3 and T4, and four,
conventional, darlington-type power amplifier circuits including PNP transistors Q1,
Q2, Q3 and Q4 which are respectively coupled on a one-for-one basis to the collectors
of transistors T1, T2, T3 and T4 for driving thereby. The optical-electrical isolator
circuits 303 each include a light emitting diode D1 and a photo-responsive transistor
T5. The cathodes of D1 are each connected to the 5 volt source, the emitters of T5
are each connected to ground and the collectors of T5 are each coupled, on a one-for-one
basis, to the base of one of the transistors T1, T2, T3 and T4. With respect to each
of the opto-isolator circuits 303, when a low logic level signal is applied to the
anode of D1, D1 conducts and illuminates the base of T5 thereby driving T5 into its
conductive state; whereas when a high logic level signal is applied to the anode of
D1, D1 is non-conductive, as a result of which T5 is in its non-conductive state.
With respect to each of the combined amplifier circuits, T1 and Q1, T2 and Q2, T3
and Q3, and T4 and Q4, when the lead A, B, C or D, as the case may be, is not connected
to ground via the collector-emitter circuit of the associated opto-isolator circuit's
transistor T5, the base of T1, T2, T3 or T4, as the case may be, draws current from
the 5 volt source via the associated pull-up resistor 305 to drive the transistor
T1, T2, T3 or T4, as the case may be, into its conductive state. As a result, the
base of transistor Q1, Q2, Q3 or Q4, as the case may be, is clamped to ground via
the emitter-collector circuit of its associated driver transistor T1, T2, T3 or T4,
thereby driving the transistor Q1, Q2, Q3 or Q4, as the case may be, into its conductive
state. Contrariwise, the transistor pairs T1 and Q1, T2 and Q2, T3 and Q3, and T4
and Q4 are respectively biased to cut-off when lead A, B, C or D, as the case may
be, is connected to ground via the collector-emitter circuit of the associated opto-isolator
circuit's transistor T5. As shown in the truth table (Fig. 8) for clockwise motor
rotation, Q1 and Q4 are turned on and Q2 and Q3 are turned off; whereas for counter-clockwise
motor rotation, Q2 and Q3 are turned on and Q1 and Q4 are turned off. Accordingly,
for clockwise motor rotation: terminal 302 (Fig. 7) of the motor 120 is connected
to the 30 volt source via the emitter-collector circuit of Q1, which occurs when Q2
is turned off and the base of Q1 is grounded through the emitter-collector circuit
of T1 due to the base of T1 drawing current from the 5 volt source in the presence
of a high logic level control signal at input terminal A; and terminal 304 of the
motor 120 is connected to ground via the emitter-collector circuit of Q4, which occurs
when Q3 is turned off and the base of Q4 is grounded through the emitter-collector
circuit of T4 due to the base of T4 drawing current from the 5 volt source in the
presence of a high logic level signal at the input terminal D. On the other hand,
for counter clockwise rotation of the motor 120: terminal 302 of the motor 120 is
connected to ground via the emitter-collector circuit of Q2, which occurs when Q1
is turned off and the base of Q2 is grounded through the emitter-collector circuit
of T2 due to the base of T2 drawing current from the 5 volt source in the presence
of a high logic level control signal at the input terminal B; and terminal 304 of
the motor 120 is connected to the 30 volt source via the emitter-collector circuit
of Q3, which occurs when Q4 is turned off and the base of Q3 is grounded through the
emitter-collector of T3 due to the base of T3 drawing current from the 5 volt source
in the presence of a high logic level control signal at the input terminal C. For
turning off the respective powers transistors Q1-Q4, on a two at a time basis, low
level control signals are applied on a selective basis to the two terminals B and
C, or A and D, as the case may be, to which high logic control level signals are not
being applied; which occurs when the opto-isolator circuit's transistors T5 associated
with the respective leads B and C or A and D are driven to their conductive states.
When this occurs the bases of the transistors T2 and T3, or T1 and T4, as the case
may be, are biased to open the emitter-collectors circuits of the transistors T2 and
T3, or T1 and T4, as the case may be, as a result of which the bases of the transistors
Q2 and Q3, or Q1 and Q4, as the case may be, are biased to open the emitter-collector
circuits of transistors Q2 and Q3, or Q1 and Q4, as the case may be.
[0025] The velocity of the motor 120 (Fig. 7) is controlled by modulating the pulse width
and thus the duty cycle of the high logic level, constant frequency, control signals,
i.e., pulse width modulated (PWM) signals, which are timely applied on a selective
basis to two of the leads A-D, while applying the low level logic signals to those
of leads A-D which are not selected. For example, assuming PWM signals (Fig. 9) having
a 50% duty cycle are applied to leads A and D (Fig. 7), and low level logic signals
are applied to leads B and C, for clockwise rotation of the motor 120, the velocity
of the motor 120 will be greater than it would be if high logic level PWM signals
(Fig. 9) having a 25% duty cycle were similarly applied and will be less than it would
be if high logic level PWM signals having a 75% duty cycle were similarly applied.
Accordingly, assuming rotation of the motor 120 (Fig. 7) is commenced by utilizing
high logic level PWM signals having a given duty cycle percentage, the velocity of
the motor 120 may be decreased or increased, as the case may be, by respectively decreasing
or increasing the duty cycle percentage of the applied high logic level PWM signals.
Further, assuming the motor 120 is rotating clockwise due to PWM signals having a
selected positive average value being applied to leads A and D, in combination with
low level logic signals being applied to leads B and C, the motor 120 may be dynamically
braked by temporarily applying high level PWM signals having a selected duty cycle
corresponding to a given positive average value to leads B and C, in combination with
low logic signals being applied to leads A and D. To avoid damage to the power transistors
Q1, Q2, Q3 and Q4 which might otherwise result, for example, due to current spikes
accompanying back emf surges which occur in the course of switching the circuit 301
from one mode of operation to the other, the emitter-collector circuits of the power
transistors Q1, Q2, Q3 and Q4 are respectively shunted to the 30 volt source by appropriately
poled diodes, D1, D2, D3 and D4 connected across the emitter-collector circuits of
Q1, Q2, Q3 and Q4.
[0026] To control the motion of the drum 38 (Fig. 1) during each cycle of drum rotation,
the D.C. motor 120 and its shaft encoder 126 are respectively connected to the computer
500 via the power amplifier circuit 300 and the counting circuit 270. And the computer
500 is programmed to calculate the duration of and timely apply PWM control signals
to the power amplifier circuit 300 after each sampling time instant Tn, utilizing
an algorithm based upon a digital compensator D(s) derived from analysis of the motor
120, motor load 38, 74, 76, 90 and 124 amplifying circuit 300, encoder 126, counting
circuit 270, and the digital compensator D(s) in the closed-loop, sampled-data, servo-control
system shown in Fig. 10.
[0027] With reference to Fig. 10, in general, at the end of each predetermined sampling
time period of T=1 millisecond, the eight bit wide count representing the angular
displacement of the motor drive shaft 122, and thus the drum 38, from its home position
is sampled by the computer 500 at the time instant Tn. Under the control of the program
of the computer 500 (Fig. 10), a summation is taken of the aforesaid actual count
and the previously calculated count representing the desired position of the motor
drive shaft 122, and thus the drum 38, at the end of the time period T, and, under
control of the computer program implementation of the algorithm, a PWM control signal
which is a function of the summation of the respective counts, or error, is applied
to the power amplifier circuit 301 for rotating the motor drive shaft 122 such that
the error tends to become zero at the end of the next sampling time period T.
[0028] To derive the algorithm, the servo-controlled system of Fig. 10 is preferably analyzed
in consideration of its equivalent Laplace transformation equations shown in Fig.
11, which are expressed in terms of the following Table of Parameters and Table of
Assumptions.
Table I
Parameters |
Parameter |
Symbol |
Value and/or Dimension |
Zero-Order-Hold |
ZOH |
None |
Laplace Operator |
S |
jw |
Sampling Interval |
T |
Milliseconds |
PWM D.C. Gain |
Kv |
Volts |
PWM Pulse Amplitude |
Vp |
5 Volts |
PWM Pulse Width |
t₁ |
10⁻⁶ Microseconds |
Power Switching Circuit Gain |
Ka |
None |
Motor back e.m.f. Constant |
Ke |
0.63 Volts/ radian/second |
Motor Armature Resistance |
Ra |
1.65 Ohms |
Motor Armature Moment of Inertia |
Ja |
2.12 (10⁻⁵) Kilograms·meter² |
Motor Torque Constant |
Kt |
0.063 Newton-Meters/amp |
Drum Moment of Inertia |
J₁ |
70.63 (10⁻⁵) Kilograms·meter² |
Gear Ratio, Motor to Load |
G |
5:1, None |
Motor Armature Inductance |
La |
2.76 Millihenrys |
Motor Shaft Encoder Gain |
Kp |
Counts/radian |
Motor Shaft Encoder Constant |
Kb |
192 Lines/ revolution |
Counting Circuit Multiplier |
Kx |
2, None |
Motor Gain |
Km |
16, None |
Poles in frequency domain |
f₁;f₂ |
48;733 Radians/ second |
Starting Torque Gain |
Kc |
None |
System Overall Gain |
Ko |
None |
Table II
Assumptions |
ZOH: |
Since the output and input are held constant during each sampling period a zero-order-hold
is assumed to approximate the analog time function being sampled. |
Veq.: |
Since the integral of the voltage in time is assumed equal to the area under the PWM
pulse, the output from the PWM is linear. |
[0029] With reference to Fig. 10, D(S) is the unknown transfer function of an open loop
compensator in the frequency domain. Due to a key factor for providing acceptably
fast motor response being the system's resonance between the motor and load, the derivation
of the transfer function D(S) for stabilization of the system is preferably considered
with a view to maximizing the range of frequencies within which the system will be
responsive, i.e., maximizing the system's bandwidth, BW. For calculation purposes
a sampling period of T=1 millisecond was chosen, due to having chosen a Model 8051
microprocessor, available from Intel Corporation, Palo Alto California, for control
purposes, and inasmuch as the Model 8051 microprocessor equipped with a 12 MHz crystal
for providing a clock rate of 12 MHz, is able to conveniently implement a 1 KHz sampling
rate and also implement application software routines, after control algorithm iterations,
during the sampling period of T=1 millisecond. However, other sampling periods and
other conventional microprocessors may be utilized without departing from the spirit
and scope of the invention.
[0030] The open loop system gain H₁(S) without compensation, of the servo-loop system of
Fig. 10 is shown in Fig. 12(a). To tolerate inaccuracies in the transmission system
between the motor and drum load, such as backlash, it was considered acceptable to
maintain a steady-state count accuracy of plus or minus one count. To reflect this
standard, the gain equation of Fig. 12(a) was adjusted to provide a corrective torque
C
t with a motor shaft movement, in radians per count, equivalent to the inverse expressed
in radians per count, of the gain K
p of the encoder counting circuit transform. Since the corrective torque C
t is primarily the friction of the transmission system which has to be overcome by
the motor at start-up, the value of C
t may be assumed to be substantially equal to a maximum estimated numerical value based
on actual measurements of the starting friction of the system, i.e., 35 ounce-inches,
as a result of which a numerical value of the starting voltage V
s may be calculated from the expression

, i.e., V
s = 6.5 volts, which, in turn, permits calculation of a numerical value for the minimum
overall system gain K
o, at start-up, from the equation K
o = V
s/K
p, i.e., K
o = 397 volts per radian, or for simplication purposes, 400 volts/radian. Accordingly,
the open-loop uncompensated gain H₁(S) may be rewritten as H₂(S) as shown in Fig.
12(b), in which a gain factor of K
c has been included, to account for the torque C
t and the value of K
o is substituted for the overall D.C, gain, i.e.,

. Although the numerical value of K
c may also be calculated, it is premature to do so, since it has not as yet been established
that K
o, which has been adjusted by the value of K
c to provide a minimum value of K
o, is acceptable for system stability and performance purposes. Otherwise stated, K
o may not be the overall system gain which is needed for system compensation for maximizing
the system bandwidth BW, as a result of which it is premature to conclude that K
c will be equivalent to the D.C. gain of the system compensator D(S).
[0031] At this juncture, the Bode diagram shown in Fig. 13, may be constructed due to having
calculated a minimum value for K
o. As shown in Fig. 13, the absolute value of H₂(S), in decibels, has been plotted
against the frequency W in radians per second, based on the calculated minimum value
of K
o, the selected value of T and calculated values of the poles f₁ and f₂. From the Bode
diagram, a numerical value of the cross-over frequency W
c1 of the Bode plot of H₂(S) may be determined, i.e., W
c1 was found to be substantially 135 radians per second. And, since the value of W
c1 is substantially equal to the bandwidth BW
u of the uncompensated open-loop system H₂(S), a calculation may be made of the phase
margin ϑ
m of the uncompensated system from the expression

, or, otherwise stated:

. From this calculation, there was obtained a phase margin value which was much,
much, less (i.e., 5°) than 45°, which, for the purposes of the calculations was taken
to be a minimum desirable value for the phase margin φ
m in a position-type servo system. Accordingly, it was found that the uncompensated
system H₂(S) was unstable if not compensated. Since an increase in phase lead results
in an increase in bandwidth BW, and the design criteria calls for maximizing the bandwidth
BW and increasing the phase margin to at least 45°; phase lead compensation was utilized.
[0032] By definition, a phase lead compensator D(S) has the Laplace transform shown in Fig.
14, wherein K
c is the phase lead D.C. gain, and f
z and f
p are respectively a zero frequency and a pole frequency. Adding the transfer function
of the phase lead compensator D(S) to the Bode plot of the uncompensated system's
transfer function H₂(S), results in the Bode plot of the compensated system transfer
function H₃(S), if the zero frequently f
z of the phase lead compensator D(S) is chosen to be equivalent to f₁ in order to cancel
the lag due to the mechanical time constant of the uncompensated transfer function
H₂S. As shown in Fig. 13, the cross-over frequency W
c2 for the compensated system H₃(S) may be read from the Bode diagram, i.e., W
c2 was found to be substantially equal to 400 radians per second. And, since by definition
the cross over frequency W
c2 lies at the geometric mean of f
p and f
z, the value of the f
p may be established by doubling, from f
z, the linear distance between W
c2 and f
z, as measured along the logarithmic frequency axis, W, and reading the value of f
p from the Bode diagram, i.e., f
p was found to be substantially equal to 3,400 radians per second. Since numerical
values may thus be assigned to both W
c2 and f
p from the Bode diagram, the compensated phase margin φ
mc, i.e., the phase margin for the phase lead compensated system H₃(S) in which f
z has been equated to f₁, may be found from the expression


. Upon calculating the compensated phase margin φ
mc it was found to be 50° and, therefore, greater than the minimum phase margin criteria
of 45°. In addition, the value of W
c2 for the compensated system H₃(S) was found to be substantially three times that of
the uncompensated system H₂(S), as a result of which the bandwidth BW of the system
H(S) was increased by a factor of substantially three to BW
c.
[0033] At this juncture, the compensated system H₃(S) is preferably analyzed with reference
to the system's overshoot O
s and settling time t
s based on a calculation of the system damping factor d
f and the assumption that the system will settle in five times constants, i.e., t
s=5t
x. The relevant values may be calculated or estimated, as the case may be, from the
expressions, for d
f, o
s, t
x and t
s shown in Fig. 15. In connection with this analysis, reference is also made to the
typical mailing machines hereinbefore described, wherein a maximum drum cycle time
period T
ct (Fig. 3) of 234 milliseconds and a maximum mailpiece transport speed (Fig. 2) of
61 inches per second are typical values. Assuming the velocity profile of Fig. 3,
and, as previously discussed an acceleration time period of T
a=37 milliseconds, a constant velocity time period of T
c=124 milliseconds and deceleration time period of T
d=24 milliseconds, the longest permissible settling time for the system was calculated,
i.e.,

milliseconds. For analysis purposes a series of calculations of the aforesaid system
characteristics and phase margin were performed, assuming incremental increases in
the overall system gain K
o, while holding f
z=f₁. The results of such calculations are shown in the following Table III.
Table III
H₃(S) with fz=f₁ |
Ko=system gain |
Wc=BW (rad./sec.) |
ϑm=phase Margin (deg.) |
Os=overshoot (percent) |
ts=settling time (ms) |
400 |
400 |
50 |
28 |
28.67 |
447 |
450 |
46 |
31 |
27.78 |
501 |
500 |
42 |
34 |
27.50 |
562 |
550 |
38 |
38 |
27.41 |
[0034] As shown in Table III, the system bandwidth BW may be maximized at 450 radians per
second while maintaining a phase margin φ
m of at least 45° the two design criteria discussed above. Although this results in
an increase in system overshoot O
s accompanied by a negligible decrease in the settling time t
s, the settling time t
s is well within the maximum allowable settling time, T
s=49 milliseconds. On the other hand, if a bandwidth of 400 radians per second is acceptable,
it is desirable to reduce the percentage of overshoot O
s, and increase the phase margin to ϑ
mc=50 to provide for greater system stability than would be available with a phase margin
value (i.e., 46°) which is substantially equal to the design criteria minimum of 45°;
in which instance it is preferable to choose the bandwidth of BW=400 radians per second,
overshoot of O
s=28% and compensated phase margin of ϑ
mc=50°. For the example given, a compensated Bandwidth of BW
c=400 radians per second is acceptable inasmuch as worst case load conditions were
assumed. In this connection it is noted that the foregoing analysis is based on controlling
a postage meter drum, which has a high moment of inertia, contributes high system
friction, and calls for a cyclical start-stop mode of operation during which the load
follows a predetermined displacement versus time trajectory to accommodate the maximum
mailpiece transport speed in a typical mailing machine. Accordingly, the compensated
system bandwidth BW
c=400 radians per second may be chosen, as a result of which the overall system gain
K
o may be fixed at K
o=400, and the value of K
c may be calculated from the expression

. Since f
z=f₁, and f₁ and f
p are also known, the Bode plot of the compensator D(S), Fig. 14, may be added to the
Bode diagram (Fig. 13) wherein the system compensator D(S) is shown as a dashed line.
[0035] Since the analog compensator D(S) was derived in the frequency domain, D(S) was converted
to its Z-transform equivalent D(Z) in the sampled data domain for realization in the
form of a numerical algorithm for implementation by a computer. Of the numerous well-known
techniques for transforming a function in the frequency domain to a function in the
sampled-data domain, the bi-linear transformation may be chosen. For bi-linear transformation
purposes the Laplace operator S is defined by the expression shown in Fig. 16. Using
the values K
c=13.64, f
z=f₁=48, and f
p=3,400 in the expression for D(S) shown in Fig. 14, and substituting the bi-linear
transformation expression for S shown in Fig. 16 and the sampling interval T=1 millisecond,
in the expression shown in Fig. 14 results in the expression for D(Z) shown in Fig.
17. As shown in Fig. 11, D(T)=output/input=g(T)/e(T), which, in the sampled data domain
is expressed by the equation

. Accordingly, the expression for D(Z) shown in Fig. 17 may he rewritten as shown
in Fig. 18a. Cross-multiplying the equivalency of Fig. 18a results in the expression
shown in Fig. 18b, which defines the output G(Z) in the sampled data domain of the
system compensator D(S). Taking the inverse Z-transform of the expression shown in
Fig. 18b, results in the expression shown in Fig. 19 which defines the output G(T
n) in the time domain of the system compensator D(S), and is a numerical expression
of the algorithm to be implemented by the computer for system compensation purposes.
As shown by the expression in Fig. 19 and in the following Table IV the output of
the digital compensator for any current sampling instant T
n is a function of the position error at the then current sampling time instant T
n, is a function of the position error at the end of the next previous sampling time
instant T
n-1 and is a function of the algorithm output at the end of the next previous sampling
time instant T
n-1.
TABLE IV
Function |
Definition |
G(Tn) |
Algorithm output for current sampling time instant Tn |
E(Tn) |
Position error for current sampling time instant Tn |
G(Tn-1) |
Algorithm output for next previous sampling time instant Tn-1 |
E(Tn-t) |
Position error for next previous sampling time instant Tn-1 |
K₁, K₂ & K₃ |
Constants of the compensated system which are a function of the parameters of the
motor load and system friction for a sampling time period of T=1 millisecond. |
[0036] Accordingly, the algorithm which is to be implemented by the computer 500 for system
compensation purposes is a function of a plurality of historical increments of sampled
data for computing an input value for controlling a load to follow a predetermined
position trajectory in a closed loop sampled-data servo-control system.
[0037] As shown in Fig. 20 the computer 500 preferably includes a conventional, inexpensively
commercially available, high speed microprocessor 502, such as the Model 8051 single
chip microprocessor commercially available from Intel Corporation, 3065 Bowers Avenue,
Santa Clara, California 95051. The microprocessor 502, generally comprises a plurality
of discrete circuits, including those of a control processor unit or CPU 504, an oscillator
and clock 506, a program memory 508, a data memory 510, timer and event counters 512,
programmable serial ports 514, programmable I/O ports 516 and control circuits 518,
which are respectively constructed and arranged by well known means for executing
instructions from the program memory 508 that pertain to internal data, data from
the clock 506, data memory 510, timer and event counter 512, serial ports 514, I/O
ports 514 interrupts 520 and/or bus 522 and providing appropriate outputs from the
clock 506, serial ports 514, I/O ports 516 and timer 512. A more detailed discussion
of the internal structural and functional characteristics and features of the Model
8051 microprocessor, including optional methods of programming port 3 for use as a
conventional bi-directional port, may be found in the Intel Corporation publication
entitled MCS-51 Family of Single Chip Microcomputers Users Manual, dated January 1981.
[0038] For implementing the sampling time period of T=1 millisecond, one of the microprocessor's
timer and event counters 512 (Fig. 20) is conventionally programmed as a sampling
time period clock source. To that end, a timer 512 is programmed for providing an
interrupt signal each 250 microseconds, and each successive fourth interrupt signal
is utilized as a clock signal for timing the commencement of successive sampling time
periods of T=1 millisecond.
[0039] In general, as shown in Fig. 21, at the commencement of each sampling time period
of T=1 millisecond, during the sampling instant T
n, a sample is taken of the count representative of the actual angular displacement
of the motor drive shaft and, substantially immediately thereafter, the actual count
is summed with the count representative of the desired angular displacement of the
motor drive shaft which was calculated during the next preceeding time period T in
order to obtain the then current error value E(T
n) for calculating the then current compensation algorithm output value G(T
n). Due to the recursive mathematical expression for G(T
n) [Fig. 19] being a function of the then current error value E(T
n), the next previous error value E(T
n-1) and the next previous compensation algorithm output value G(T
n-1), the expression for G(T
n) is preferably separated into two components for calculation purposes, i.e.,

; wherein

, and wherein

, to permit calculation of the value of g₂ in advance of the time period T when it
is to be added to the value of g₁ for calculating the value of G(T
n), thereby reducing to a negligible value (in view of the time period T) the time
delay T
dy before completion of sampling the actual displacement of the motor drive shaft at
the instant T
n and applying the PWM motor control signal to the output ports of the microprocessor.
For example, when calculating the value of G(T
n) based upon the first error value resulting from the summation of the counts representing
the desired and actual angular displacements of the motor drive shaft, the value of
g₂ is by definition equal to zero since the error signal E(T
n-1) is equal to zero, due to the desired and actual angular displacement values during
the next previous sampling time period T having been equal to each other. Accordingly,
upon obtaining the value of the first error signal E₁(T
n), the value of G₁(T
n) may be calculated as being equivalent to g₁, i.e.,

. And, upon calculating G₁(T
n) the value of g₂ for use in calculating the next successive compensation algorithm
output value G(T
n+1) may be calculated for subsequent use, since

are all known values. In addition, during any given time period T, a calculation
may be made of the desired angular displacement of the motor drive shaft for the next
subsequent time period T. Preferably, the microprocessor is programmed for implementation
of the aforesaid calculation process to facilitate early utilization of the compensation
algorithm output value G(T
n) for driving the D.C. motor. Accordingly, the microprocessor is preferably programmed
for: during the first sampling time period T₁, sampling the count representative of
the actual angular displacement of the motor drive shaft at the time instant T
n, then taking the summation of that count and the previously calculated value of the
desired angular displacement of the motor drive shaft to obtain the first error value
E₁(T
n), then calculating the first compensation algorithm output value


, wherein g₂=0, and generating a PWM motor control signal representative of G₁(T
n), then calculating the value of g₂ for the next sampling time period, i.e.,

, and then calculating the count representing the desired angular displacement of
the motor drive shaft for use during the next sampling time period T₂; during the
second sampling time period T₂, sampling the count representative of the actual angular
displacement of the motor drive shaft and taking the summation of that count and the
previously calculated desired count to obtain the error value E₂(T
n+1), calculating the compensation algorithm output value

G₁(T
n), and generating a PWM motor control signal representative thereof, then calculating
the value of g₂ for the next sampling time period T₃, i.e.,

, and then calculating the count representative of the desired angular displacement
of the motor drive shaft for use during the time period T₃; and so on, during each
successive sampling time period.
[0040] Accordingly, as shown in Fig. 21, the microprocessor is programmed for immediately
after calculating the then current compensation algorithm output value G(T
n), and thus while the calculation of the value of g₂ for the next sampling time period
is in progress, generating a motor control signal for energizing the power amplifier.
For this purpose, the relative voltage levels of motor control signal are determined
by the sign, i.e., plus or minus, of the compensation algorithm output value G(T
n), and the duty cycle of the control signal is determined by the absolute value of
the compensation algorithm output value G(T
n). Preferably, for timing the duration of the motor control signal, the other timer
and event counter 512, i.e., the timer 512 which was not used as a sampling time period
clock source, is utilized for timing the duration of the duty cycle of the motor control
signal. For example, by loading the absolute value of the G(T
n) into the other timer 512, commencing the count, and timely invoking an interrupt
for terminating the duty cycle of the control signal. As shown in Fig. 21(c), the
time delay T
dy from commencement of the time period T to updating the PWM motor control signal at
the output ports of the microprocessor is substantially 55 microseconds, and the time
interval allocated for calculating the value of g₂ and the count representative of
the desired angular displacement of the motor drive shaft for use during the next
time period is substantially 352 microseconds. As a result, substantially 593 microseconds
of microprocessor calculation time is available during any given sampling time period
T=1 millisecond for implementing non-motor control applications.
[0041] As shown in Fig. 22 the computer 500 is preferably modularly constructed for segregating
the components of the logic circuit 501a and analog circuit 501b of the computer 500
from each other. To that end, the respective circuits 501a and 501b may be mounted
on separate printed circuit boards which are electrically isolated from each other
and adapted to be interconnected by means of connectors located along the respective
dot-dash lines 516, 527 and 528. In any event, the components of the logic circuit
521a and analog circuit 521b are preferably electrically isolated from each other.
To that end, the logic circuit 501a preferably includes 5V and ground leads from the
mailing machine's power supply for providing the logic circuit 501a with a local 5
volt source 530 having 5V and GND leads shunted by filter capacitors C1 and C2. And
the analog circuit 501b includes 30 volt and ground return leads from the mailing
machine's power supply for providing the analog circuit 501b with a local 30 volt
source 536 including 30V and GND leads shunted by filter capacitors C3 and C4. In
addition, the analog circuit 501b includes a conventional 30 volt detection circuit
542 having its input conventionally connected to the analog circuit's 30 volt source
536, and its output coupled to a power up/down lead from the analog circuit via a
conventional optical-electrical isolator circuit 544. Further, to provide the analog
circuit 501b with a local 5 volt source 546, the analog circuit 501b is equipt with
a conventional regulated power supply having its input appropriately connected to
the analog circuit's 30 volt source 536 via a series connected resistor R1 and a 5
volt, voltage regulator 548. A zener diode D1, having its cathode shunted to ground
and having its anode connected to the input of the 5V regulator 548 and also connected
via the resistor R1 to the 30 volt terminal line, is provided for maintaining the
input to the 5V regulator 548 at substantially a 5 volt level. In addition, a pair
of capacitors C5 and C6 are provided across the output of the regulator 548 for filtration
purposes.
[0042] To accommodate interfacing the postage meter's computer 41 (Fig. 1) with the computer
500, any two available ports of the computer 41 may be programmed for two-way serial
communications purposes and coupled to the computer 500. For example, the postage
meter's printing module 41a may be conventionally modified to include an additional
two-way serial communications channel for communication with the computer 500.
[0043] Assuming the latter arrangement, serial input communications to the computer 500
(Fig. 22) are received from the postage meter computer's printing module 41c via the
serial input lead to the logic circuit 501a (Fig. 22), which is operably coupled to
port P3₀ of the microprocessor 502 by means of a conventional inverting buffer circuit
550. Accordingly, port P3₀ is preferably programmed for serial input communications,
and the input to the buffer circuit 550 is resistively coupled to the logic circuit's
5 volt source 530 via a conventional pull-up resistor R2. Serial output communications
from the microprocessor 502 are transmitted from port P3₁. Accordingly, port P3₁ is
preferably programmed for serial output communications, and is operably coupled to
the input of a conventional inverting buffer 552, the output of which is resistively
coupled to the logic circuit's 5V source 530 via a suitable pull-up resistor R2 and
is additionally electrically connected to the serial output lead from the logic circuit
501a.
[0044] Since it is preferable that the microprocessor 502 be reset in response to energization
of the logic circuit 501a, the logic circuit's 5V source 530 is connected in series
with an R-C delay circuit and a conventional inverting buffer circuit 554 to the reset
pin, RST, of the microprocessor 502. The R-C circuit includes a suitable resistor
R3 which is connected in series with the logic circuit's local 5V source 530 and a
suitable capacitor C7 which has one end connected between the resistor R3 and the
input to the buffer circuit 554, and the other end connected to the logic circuit's
ground return.
[0045] In addition to the VCC and GND (i.e., VSS) terminals of the microprocessor 502 being
respectively conventionally connected to the logic circuit's 5 volt source and ground,
since the microprocessor 502 does not utilize an external program memory, the

terminal is connected to the logic circuit's 5V source. And, since no other external
memory is used, the program storage enable and address latch enable terminals, PSEN
and ALE are not used. In addition to the

terminal being available for future expansion, ports Pl₅-Pl₇, ports P2₀-P2₇, the read
and write terminals,


and


, and one of the interupt terminals INTO/P3₂ are also available for future expansion.
[0046] In general, the microprocessor 502 is programmed for receiving input data from the
postage meter drum's home position encoder 82 each of the envelope sensors 56, 58
and the D.C. motor shaft encoder 126, and, in response to a conventional communication
from the postage meter's printing module 41c, timely energizing the D.C. motor under
the control of the CPU of the microprocessor 502. Port P0 is programmed for receiving
a transition signal representative of the disposition of the postage meter's drum
38 at its home position; transition signals from the envelope sensors 56 and 58 which
represent detection of the leading edge of a mailpiece or other sheet 16 being fed
to the drum 38 to permit calculation by the computer 500 of the velocity of the mailpiece
and thus the desired angular displacement of the D.C. motor shaft 122 and thus the
drum 38; and a count representative of the actual angular displacement of the D.C.
motor shaft 122. Preferably, port P0 is multiplexed to alternately receive inputs
from groups of the various sensors, under the control of an output signal from Port
P3₄ of the microprocessor 502. The shaft encoder 82 which is utilized for sensing
the home position of the postage meter drum 38 is coupled to the computer 500 via
the drum home position lead of the logic circuit, which, in turn, is connected to
one input of a differential amplifier 562, the output of which is connected to the
other input of the differential amplifier 562 via a feedback resistor R4. The aforesaid
other input to the amplifier 562 is also resistively coupled, by means of a resistor
R5, to the mid-point of a voltage divider circuit including resistors R6 and R7. Resistors
R6 and R7 are connected in series with each other and across the logic circuit's 5V
source and ground return leads. The LED sensors 56 and 58, which are utilized for
successively sensing the leading edges of each envelope being fed by the letter transport,
are separately coupled to the computer 500 via the envelope sensor-1 and envelope
sensor-2 input leads of the logic circuit 501a. In the logic circuit 501a, the envelope
sensor-1 and sensor-2 leads are connected on a one-for-one basis to one of the inputs
of a pair of conventional amplifiers 564, the other inputs of which are connected
together and to the mid-point of a voltage divider including resistors R8 and R9.
Resistors R8 and R9 are connected in series with each other and across the logic circuit's
5V source and ground return leads. Further, the three output signals from the differential
amplifier 562 and the two amplifiers 564 are connected on a one-for-one basis to the
three input ports PO₀₋₂ of the microprocessor 502, each via a conventional tri-state
buffer circuit 566, one of which is shown. The input signals A and B from the D.C.
motor shaft encoder 126 are coupled to the logic circuit 501a by means of leads A
and B, which are conventially electrically connected to the counting circuit 270 to
provide the microprocessor 502 the the count representative of the actual angular
displacement of the motor shaft 122 from its home position. The counting circuit's
leads Q0-Q7 are electrically connected on a one-for-one basis to Ports PO₀-PO₇ of
the microcomputer 502 via one of eight conventional tri-state buffer circuits 568,
one of which is shown, having their respective control input leads connected to each
other and to the output of a conventional inverting buffer circuit 570, which has
its input conventionally connected port P3₄ of the microprocessor 502. Thus, either
the three input signals, i.e., from the drum home position and the two envelope position
sensors are operably electrically coupled to Ports P0₀-P0₂ of the microprocessor 502,
or the eight input signals Q0-Q7 from the counter circuit 270 are operably electrically
coupled to ports P0₀-PO₇ of the microprocessor 502, for scanning purposes, in response
to an appropriate control signal being applied to the respective buffer circuits 566
and 568 from port P3₄ of the microprocessor 502. In operation, assuming a low logic
level signal is required for activating either of the sets of buffers 566 or 568;
when the microprocessor 502 applies such a signal to port P3₄, the buffer circuits
566 operate, whereas since the buffer circuit 570 inverts this signal to a high logic
level signal before applying the same to the buffer circuit 568, the latter is inoperative.
Conversely, a high logic level signal from port P3₄ will operate buffer circuits 568
and not operate the buffer circuits 566. Accordingly, depending upon the level, high
or low, of the signal from port P3₄ of the microprocessor 502, the eight bit input
to one or the other buffer circuits 566 or 568 will be made available to port PO for
scanning purposes. Aside from the foregoing, to permit the microprocessor 502 to clear
the counter 270 for any reason in the course of execution of the program, port P3₅
is connected to the clear pin CLR of the counter 270 via a conventional inverting
buffer 572, and the microprocessor 502 is programmed for timely applying the appropriate
signal to port P3₅ which, when inverted, causes the counting circuit 270 to be cleared.
[0047] In general, ports P1₀-P1₃ are utilized by the microprocessor 502 for providing pulse
width modulated (PWM) motor control signals for controlling energization of the D.C.
motor 120 and port P1₄ is utilized by the microprocessor 502 for controlling energization
of the solid state, A.C. motor, relay 52 and thus operation of the mailpiece conveyor
49. To that end, ports P1₀-P1₄ of the microprocessor 502 are each conventionally electrically
connected on a one-for-one basis to the input of a conventional inverting buffer circuit
580, one of which is shown. The outputs of each of the buffer circuits 580 are connected
on a one-for-one basis, via a conventional resistor R10, to output leads from the
logic circuit 501b, one of which is designated solid state, A.C. motor, relay, and
four of which are respectively designated T1, T3, T2 and T4, since, as shown in Fig.
7, the four preamplifier stages of the power amplifier utilized for driving the D.C.
motor 120 include the transistors T1-T4. Thus, the upper nibble of the signal from
port P1 is utilized for controlling energization of the D.C. motor and one bit of
the lower nibble is utilized for controlling energization of the solid state, A.C.
motor, relay 52 and thus the A.C. motor 50. In the analog circuit 501b, each of the
leads T1, T2, T3, T4 and solid state relay, from the logic circuit 501a, is electrically
connected on a one-for-one basis to the anode of the light emitting diode D1 of five,
conventional, photo-transistor type, optical-electrical isolator circuits 303. Since
the cathodes of the light emitting diodes D1 of the opto-isolator circuits 303 are
connected to each other and to the 5 volt lead from the analog circuit 501b which
extends to the 5 volt source of the logic circuit 501a, the motor control signals
are isolated from the power system of the analog circuit 501b to avoid having spurious
noise signals in the analog circuit 501b and its components interfere with the control
signals generated by the microprocessor 502. The analog circuit 501b also includes
a lead, designated power up/down, which extends from the analog circuit 501b to the
logic circuit 501a and is connected to the microprocessor's interrupt INTI, port P3₃,
to provide the microprocessor 502 with an appropriate input signal when the power
is turned on, off or fails. In the analog circuit 501b, the power up/down lead from
the logic circuit 501a is coupled to the thirty volt detect circuit 542 by means of
a conventional opto-isolator 544, the power up/down lead being electrically connected
to ground through collector-emitter circuit of the opto-isolator's photo-transistor
when the light emitting diode D1 is lit in response to the D.C. supply voltage level
matching the internal reference voltage level, e.g., 30 volts, of the 30 volt detection
circuit.
[0048] In the analog circuit 501b each of the outputs from the photo-transistors of each
of the opto-isolators 303 are resistively coupled to the analog circuits 5V source
by means of a conventional pull-up resistor 305, and the emitters of the photo-transistors
T5 are connected to the analog circuit's ground system. In addition, the collectors
of the photodiodes of the opto-isolators 303, which are utilized for transmitting
the motor control signals from ports P1₀-P1₃ of the microprocessor 502 are connected
on a one-for-one basis to the appropriate input leads A, B, C and D of the power amplifiers
shown in Fig. 7, the outputs of which are connected to the D.C. motor 120. Further,
the collector of the photodiode of the opto-isolator 303 which is utilized for transmitting
the A.C. relay control signals from port P1₄ of the microprocessor 502 is connected
to the input lead of a conventional darlington-type power amplifier 550, the output
of which is conventionally connected to the mailing machine's 30 volt D.C. source
via a solid state, A.C. motor, relay 52, which is turn conventionally connected for
energizing the A.C. motor 50 from the local A.C. source.
[0049] In general, the computer 500 includes three software programs, including a main line
program Fig. 23, a transmit and receive program and a command execution program, respectively
identified by the 600, 700 and 800 series of numbers. When the mailing machine 10
is energized by actuation of the main power switch 24, the resulting low level logic
signal from D.C. supply is applied to the reset terminal RST of the computer's microprocessor
502, thereby enabling the microprocessor 502. Whereupon, as shown in Fig. 23, the
microprocessor 502 commences execution of the main line program 600.
[0050] The main line program 600 (Fig. 23) commences with the step of conventionally initializing
the microprocessor 602, which generally includes establishing the initial voltage
levels at the microprocessor's ports, and interrupts, and setting the timers and counters.
Thereafter, the D.C. motor drive unit is initialized 604. Step 604 entails scanning
the motor home position sensor input port P0₀, to determine whether or not the D.C.
motor 120 is located in its home position and, if it is not, driving the motor 120
to its home position. Assuming the D.C. motor 120 is in its home position, either
before or after the initialization step 604, the program then enters an idle loop
routine 606.
[0051] In the idle loop routine 606, a determination is initially made as to whether or
not the sampling time period of T=1 millisecond has elapsed, step 608, it being noted
that each successive sample is taken at the time instant T
n immediately after and in response to the fourth 250 millisecond interrupt generated
by the timer utilized for implementing the sampling time period T. Assuming the time
period T has not elapsed, the program loops to idle 606. On the other hand, assuming
the time period T has elapsed, the microprocessor 502 updates the servo-control system,
step 610. For the purpose of explaining step 610 it will be assumed until otherwise
stated that the desired location of the postage meter drum 38, and thus the motor
drive shaft 122, is the home position. Step 610 includes the successive steps 610a
and 610b, respectively, of sampling the count of the actual position Pa of the motor
drive shaft 122 at the sampling time instant T
n, and fetching the previously computed count representing the desired position Pd
of the shaft 122 at the same sampling time instant T
n. If for any reason the motor drive shaft 122 is not located in its home position
when the value of the desired position count Pd(T
n) is representative of the home position location, then the values of Pa(T
n) and Pd(T
n) will be different. On the other hand, if the motor drive shaft 122 is located in
its home position when the desired position count Pd(T
n) is representative of the home position location, then the values of Pa(T
n) and Pd(T
n) will be the same. Accordingly, computation of the error count, 610c, may or may
not result in an error count value E(T
n) of zero. Further, independently of the computed value of E(T
n), the computed value G(T
n) of the motor control signal, step 601d, may or may not result in a value of G(T
n) of zero; it being noted that although step 610c results in a computed value of E(T
n)=0, the value of g₂ may not be equal to zero due to the computed value of the error
for the next previous sampling time instant E(T
n-1) having resulted in a non-zero value, step 610g. Assuming steps 610c and 610d both
result in zero value computations, then, upon updating and generating the PWM motor
control signal, step 610e, no motor control signal will be generated. Under any other
circumstances, step 610e will result in generating a PWM motor control signal for
driving the D.C. motor 120, and thus the drum 38, to its home position. Thereafter,
as shown in step 610f, the computed values of E(T
n) and G(T
n) are utilized as the values of E(T
n-1) and G(T
n-1) respectively for pre-calculating the value of g₂ for the next subsequent time instant
T
n.
[0052] Accordingly, the computation made in the next step, 610g, to obtain the value of
g₂ for the next sampling time instant T
n is made by utilizing the replacement values E(T
n-1) arid G(T
n-1). Thereafter, as shown in step 610h, the desired position count Pd for the next sampling
time instant T
n is made, which, as previously stated has been assumed to be representative of location
of the motor drive shaft 122 in its home position. At this juncture it should be noted
that the next step 612 in the program is to determine whether or not the enable flag
is set, and, as hereinafter further discussed, this inquiry will be answered in the
negative, causing the program to return to idle 606, unless a command has been received
from the postage meter's computer 41 which results in feeding a mailpiece 16 to the
postage meter drum 38. Accordingly, until a mailpiece 16 is fed to the postage meter
drum 38, the main line program will continuously loop through steps 608, 610 and 612.
As a result the motor drive shaft 122, and thus the drum 38, will be driven to the
home position, against any force tending to move the drum 38 or shaft 122 out of the
home position, until a mailpiece 16 is fed to the drum 38.
[0053] At this juncture it will be assumed that the enable flag is set, as a result of which
the inquiry of step 612 is answered affirmatively, or, as above stated, a mailpiece
16 is being fed to the drum 38. Accordingly, the microprocessor 502 commences polling
the ports connected to the envelope sensors 56 and 58, step 614. Since polling occurs
at one millisecond time intervals, the polling sequence is continuous. As shown by
the following step 616, between successive time instants T
n, the program continuously loops to idle 606 and through steps 608-616 inclusive until
the envelope sensing sequence for a given envelope is complete. Whereupon the microprocessor
commences executing step 618, which includes the steps of calculating the envelope's
velocity, 618a; then fetching from memory the corresponding acceleration, deceleration
and constant velocity constants, 618b, for computation of the desired position counts
Pd at each successive time instant T
n in advance of sampling the actual position counts Pa as hereinbefore discussed in
connection with step 610; then fetching and implementing the time delay t
d for timely commencing acceleration of the drum 38 to the target velocity V1; and
then commencing drum rotation by generating the desired position P
d for the initial one millisecond sampling time instant of acceleration of the motor
drive shaft 122 and storing the value for subsequent use in step 601b. Accordingly,
the value of Pd will no longer be assumed to be the value representative of the home
position.
[0054] Thereafter, the inquiry is made as to whether or not the drum cycle is complete,
step 620. Assuming as stated above that only the initial desired value of Pd has been
computed and stored, the inquiry of step 620 will be answered in the negative. Whereupon
the microprocessor 502 transmits a status message, step 622, to the postage meter's
computer 41 and the program loops to idle 606. Thereafter the microprocessor 502 continuously
executes steps 608-620 until the entire Pd count sequence 618d for the trapazoidal-shaped
velocity versus time profile for the target velocity V1 has been exhausted. In this
connection it is noted that the drum cycle T
ct is not complete until the settling time interval T
s which is allowed for damping any overshoot of the motor drive shaft 122 is complete.
During the settling time interval T
s the value of Pd is a constant and representative of the home position of the shaft
122 and thus the drum 38. Assuming that the drum cycle is complete, the inquiry of
step 620 will be answered affirmatively. Whereupon the microprocessor 502 transmits
a status message, step 624, to the postage meter's computer 41 and the program loops
to idle 606. Thereafter, the foregoing steps 606-622 of the main line, servo-control,
idle loop are continuously executed by the microprocessor 502 in accordance with the
above discussion until the main power switch 24 is opened by the operator.
[0055] The serial communications program 700 includes the transmit status routine 704. The
latter routine 704 includes the steps of receiving and decoding any message, step
706, and invoking the execute command routine, step 708, both of which steps are self
explanatory.
[0056] Assuming the execute command routine 800 has been invoked, step 708, the microprocessor
502 executes the routine 800 commencing with the step 802 of inquiring whether or
not the decoded message is an enable command. Assuming the answer is yes, an enable
status flag is set, step 804, to indicate that an envelope is to be fed to the drum
38. Whereupon the A.C. motor relay 52 is energized, step 806, for feeding the envelope
to the drum 38, and the transmit status routine is invoked, step 808. On the other
hand, assuming the decoded message is not an enable command, step 802, a enable status
flag is cleared, step 810. Whereupon the A.C. relay is deenergized, step 812, and
the status transmit routine is invoked 808.
[0057] Assuming the status transmit routine 702 has been invoked, step 806, the microprocessor
502 executes the routine 702 commencing with the step 710 of inquiring whether or
not the drum cycle is complete. Assuming completion of the drum cycle, a drum cycle
complete message is transmitted to the postage meter's computer 41, step 712. On the
other hand, assuming the drum cycle is not complete, an inquiry is made as to whether
or not the A.C. relay is energized, step 716, and, if it is, an A.C. relay energized
message is transmitted to the postage meter's computer 41, step 718. If however the
drum cycle is not complete, step 710, and the A.C. relay is not energized, step 716,
then, an A.C. relay deenergized message is transmitted to the postage meter's computer
41, step 720. Upon transmitting any of the messages, drum cycle complete, step 710,
A.C. relay energized, step 716, or A.C. relay deenergized, step 720, the microprocessor
502 returns to the idle 606 of the main line program 600.
[0058] The term postage meter as used herein includes any device for affixing a value or
other indicia on a sheet or sheet-like material for governmental or private carrier
parcel, envelope or package delivery, or other purposes. For example, private parcel
or freight services purchase and employ postage meters for providing unit value pricing
on tape for application on individual parcels.
[0059] By the apparatus hereinbefore described the trip lever as the drive initiating device
of a postage meter is replaced by a pair of spaced apart sensing devices in the path
of travel of a mailpiece fed to the postage meter, and the computer is programmed
to calculate the input velocity of a mailpiece, based upon the time taken for the
mailpiece to traverse the distance between the sensing devices, whilst the time delay
and acceleration of the drum, before arrival of the mailpiece at a position at which
the drum rotation is commenced is adjusted to cause the drum to timely engage the
leading edge of the mailpiece.
[0060] For a more detailed description of the programs hereinbefore discussed, reference
is directed to the APPENDIX forming part of the file open to public inspection which
discloses a program listing which describes in greater detail the various routines
incorporated in, and used in the operation of, the postage meter.
[0061] Although the invention disclosed herein has been described with reference to a simple
embodiment thereof, variations and modifications may be made therein by persons skilled
in the art. Accordingly, it is intended that the following claims cover the disclosed
invention and such variations and modifications thereof as fall within the scope of
the invention, as defined by the claims.
1. Apparatus including rotary means (38) having a periphery adapted for feeding a sheet
(16) in a path of travel (18), comprising:
a) first means (56,58) for sensing a time interval during which a sheet (16) is linearly
displaced a predetermined distance in the path of travel (18);
b) a d.c. motor (120) coupled to the rotary means (38) for rotation thereof;
c) second means (86,126) for sensing angular displacement of the rotary means (38);
and
d) computer means (500) coupled to the first (56,58) and second (86,126) sensing means
and to the d.c. motor (120), the computer means (500) comprising:
i) means responsive to the first sensing means (56,58) for providing respective amounts
representative of desired angular displacements of the rotary means (38) during successive
sampling time periods,
ii) means responsive to the second sensing means (86,126) for providing respective
amounts representative of actual angular displacements of the rotary means (38) during
successive sampling time periods, and
iii) means for compensating for the difference between desired and actual angular
displacements and generating a d.c. motor control signal for controlling rotation
of the motor (120) to cause the linear displacement of the periphery of the rotary
means (38) to substantially match the linear displacement of the sheet (16) during
respective sampling time periods.
2. Apparatus according to claim 1, wherein the first sensing means comprises first (56)
and second (58) sensing devices spaced apart from each other a predetermined distance
(d₁) for sensing successive arrivals of a sheet (16) at two spaced apart locations
in the path of travel (18).
3. Apparatus according to claim 1 or 2 wherein the motor (120) has an output shaft (122),
and the second sensing means comprises quadrature encoder means (126) coupled to the
output shaft (122).
4. Apparatus according to any one of claims 1 to 3 wherein the computer means (500) includes
means (504) for comparing amounts representative of the desired and actual angular
displacements and generating an error signal representative of the difference therebetween,
the compensation means responsive to said error signal for generating the motor control
signal, and the motor control signal compensating for the difference between said
desired and actual angular displacements.
5. Apparatus according to any one of claims 1 to 4 including power amplifier means (301)
for coupling the computer means (500) to the d.c. motor (120).
6. Apparatus according to any one of claims 1 to 5 wherein the rotary means (38) has
a cycle of rotation, and the motor control signal accelerating the periphery of the
rotary means (38) to the linear velocity of the sheet (16) substantially coincident
with the periphery of the drum (38) engaging the leading edge of the sheet.
7. Apparatus according to claim 2, wherein the first sensing means comprises a mailing
machine (12) including said first and second sensing devices.
8. Apparatus according to claim 3 including counting means (270) for coupling the quadrature
encoder means to the computer means.
9. Apparatus according to claim 4, wherein the motor control signal comprises a pulse
width modulated control signal.
10. Apparatus according to claim 4, wherein the motor control signal comprises a function
of a regressive mathematical expression.
11. Apparatus according to claim 4, wherein the motor control signal comprises a function
of the error signal and a prior error signal.
12. Apparatus according to claim 4, wherein the motor control signal comprises a function
of the error signal and a prior motor control signal.
13. Apparatus according to claim 6 wherein the motor control signal is such as to decelerate
the rotary means from said velocity thereof to rest subsequent to disengagement of
the rotary means (38) and sheet (16).
14. Apparatus according to claim 8 wherein the counting means (270) comprises means for
providing an output signal for the computer means (500) which is representative of
the angular displacement and direction of rotation of the motor drive shaft (122).
15. Apparatus according to claim 12, wherein the prior motor control signal comprises
a function of a prior error signal.
16. Apparatus according to any preceding claim wherein said compensating means are further
arranged to control the motor to cause indicia printing means (44) on said rotary
means to initially engage the sheet (16) in the path of travel (18) a predetermined
marginal distance from the leading edge of the sheet (16).
17. A postage meter comprising apparatus according to any preceding claim wherein said
rotary means forms a printing drum of the postage meter.
18. A process for use with apparatus including rotary means (38) wherein the rotary means
(38) includes a periphery adapted for feeding a sheet (16) in a path of travel (18),
the process controlling rotation of the rotary means (38) in relation to the movement
of the sheet (16), the process comprising:
a) sensing a time interval during which a sheet (16) is linearly displaced a predetermined
distance in the path of travel (18) and in response thereto providing amounts representative
of respective desired angular displacements of the rotary means (38) during successive
sampling time periods;
b) rotating the rotary means (38) with a d.c. motor;
c) sensing angular displacement of the rotary means (38) and in response thereto providing
amounts representative of respective actual angular displacements of the rotary means
(38) during successive sampling time periods; and
d) digitally compensating for the difference between desired and actual angular displacements
and generating a motor control signal for controlling rotation of the rotary means
(38) to substantially match the linear displacement of the sheet (16) during respective
sampling time periods.
19. A process according to claim 18 wherein step a) includes the step of sensing successive
arrivals of a sheet (16) at two spaced apart locations in the path of travel (18).
20. A process according to claim 18 wherein step c) includes the step of sensing the direction
of angular displacement of the d.c. motor (120).
21. A process according to claim 18 wherein step d) includes the steps of:
1/ comparing amounts representative of respective desired and actual angular displacements;
and
2/ generating an error signal representative of the difference between respective
desired and actual angular displacements and in response thereto generating a motor
control signal which compensates for the difference between said desired and actual
angular displacements.
22. A process according to claim 18 wherein step c) includes the step of accelerating
the periphery of the rotary means (38) to the velocity of the sheet (16) substantially
coincident with engagement of the rotary means and sheet.
23. A process according to claim 18, wherein step d) includes the step of calculating
the motor control signal from a function of a regressive mathematical expression.
24. A process according to claim 18 wherein step a) includes the step of generating respective
counts representative of desired angular displacements of the rotary means (38).
25. A process according to claim 18 wherein step c) includes the step of generating respective
counts representative of actual angular displacements of the rotary means (38).
26. A process according to claim 16, wherein step d) includes the steps of:
1/ generating a pulse width modulated motor control signal;
2/ amplifying said pulse width modulated control signal; and
3/ applying the amplified pulse width modulated control signal to said d.c. motor
(120).
27. A process according to claim 22 wherein step c) includes the step of decelerating
the periphery of the rotary means (38) to rest subsequent to disengagement of the
rotary means (38) and sheet (16).
28. A process according to any of claims 18 to 27 in which said step d) further includes
controlling rotation of the rotary means (38) to cause indicia printing means on the
periphery thereof to initially engage the sheet (16) in the path of travel (18) a
predetermined distance from the leading edge of the sheet (16).
29. A process according to any of claims 18 to 28 for use with a postage meter in which
said rotary means is a rotary printing drum of the postage meter.
30. Apparatus including rotary means (38) having a periphery, the periphery including
indicia printing means (44), and the periphery being adapted for feeding a sheet (16)
in a path of travel (18), comprising:
a) first means (56,58) for sensing a time interval during which a sheet (16) having
a leading edge is linearly displaced a predetermined distance in the path of travel
(18);
b) a d.c. motor (120) coupled to the rotary means (38) for rotation thereof;
c) second means (86,126) for sensing angular displacement of the rotary means (38);
and
d) computer means (500) coupled to the first (56,58) and second (86,126) sensing means
and to the d.c. motor (120), the computer means (500) comprising:
i) means responsive to the first sensing means (56,58) for providing respective amounts
representative of desired angular displacements of the rotary means (38) during successive
sampling time periods;
ii) means responsive to the second sensing means (86,126) for providing respective
amounts representative of actual angular displacements of the rotary means (38) during
successive sampling time periods; and
iii) means for compensating for the difference between desired and actual angular
displacements and generating a d.c. motor control signal for controlling rotation
of the motor (120) to cause the indicia printing means (44) to initially engage the
sheet (16) in the path of travel (18) a predetermined marginal distance from the leading
edge of the sheet (16).
31. Apparatus according to claim 30 wherein the first sensing means comprises first (56)
and second (58) sensing devices spaced apart from each other a predetermined distance
(d₁) for sensing successive arrivals of a sheet (16) at two spaced apart locations
in the path of travel (18).
32. Apparatus according to claim 30 or 31 wherein the motor (120) has an output shaft
(122), and the second sensing means comprises quadrature encoder means (126) coupled
to the output shaft (122).
33. Apparatus according to claim 32 including counting means (270) for coupling the quadrature
encoder means (126) to the computer means (500).
34. Apparatus according to claim 33 wherein the counting means (270) comprises means for
providing an output signal for the computer means (500) which is representative of
the angular displacement and direction of rotation of the motor drive shaft (122).
35. Apparatus according to any one of claims 30 to 34 wherein the computer means (500)
includes means for comparing amounts representative of the desired and actual angular
displacements and generating an error signal representative of the difference therebetween,
the compensation means responsive to said error signal for generating the motor control
signal, and the motor control signal compensating for the difference between said
desired and actual angular displacements.
36. Apparatus according to any one of claims 30 to 35 including power amplifier means
(301) for coupling the computer means (500) to the d.c. motor (120).
37. Apparatus according to claim 34 wherein the motor control signal comprises a function
of the error signal and a prior error signal.
38. Apparatus according to claim 34 wherein the motor control signal comprises a function
of the error signal and a prior motor control signal.
39. Apparatus according to claim 38 wherein the prior motor control signal comprises a
function of a prior error signal.
40. Apparatus according to claim 34 wherein the motor control signal comprises a pulse
width modulated control signal.
41. Apparatus according to claim 34 wherein the motor control signal comprises a function
of a regressive mathematical expression.
42. A postage meter comprising apparatus according to any one of claims 30 to 41 wherein
the rotary means includes a postage meter drum (38), the drum has a cycle of rotation,
and the motor control signal is arranged to accelerate the periphery of the drum (38)
to the linear velocity of the sheet (16) substantially coincident with the periphery
of the drum (38) engaging the leading edge of the sheet (16).
43. A postage meter comprising apparatus according to claim 31 wherein the rotary means
includes a postage meter drum (38), and the first sensing means comprises a mailing
machine (12) including said first and second sensing devices (56,58).
44. A postage meter according to claim 42 or 43 wherein said computer means is arranged
to generate a motor control signal for decelerating the drum (38) from said velocity
thereof to rest subsequent to disengagement of the drum (38) and sheet (16).
45. A process for use with apparatus including rotary means (38), wherein the rotary means
includes a periphery having indicia printing means (44) and is adapted for feeding
a sheet (16) having a leading edge in a path of travel (18), the process controlling
rotation of the rotary means (38) for controlling engagement of the indicia printing
means (44) with the sheet, the process comprising:
a) sensing a time interval during which a sheet (16) is linearly displaced a predetermined
distance in the path of travel (18) and in response thereto providing amounts representative
of respective desired angular displacements of the rotary means (38) during successive
sampling time periods;
b) rotating the rotary means (38) with a d.c. motor (120);
c) sensing angular displacement of the rotary means (38) and in response thereto providing
amounts representative of respective actual angular displacements of the rotary means
(38) during successive sampling time periods; and
d) digitally compensating for the difference between desired and actual angular displacements
and generating a motor control signal for controlling rotation of the rotary means
(38) to cause the indicia printing means (44) to initially engage the sheet (16) in
the path of travel (18) a predetermined distance from the leading edge of the sheet
(16).
46. A process according to claim 45 wherein step a) includes the step of sensing successive
arrivals of a sheet (16) at two spaced apart locations in the path of travel (18).
47. A process according to claim 45 or 46 wherein step c) includes the step of sensing
the direction of angular displacement of the d.c. motor (120).
48. A process according to any one of claims 45 to 47 wherein step d) includes the steps
of:
1/ comparing amounts representative of respective desired and actual angular displacements;
and
2/ generating an error signal representative of the difference between respective
desired and actual angular displacements and in response thereto generating a motor
control signal which compensates for the difference between said desired and actual
angular displacements.
49. A process according to any one of claims 45 to 48 wherein step c) includes the step
of accelerating the periphery of the rotary means (38) to the velocity of the sheet
(16) substantially coincident with engagement of the periphery and sheet (16).
50. A process according to claim 49 wherein step c) includes the step of decelerating
the periphery of the rotary means (38) to rest subsequent to disengagement of the
periphery and sheet (16).
51. A process according to any one of claims 45 to 50 wherein step c) includes the step
of calculating the motor control signal from a function of a regressive mathematical
expression.
52. A process according to any one of claims 45 to 51 wherein step a) includes the step
of generating respective counts representative of desired angular displacements of
the rotary means.
53. A process according to any one of claims 45 to 57 wherein step c) includes the step
of generating respective counts representative of actual angular displacements of
the rotary means (38).
54. A process according to any one of claims 45 to 53 wherein step d) includes the steps
of:
1/ generating a pulse width modulated motor control signal;
2/ amplifying said pulse width modulated control signal; and
3/ applying the amplified pulse width modulated control signal to said d.c. motor
(120).
55. A process according to any of claims 45 to 54 in which step d) further includes controlling
rotation of the rotary means to cause the linear displacement of the periphery of
the rotary means to substantially match the linear displacement of the sheet (16)
during respective sampling time periods.
56. A process according to any of claims 45 to 55 for use with a postage meter in which
the rotary means is a rotary printing drum of the postage meter.
1. Dispositif comprenant un moyen rotatif (38) ayant une périphérie destinée à introduire
une feuille (16) dans un trajet de parcours (18), comprenant:
a) un premier moyen (56, 58) pour détecter un intervalle de temps au cours duquel
une feuille (16) est déplacée linéairement suivant une distance prédéterminée dans
le trajet de parcours (18);
b) un moteur à courant continu (12O) accouplé au moyen rotatif (38) pour provoquer
sa rotation;
c) un second moyen (86, 126) pour détecter le déplacement angulaire du moyen rotatif
(38); et
d) un moyen d'ordinateur (5OO) accouplé aux premier (56, 58) et second (86, 126) moyens
de détection et au moteur à courant continu (12O), le moyen d'ordinateur (5OO) comportant
:
i) un moyen répondant au premier moyen de détection (56, 58) pour fournir des quantités
respectives représentatives de déplacements angulaires souhaités du moyen rotatif
(38) pendant des périodes successives d'échantillonnage,
ii) un moyen répondant au second moyen de détection (86, 126) pour fournir des quantités
respective représentatives de déplacements angulaires effectifs du moyen rotatif (38)
lors de périodes d'échantillonnage successives;
iii) un moyen pour compenser la différence entre les déplacements angulaires souhaités
et effectifs et pour produire un signal de commande de moteur à courant continu afin
de commander la rotation du moteur (12O) pour que le déplacement linéaire de la périphérie
du moyen rotatif (38) soit sensiblement adaptée au déplacement linéaire de la feuille
(16) pendant des périodes d'échantillonnage respectives.
2. Dispositif selon la revendication 1, dans lequel le premier moyen de détection comprend
des premier (56) et second (58) dispositifs de détection espacés l'un de l'autre sur
une distance prédéterminée (d₁) pour détecter des arrivées successives d'une feuille
(16) à deux endroits espacés l'un de l'autre dans le trajet de parcours (18).
3. Dispositif selon la revendication 1 ou 2, dans lequel le moteur (12O) comporte un
arbre de sortie (122), et le second moyen de détection comprend un moyen de codeur
en quadrature (126) accouplé à l'arbre de sortie (122).
4. Dispositif selon l'une quelconque des revendications 1 à 3, dans lequel le moyen d'ordinateur
(5OO) comprend un moyen (5O4) pour comparer des quantités représentatives des déplacements
angulaires souhaités et effectifs et produire un signal d'erreur représentatif de
la différence entre eux, le moyen de compensation répondant audit signal d'erreur
pour produire le signal de commande de moteur, et le signal de commande de moteur
compensant la différence entre lesdits déplacements angulaires souhaités et effectifs.
5. Dispositif selon l'une quelconque des revendications 1 à 4, comprenant un moyen d'amplificateur
de puissance (3O1) pour accoupler le moyen d'ordinateur (5OO) au moteur à courant
continu (12O).
6. Dispositif selon l'une quelconque des revendications 1 à 5, dans lequel le moyen rotatif
(38) a un cycle de rotation, et le signal de commande de moteur accélérant la périphérie
du moyen rotatif (38) jusqu'à la vitesse linéaire de la feuille (16) coïncidant sensiblement
avec la venue de la périphérie du tambour (38) en contact avec le bord avant de la
feuille.
7. Dispositif selon la revendication 2, dans lequel le premier moyen de détection comprend
une machine de traitement du courrier (12) comportant lesdits premier et second dispositifs
de détection.
8. Dispositif selon la revendication 3 comprenant un moyen de comptage (27O) pour accoupler
le moyen de codeur en quadrature au moyen d'ordinateur.
9. Dispositif selon la revendication 4, dans lequel le signal de commande de moteur comprend
un signal de commande à modulation d'impulsions en largeur.
10. Dispositif selon la revendication 4, dans lequel le signal de commande de moteur comprend
une fonction d'une expression mathématique régressive.
11. Dispositif selon la revendication 4, dans lequel le signal de commande de moteur comprend
une fonction du signal d'erreur et un signal d'erreur antérieur.
12. Dispositif selon la revendication 4, dans lequel le signal de commande de moteur comprend
une fonction du signal d'erreur et un signal de commande de moteur antérieur.
13. Dispositif selon la revendication 6, dans lequel le signal de commande de moteur est
tel qu'il provoque la décélération du moyen rotatif entre sa dite vitesse jusqu'au
repos à la suite du désengagement du moyen rotatif (38) et d'une feuille (16).
14. Dispositif selon la revendication 8, dans lequel le moyen de comptage (27O) comprend
un moyen pour fournir un signal de sortie pour le moyen d'ordinateur (5OO) qui est
représentatif du déplacement angulaire et du sens de rotation de l'arbre (122) d'entraînement
du moteur.
15. Dispositif selon la revendication 12, dans lequel le signal de commande de moteur
antérieur comprend une fonction d'un signal d'erreur antérieur.
16. Dispositif selon l'une quelconque des revendications précédentes, dans lequel ledit
moyen de compensation est en outre agencé de manière à commander le moteur pour qu'un
moyen d'impression de signes (44) sur ledit moyen rotatif vienne initialement en contact
avec la feuille (16) dans le trajet de parcours (18), suivant une distance marginale
prédéterminée à partir du bord avant de la feuille (16).
17. Appareil d'affranchissement comprenant un dispositif selon l'une quelconque des revendications
précédentes, dans lequel ledit moyen rotatif forme un tambour d'impression de l'appareil
d'affranchissement.
18. Procédé pour utilisation avec un dispositif comprenant un moyen rotatif (38) dans
lequel le moyen rotatif (38) comporte une périphérie destinée à introduire une feuille
(16) dans un trajet de parcours (18), le procédé commandant la rotation du moyen rotatif
(38) en relation avec le mouvement de la feuille (16), le procédé comportant les étapes
consistant à :
a) détecter un intervalle de temps au cours duquel une feuille (16) est déplacée linéairement
sur une distance prédéterminée dans le trajet de parcours (18) et en réponse à cette
détection, fournir des quantités représentatives de déplacements angulaires souhaités
respectifs du moyen rotatif (38) pendant des périodes d'échantillonnage successives;
b) faire tourner le moyen rotatif (38) avec un moteur à courant continu;
c) détecter le déplacement angulaire du moyen rotatif (38) et en réponse à celui-ci,
fournir des quantités représentatives de déplacements angulaires effectifs respectifs
du moyen rotatif (38) pendant des périodes d'échantillonnage successives; et
d) compenser numériquement la différence entre déplacements angulaires souhaités et
effectifs et produire un signal de commande de moteur afin de commander la rotation
du moyen rotatif (38) pour adaptation sensible au déplacement linéaire de la feuille
(16) pendant des périodes d'échantillonnage respectives.
19. Procédé selon la revendication 18, dans lequel l'étape a) comprend l'étape de détection
des arrivées successives d'une feuille (16) à deux endroits espacés l'un de l'autre
dans le trajet de parcours (18).
20. Procédé selon la revendication 18, dans lequel l'étape c) comprend l'étape consistant
à détecter la direction du déplacement angulaire du moteur à courant continu (12O).
21. Procédé selon la revendication 18, dans lequel l'étape d) comprend les étapes consistant
à :
1/ comparer les quantités représentatives de déplacements angulaires souhaités et
effectifs respectifs; et
2/ produire un signal d'erreur représentatif de la différence entre déplacements angulaires
souhaités et effectifs respectifs et en réponse à celui-ci, produire un signal de
commande de moteur qui compense la différence entre lesdits déplacements angulaires
souhaités et effectifs.
22. Procédé selon la revendication 18, dans lequel l'étape c) comprend l'étape consistant
à accélérer la périphérie du moyen rotatif (38) à la vitesse de la feuille (16) qui
coïncide sensiblement avec le contact du moyen rotatif et de la feuille.
23. Procédé selon la revendication 18, dans lequel l'étape d) comprend l'étape de calcul
du signal de commande du moteur à partir d'une fonction d'une expression mathématique
régressive.
24. Procédé selon la revendication 18, dans lequel l'étape a) comprend l'étape consistant
à produire des comptages respectifs représentatifs de déplacements angulaires souhaités
du moyen rotatif (38).
25. Procédé selon la revendication 18, dans lequel l'étape c) comprend l'étape consistant
à produire des comptages respectifs représentatifs de déplacements angulaires effectifs
du moyen rotatif (38).
26. Procédé selon la revendication 16, dans lequel l'étape d) comprend les étapes consistant
à :
1/ produire un signal de commande de moteur à modulation d'impulsions en largeur;
2/ amplifier ce signal de commande de moteur à modulation d'impulsions en largeur;
et
3/ appliquer le signal amplifié de commande à modulation d'impulsions en largeur audit
moteur à courant continu (12O).
27. Procédé selon la revendication 22, dans lequel l'étape c) comprend l'étape consistant
à décélérer la périphérie du moyen rotatif (38) jusqu'au repos à la suite du désengagement
du moyen rotatif (38) et de la feuille (16).
28. Procédé selon l'une quelconque des revendications 18 à 27, dans lequel ladite étape
d) comprend en outre l'étape de commande de la rotation du moyen rotatif (38) pour
faire en sorte qu'un moyen d'impression de signes sur sa périphérie vienne initialement
en contact avec la feuille (16) dans le trajet de parcours (18) sur une distance prédéterminée
à partir du bord avant de la feuille (16).
29. Procédé selon l'une quelconque des revendications 18 à 28 pour emploi avec un appareil
d'affranchissement dans lequel ledit moyen rotatif est un tambour d'impression rotatif
de l'appareil d'affranchissement.
30. Dispositif comprenant un moyen rotatif (38) ayant une périphérie, la périphérie comportant
un moyen d'impression de signes (44), et la périphérie étant destinée à introduire
une feuille (16) dans un trajet de parcours (18), comportant :
a) un premier moyen (56, 58) pour détecter un intervalle de temps au cours duquel
une feuille (16) ayant un bord avant est déplacée linéairement sur une distance prédéterminée
dans le trajet de parcours (18);
b) un moteur à courant continu (12O) accouplé au moyen rotatif (38) pour provoquer
sa rotation;
c) un second moyen (86, 126) pour détecter le déplacement angulaire du moyen rotatif
(38); et
d) un moyen d'ordinateur (5OO) accouplé aux premier (56, 58) et second (86, 126) moyens
de détection et au moteur à courant continu (12O), le moyen d'ordinateur (5OO) comprenant
:
i) un moyen répondant au premier moyen de détection (56, 58) pour fournir des quantités
respectives représentatives de déplacements angulaires souhaités du moyen rotatif
(38) pendant des périodes d'échantillonnage successives;
ii) un moyen répondant au second moyen de détection (86, 126) pour fournir des quantités
respectives représentatives de déplacements angulaires effectifs du moyen rotatif
(38) pendant des périodes d'échantillonnage successives; et
iii) un moyen pour compenser la différence entre les déplacements angulaires souhaités
et effectifs et produire un signal de commande de moteur à courant continu pour commander
la rotation du moteur (12O) afin que le moyen d'impression de signes (44) vienne initialement
en contact avec la feuille (16) dans le trajet de parcours (18) suivant une distance
marginale prédéterminée à partir du bord avant de la feuille (16).
31. Dispositif selon la revendication 3O, dans lequel le premier moyen de détection comprend
des premier (56) et second (58) dispositifs de détection espacés l'un de l'autre suivant
une distance prédéterminée (d₁) pour détecter des arrivées successives d'une feuille
(16) à deux endroits espacés l'un de l'autre dans le trajet de parcours (18).
32. Dispositif selon la revendication 3O ou 31, dans lequel le moteur (12O) comporte un
arbre de sortie (122), et le second moyen de détection comporte un moyen de codeur
en quadrature (126) accouplé à l'arbre de sortie (122).
33. Dispositif selon la revendication 32, comprenant un moyen de comptage (27O) pour accoupler
le moyen de codeur en quadrature (126) au moyen d'ordinateur (5OO).
34. Dispositif selon la revendication 33, dans lequel le moyen de comptage (27O) comprend
un moyen pour fournir un signal de sortie pour le moyen d'ordinateur (5OO) qui est
représentatif du déplacement angulaire et du sens de rotation de l'arbre d'entraînement
du moteur (122).
35. Dispositif selon l'une quelconque des revendications 3O à 34, dans lequel le moyen
d'ordinateur (5OO) comprend un moyen pour comparer des quantités représentatives des
déplacements angulaires souhaités et effectifs et produire un signal d'erreur représentatif
de la différence entre eux, le moyen de compensation répondant audit signal d'erreur
pour produire le signal de commande de moteur, et le signal de commande de moteur
compensant la différence entre lesdits déplacements angulaires souhaités et effectifs.
36. Dispositif selon l'une quelconque des revendications 3O à 35, comprenant un moyen
d'amplificateur de puissance (3O1) pour accoupler le moyen d'ordinateur (5OO) au moteur
à courant continu (12O).
37. Dispositif selon la revendication 34, dans lequel le signal de commande de moteur
comprend une fonction du signal d'erreur et un signal d'erreur antérieur.
38. Dispositif selon la revendication 34, dans lequel le signal de commande de moteur
comprend une fonction du signal d'erreur et un signal de commande de moteur antérieur.
39. Dispositif selon la revendication 38, dans lequel le signal de commande de moteur
antérieur comprend une fonction d'un signal d'erreur antérieur.
40. Dispositif selon la revendication 34, dans lequel le signal de commande de moteur
comprend un signal de commande à modulation d'impulsions en largeur.
41. Dispositif selon la revendication 34, dans lequel le signal de commande de moteur
comprend une fonction d'une expression mathématique régressive.
42. Appareil d'affranchissement comprenant un dispositif selon l'une quelconque des revendications
3O à 41, dans lequel le moyen rotatif comprend un tambour (38) d'appareil d'affranchissement,
le tambour a un cycle de rotation, et le signal de commande de moteur est agencé de
manière à accélérer la périphérie du tambour (38) jusqu'à la vitesse linéaire de la
feuille (16) de façon sensiblement coïncidante avec la périphérie du tambour (38)
venant en contact avec le bord avant de la feuille (16).
43. Appareil d'affranchissement comprenant un dispositif selon la revendication 31, dans
lequel le moyen rotatif comporte un tambour (38) d'appareil d'affranchissement, et
le premier moyen de détection comprend une machine de traitement du courrier (12)
comportant lesdits premier et second dispositifs de détection (56, 58).
44. Appareil d'affranchissement selon la revendication 42 ou 43, dans lequel le moyen
d'ordinateur est agencé de manière à produire un signal de commande de moteur pour
décélérer le tambour (38) à partir de ladite vitesse jusqu'au repos à la suite du
désengagement du tambour (38) et de la feuille (16).
45. Procédé pour utilisation avec le dispositif comprenant un moyen rotatif (38), dans
lequel le moyen rotatif comporte une périphérie ayant un moyen d'impression de signes
(44) et est destiné à introduire une feuille (16) ayant un bord avant dans un trajet
de parcours (18), le procédé commandant la rotation du moyen rotatif (38) pour commander
le contact du moyen d'impression de signes (44) avec la feuille, le procédé comprenant
les étapes consistant à :
a) détecter un intervalle de temps au cours duquel une feuille (16) est déplacée linéairement
sur une distance prédéterminée dans le trajet de parcours (18) et en réponse à cette
détection, fournir des quantités représentatives de déplacements angulaires souhaités
respectifs du moyen rotatif (38) pendant des périodes d'échantillonnage successives;
b) faire tourner le moyen rotatif (38) avec un moteur à courant continu (12O);
c) détecter des déplacements angulaires du moyen rotatif (38) et en réponse à cette
détection, fournir des quantités représentatives de déplacements angulaires effectifs
respectifs du moyen rotatif (38) pendant des périodes d'échantillonnage successives;
et
d) compenser numériquement la différence entre déplacements angulaires souhaités et
effectifs et produire un signal de commande de moteur pour commander la rotation du
moyen rotatif (38) et faire en sorte que le moyen d'impression de signes (44) vienne
initialement en contact avec la feuille (16) dans le trajet de parcours (18) sur une
distance prédéterminée par rapport au bord avant de la feuille (16).
46. Procédé selon la revendication 45, dans lequel l'étape a) comprend l'étape consistant
à détecter des arrivées successives d'une feuille (16) à deux endroits espacés l'un
de l'autre dans le trajet de parcours (18).
47. Procédé selon la revendication 45 ou 46, dans lequel l'étape c) comporte l'étape consistant
à détecter le sens du déplacement angulaire du moteur à courant continu (12O).
48. Procédé selon l'une quelconque des revendications 45 à 47, dans lequel l'étape d)
comprend les étapes consistant à :
1/ comparer des quantités représentatives de déplacements angulaires souhaités et
effectifs respectifs; et
2/ produire un signal d'erreur représentatif de la différence entre des déplacements
angulaires souhaités et effectifs respectifs et en réponse à celui-ci, produire un
signal de commande de moteur qui compenser la différence entre lesdits déplacements
angulaires souhaités et effectifs.
49. Procédé selon l'une quelconque des revendications 45 à 48, dans lequel l'étape c)
comprend l'étape consistant à accélérer la périphérie du moyen rotatif (38) jusqu'à
la vitesse de la feuille (16) qui coïncide sensiblement avec la venue en contact de
la périphérie et de la feuille (16).
50. Procédé selon la revendication 49, dans lequel l'étape c) comprend l'étape consistant
à décélérer la périphérie du moyen rotatif (38) jusqu'au repos à la suite du désengagement
de la périphérie et de la feuille (16).
51. Procédé selon l'une quelconque des revendications 45 à 5O, dans lequel l'étape c)
comprend l'étape consistant à calculer le signal de commande de moteur à partir d'une
fonction d'une expression mathématique régressive.
52. Procédé selon l'une quelconque des revendications 45 à 51, dans lequel l'étape a)
comprend l'étape consistant à produire des comptages respectifs qui sont représentatifs
des déplacements angulaires souhaités du moyen rotatif.
53. Procédé selon l'une quelconque des revendications 45 à 57, dans lequel l'étape c)
comprend l'étape consistant à produire des comptages respectifs qui sont représentatifs
des déplacements angulaires effectifs du moyen rotatif (38).
54. Procédé selon l'une quelconque des revendications 45 à 53, dans lequel l'étape d)
comprend les étapes consistant à :
1/ produire un signal de commande de moteur à modulation d'impulsions en largeur;
2/ amplifier le signal de commande à modulation d'impulsions en largeur ; et
3/ appliquer le signal de commande à modulation d'impulsions en largeur audit moteur
à courant continu (12O).
55. Procédé selon l'une quelconque des revendications 45 à 54, dans lequel l'étape d)
comprend en outre l'étape consistant à commander la rotation du moyen rotatif pour
faire en sorte que la déplacement linéaire de la périphérie du moyen rotatif soit
sensiblement adapté au déplacement linéaire de la feuille (16) pendant des périodes
d'échantillonnage respectives.
56. Procédé selon l'une quelconque des revendications 45 à 55 pour emploi avec un appareil
d'affranchissement dans lequel le moyen rotatif est un tambour d'impression rotatif
de l'appareil d'affranchissement.
1. Vorrichtung, welche eine Rotationseinrichtung (38) mit einer Peripherie, die angepaßt
ist, ein Blatt (16) in einem Laufpfad (18) voranzubewegen, einschließt und umfaßt:
a) eine erste Einrichtung (56, 58) zum Erfassen eines Zeitintervalles, während welchem
ein Blatt (16) linear um eine vorbestimmte Distanz in dem Laufpfad (18) versetzt wird;
b) einen Gleichstrommotor (120), der mit der Rotationseinrichtung (38) gekoppelt ist,
um diese zu drehen,
c) eine zweite Einrichtung (86, 126) zum Erfassen eines Winkelversatzes der Rotationseinrichtung
(38); und
d) eine Computereinrichtung (500), welche mit der ersten (56, 58) und der zweiten
(86, 126) Erfassungseinrichtung und mit dem Gleichstrommotor (120) gekoppelt ist,
wobei die Computereinrichtung (500) umfaßt:
i) Einrichtungen, welche auf die erste Erfassungseinrichtung (56, 58) ansprechen,
um während sukzessiver Abtastzeitperioden jeweilige Beträge vorzusehen, die gewünschte
Winkelversetze der Rotationseinrichtungen (38) darstellen,
ii) Einrichtungen, welche auf die zweite Erfassungseinrichtung (86, 126) ansprechen,
um während sukzessiver Abtastzeitperioden jeweilige Beträge vorzusehen, die tatsächliche
Winkelversätze der Rotationseinrichtung (38) darstellen, und
iii) Einrichtungen zum Kompensieren der Differenz zwischen gewünschten und tatsächlichen
Winkelversätzen, und zum Erzeugen eines Gleichstrommotorsteuerungssignales zum Steuern
einer Drehung des Motors (120), um zu bewirken, daß der lineare Versatz der Peripherie
der Rotationseinrichtung (38) während jeweiliger Abtastzeitperioden im wesentlichen
zu dem linearen Versatz des Blattes (16) paßt.
2. Vorrichtung nach Anspruch 1,
dadurch gekennzeichnet, daß
die erste Erfassungseinrichtung erste (56) und zweite (58) Fühlvorrichtungen umfaßt,
die in einem vorbestimmten Abstand (d1) voneinander angeordnet sind, um aufeinanderfolgende
Ankünfte eines Blattes (16) an zwei beabstandeten Stellen in dem Laufpfad (18) zu
erfassen.
3. Vorrichtung nach Anspruch 1 oder 2,
dadurch gekennzeichnet,daß
der Motor (120) eine Ausgangswelle (122) aufweist, und die zweite Erfassungseinrichtung
eine Quadraturencodereinrichtung (126) umfaßt, die mit der Ausgangswelle (122) gekoppelt
ist.
4. Vorrichtung nach einer der Ansprüche 1 bis 3,
dadurch gekennzeichnet,daß
die Computereinrichtung (500) Einrichtungen (504) zum Vergleichen von Beträgen einschließt,
die die gewünschten und tatsächlichen Winkelversätze darstellen, sowie zum Erzeugen
eines Fehlersignals, welches die Differenz dazwischen darstellt, wobei die Kompensationseinrichtung
auf das Fehlersignal anspricht, um das Motorsteuerungssignal zu erzeugen, und das
Motorsteuerungssignal die Differenz zwischen den gewünschten und tatsächlichen Winkelversätzen
kompensiert.
5. Vorrichtung nach einem der Ansprüche 1 bis 4,
dadurch gekennzeichnet, daß
sie Leistungsverstärkereinrichtungen (301) zum Koppeln der Computereinrichtungen (500)
an den Gleichstrommotor (120) einschließt.
6. Vorrichtung nach einem der Ansprüche 1 bis 5,
dadurch gekennzeichnet,daß
die Rotationseinrichtung (38) einen Rotationszyklus aufweist, und das Motorsteuerungssystem
die Peripherie der Rotationseinrichtung (38) auf die lineare Geschwindigkeit des Blattes
(16) im wesentlichen koinzident mit der Peripherie der Trommel (38), welche in Eingriff
steht mit der führenden Kante des Blattes, beschleunigt.
7. Vorrichtung nach Anspruch 2,
dadurch gekennzeichnet,daß
die erste Erfassungseinrichtung eine Frankiermaschine (12), welche die ersten und
zweiten Fühlvorrichtungen einschließt, umfaßt.
8. Vorrichtung nach Anspruch 3,
dadurch gekennzeichnet,daß
sie Zähleinrichtungen (270) zum Koppeln der Quadraturencodereinrichtung an die Computereinrichtung
einschließt.
9. Vorrichtung nach Anspruch 4,
dadurch gekennzeichnet,daß
das Motorsteuerungssignal ein impulsbreitenmoduliertes Steuerungssignal umfaßt.
10. Vorrichtung nach Anspruch 4,
dadurch gekennzeichnet,daß
das Motorsteuerungssignal eine Funktion eines regressiven mathematischen Ausdruckes
umfaßt.
11. Vorrichtung nach Anspruch 4,
dadurch gekennzeichnet,daß
das Motorsteuerungssignal eine Funktion des Fehlersignals und eines früheren Fehlersignals
umfaßt.
12. Vorrichtung nach Anspruch 4,
dadurch gekennzeichnet, daß
das Motorsteuerungssignal eine Funktion des Fehlersignals und eines früheren Motorsteuerungssignals
umfaßt.
13. Vorrichtung nach Anspruch 6,
dadurch gekennzeichnet, daß
das Motorsteuerungssignal dergestalt ist, die Rotationseinrichtung von ihrer Geschwindigkeit
zur Ruhe zu verzögern, nachdem die Rotationseinrichtung (38) und das Blatt (16) außer
Eingriff getreten sind.
14. Vorrichtung nach Anspruch 8,
dadurch gekennzeichnet, daß
die Zähleinrichtung (270) Einrichtungen zum Vorsehen eines Ausgangssignales für die
Computereinrichtung (500) umfaßt, welches den Winkelversatz und eine Drehrichtung
der Motorantriebswelle (122) darstellt.
15. Vorrichtung nach Anspruch 12,
dadurch gekennzeichnet, daß
das frühere Motorsteuerungssignal eine Funktion eines früheren Fehlersignales umfaßt.
16. Vorrichtung nach einem der vorangehenden Ansprüche,
dadurch gekennzeichnet, daß
die Kompensationseinrichtungen ferner angeordnet sind, den Motor zu steuern, zu bewirken,
daß Freistempeldruckeinrichtungen (44) auf der Rotationseinrichtung mit dem Blatt
(16) in dem Laufpfad (18) zum erstenmal mit einem vorbestimmten Randabstand von der
führenden Kante des Blattes (16) in Eingriff treten.
17. Frankierwerk, welches eine Vorrichtung nach einem der vorangehenden Ansprüche umfaßt,
worin die Rotationseinrichtung eine Drucktrommel des Frankierwerks bildet.
18. Verfahren zur Verwendung mit einer Vorrichtung, welche Rotationseinrichtungen (38)
einschließt, worin die Rotationseinrichtung (38) eine Peripherie einschließt, die
angepaßt ist, ein Blatt (16) in einem Laufpfad (18) voranzubewegen, wobei das Verfahren
eine Drehung der Rotatioanseinrichtung (38) in Beziehung zu der Bewegung des Blattes
(16) steuert, wobei das Verfahren umfaßt:
a) Erfassen eines Zeitintervalles, während welchem ein Blatt (16) in dem Laufpfad
(18) um eine vorbestimmte Entfernung linear versetzt wird, und daraufhin Vorsehen
von Beträgen, welche jeweilige, gewünschte Winkelversätze der Rotationseinrichtung
(38) während sukzessiver Abtastperioden darstellen;
b) Drehen der Rotationseinrichtung (38) mit einem Gleichstrommotor;
c) Erfassen eines Winkelversatzes der Rotationseinrichtungen (38), und daraufhin Vorsehen
von Beträgen, welche während aufeinander folgender Abtastzeitperioden jeweilige tatsächliche
Winkelversätze der Rotationseinrichtungen (38) darstellen; und
d) digitales Kompensieren der Differenz zwischen gewünschten und tatsächlichen Winkelversätzen
und Erzeugen eines Motorsteuerungssignales zum Steuern einer Drehung der Rotationseinrichtung
(38), um den linearen Versatz des Blattes (16) während jeweiliger Abtastzeitperioden
im wesentlichen anzupassen.
19. Verfahren nach Anspruch 18,
dadurch gekennzeichnet, daß
Schritt a) den Schritt des Erfassens aufeinander folgender Ankünfte eines Blattes
(16) an zwei beabstandeten Stellen in dem Laufpfad (18) einschließt.
20. Verfahren nach Anspruch 18,
dadurch gekennzeichnet, daß
Schritt c) den Schritt des Erfassens der Richtung eines Winkelversatzes des Gleichstrommotors
(120) einschließt.
21. Verfahren nach Anspruch 18,
dadurch
gekennzeichnet, daß
Schritt d) die Schritte einschließt:
1/ Vergleichen von Beträgen, welche jeweilige gewünschte und tatsächliche Winkelversätze
darstellen; und
2/ Erzeugen eines Fehlersignales, welches die Differenz zwischen jeweiligen gewünschten
und tatsächlichen Winkelversätzen darstellt, und daraufhin Erzeugen eines Motorsteuerungssignals,
welches die Differenz zwischen den gewünschten und tatsächlichen Winkelversätzen kompensiert.
22. Verfahren nach Anspruch 18,
dadurch gekennzeichnet, daß
Schritt c) den Schritt des Beschleunigens der Peripherie der Rotationseinrichtung
(38) auf die Geschwindigkeit des Blattes (16) im wesentlichen koinzident mit dem Eingriff
der Rotationseinrichtung und des Blattes einschließt.
23. Verfahren nach Anspruch 18,
dadurch gekennzeichnet, daß
Schritt d) den Schritt des Berechnens des Motorsteuerungssignals von einer Funktion
eines regressiven mathematischen Ausdruckes einschließt.
24. Verfahren nach Anspruch 18,
dadurch gekennzeichnet, daß
Schritt a) den Schritt des Erzeugens jeweiliger Zahlen einschließt, die gewünschte
Winkelversätze der Rotationseinrichtungen (38) darstellen.
25. Verfahren nach Anspruch 18,
dadurch gekennzeichnet, daß
Schritt c) den Schritt des Erzeugens jeweiliger Zahlen einschließt, die tatsächliche
Winkelversätze der Rotationseinrichtung (38) darstellen.
26. Verfahren nach Anspruch 16,
dadurch
gekennzeichnet, daß
Schritt d) die Schritte einschließt:
1/ Erzeugen eines impulsbreitenmodulierten Motorsteuerungssignales,
2/ Verstärken des impulsbreitenmodulierten Steuerungssignales;
3/ Liefern des verstärkten, impulsbreitenmodulierten Steuerungssignales an den Gleichstrommotor
(120).
27. Verfahren nach Anspruch 22,
dadurch gekennzeichnet, daß
Schritt c) den Schritt des Verzögerns der Peripherie der Rotationseinrichtung (38)
zur Ruhe einschließt, nachdem die Rotationseinrichtung (38) und ein Blatt (16) ausser
Eingriff getreten sind.
28. Verfahren nach einem der Ansprüche 18 bis 27,
dadurch gekennzeichnet, daß
Schritt d) ferner das Steuern einer Drehung der Rotationseinrichtung (38) einschließt,
um zu bewirken, daß Freistempeldruckeinrichtungen auf der Peripherie davon mit dem
Blatt (16) in dem Laufpfad (18) zum ersten Mal in einer vorbestimmten Entfernung zu
der führenden Kante des Blattes (16) in Eingriff treten.
29. Verfahren nach einem der Ansprüche 18 bis 28, zur verwendung mit einem Frankierwerk,
in welchem die Rotationseinrichtung eine rotierende Drucktrommel des Frankierwerkes
ist.
30. Vorrichtung, welche Rotationseinrichtungen (38) einschließt, die eine Peripherie aufweisen,
wobei die Peripherie Freistempeldruckeinrichtungen (44) einschließt, und angepaßt
ist, ein Blatt (16) auf einem Laufpfad (18) voranzubewegen, mit:
a) einer ersten Einrichtung (56, 58) zum Erfassen eines Zeitintervalles, während welchem
ein Blatt (16) mit einer führenden Kante um eine vorbestimmte Entfernung in dem Laufpfad
(18) linear versetzt wird;
b) einem Gleichstrommotor (120), der mit der Rotationseinrichtung (38) gekoppelt ist,
um diese zu drehen,
c) einer zweiten Einrichtung (86, 126) zum Erfassen eines Winkelversatzes der Rotationseinrichtung
(38); und
d) einer Computereinrichtung (500), welche mit der ersten (56, 58) und zweiten (86,
126) Erfassungseinrichtung und mit dem Gleichstrommotor (120) gekoppelt ist, und umfaßt:
i) Einrichtungen, welche auf die erste Erfassungseinrichtung (56, 58) ansprechen,
um jeweilige Beträge vorzusehen, die gewünschte Winkelversätze der Rotationseinrichtung
(38) während sukzessiver Abtastzeitperioden darstellen;
ii) Einrichtungen, welche auf die zweite Erfassungseinrichtung (86, 126) ansprechen,
um jeweilige Beträge vorzusehen, die tatsächliche Winkelversätze der Rotationseinrichtung
(38, 40) aufeinander folgender Abtastzeitperioden darstellen; und
iii) Einrichtungen zum Kompensieren der Differenz zwischen gewünschten und tatsächlichen
Winkelversätzen, und zum Erzeugen eines Gleichstrommotorsteuerungssignals zum Steuern
einer Drehung des Motors (120), um zu bewirken, daß die Freistempeldruckeinrichtungen
(44) mit dem Blatt (16) in dem Laufpfad (18) zum ersten Mal in einem vorbestimmten
Randabstand von der führenden Kante des Blattes (16) in Eingriff treten.
31. Vorrichtung nach Anspruch 30,
dadurch gekennzeichnet, daß
die erste Erfassungseinrichtung erste (56) und zweite (58) Fühlvorrichtungen umfaßt,
die voneinander in einem vorbestimmten Abstand (d1) angeordnet sind, um aufeinander
folgende Ankünfte eines Blattes (16) an zwei beabstandeten Stellen in dem Laufpfad
(18) zu erfassen.
32. Vorrichtung nach Anspruch 30 oder 31,
dadurch gekennzeichnet, daß
der Motor (120) eine Ausgangswelle (122) aufweist, und die zweite Erfassungseinrichtung
eine Quadraturencodereinrichtung (126) umfaßt, die mit der Ausgangswelle (122) gekoppelt
ist.
33. Vorrichtung nach Anspruch 32,
dadurch gekennzeichnet, daß
sie Zähleinrichtungen (270) zum Koppeln der Quadraturencodereinrichtungen (126) an
die Computereinrichtung (500) einschließt.
34. Vorrichtung nach Anspruch 33,
dadurch gekennzeichnet, daß
die Zähleinrichtung (270) Einrichtungen zum Vorsehen eines Ausgangssignales für die
Computereinrichtungen (500) umfaßt, welches den Winkelversatz und eine Drehrichtung
der Motorantriebswelle (122) darstellt.
35. Vorrichtung nach einem der Ansprüche 30 bis 34,
dadurch gekennzeichnet, daß
die Computereinrichtung (500) Einrichtungen zum Vergleichen von Beträgen einschließt,
die die gewünschten und tatsächlichen Winkelversätze darstellen, sowie zum Erzeugen
eines Fehlersignales, welches die Differenz dazwischen darstellt, wobei die Kompensationseinrichtung
auf das Fehlersignal anspricht, um das Motorsteuerungssignal zu erzeugen, und das
Motorsteuerungssignal die Differenz zwischen den gewünschten und tatsächlichen Winkelversätzen
kompensiert.
36. Vorrichtung nach einem der Ansprüche 30 bis 35,
dadurch gekennzeichnet, daß
sie Leistungsverstärkereinrichtungen (301) zum Koppeln der Computereinrichtungen (500)
an dem Gleichstrommotor (120) einschließt.
37. Vorrichtung nach Anspruch 34,
dadurch gekennzeichnet, daß
das Motorsignal eine Funktion des Fehlersignals und eines früheren Fehlersignals umfaßt.
38. Vorrichtung nach Anspruch 34,
dadurch gekennzeichnet, daß
das Motorsteuerungssignal eine Funktion des Fehlersignals und eines früheren Motorsteuerungssignals
umfaßt.
39. Vorrichtung nach Anspruch 38,
dadurch gekennzeichnet, daß
das frühere Motorsteuerungssignal eine Funktion eines früheren Fehlersignals umfaßt.
40. Vorrichtung nach Anspruch 34,
dadurch gekennzeichnet, daß
das Motorsteuerungssignal ein impulsbreitenmoduliertes Steuerungssignal umfaßt.
41. Vorrichtung nach Anspruch 34,
dadurch gekennzeichnet, daß
das Motorsteuerungssignal eine Funktion eines regressiven mathematischen Ausdruckes
umfaßt.
42. Frankierwerk, welches eine Vorrichtung nach einem der Ansprüche 30 bis 41 umfaßt,
worin die Rotationseinrichtung eine Frankierwerkstrommel (38) einschließt, die Trommel
einen Rotationszyklus aufweist, und das Motorsteuerungssignal angeordnet ist, die
Peripherie der Trommel (38) auf die lineare Geschwindigkeit des Blattes (16) im wesentlichen
koinzident mit der Peripherie der Trommel (38), welche mit der führenden Kante des
Blattes (16) in Eingriff steht, zu beschleunigen.
43. Frankierwerk, welches eine Vorrichtung nach Anspruch 31 umfaßt,
dadurch gekennzeichnet, daß
die Rotationseinrichtung eine Frankierwerktrommel (38) einschließt, und die erste
Erfassungseinrichtung eine Frankiermaschine (12) umfaßt, die die ersten und zweiten
Fühlvorrichtungen (56, 58) einschließt.
44. Frankierwerk nach Anspruch 42 oder 43,
dadurch gekennzeichnet, daß
die Computereinrichtung angeordnet ist, ein Motorsteuerungssignal zum Verzögern der
Trommel (38) von der Geschwindigkeit davon zur Ruhe zu erzeugen, nachdem die Trommel
(38) und ein Blatt (16) ausser Eingriff getreten sind.
45. Verfahren zur Verwendung mit einer Vorrichtung, welche eine Rotationseinrichtung (38)
einschließt, worin die Roationseinrichtung eine Peripherie mit einer Freistempeldruckeinrichtung
(44) einschließt, und angepaßt ist, ein Blatt (16) mit einer führenden Kante auf einem
Laufpfad (18) voranzubewegen, wobei das Verfahren eine Drehung der Rotationseinrichtung
(38) steuert, um einen Eingriff der Freistempeldruckeinrichtung (44) mit dem Blatt
zu steuern, wobei das Verfahren umfaßt:
a) Erfassen eines Zeitintervalles, während welchem ein Blatt (16) linear um eine vorbestimmte
Entfernung in dem Laufpfad (18) versetzt wird, und daraufhin Vorsehen von Beträgen,
welche jeweilige Winkelversätze der Rotationseinrichtung (38) während sucsessiver
Abtastzeitperioden darstellen;
b) Drehen der Rotationseinrichtung (38) mit einem Gleichstrommotor (120);
c) Erfassen eines Winkelversatzes der Rotationseinrichtung (38) und daraufhin Vorsehen
von Beträgen, welche jeweilige Winkelversätze der Rotationseinrichtung (38) während
jeweiliger Abtastzeitperioden darstellen; und
d) digitales Kompensieren der Differenz zwischen gewünschten und tatsächlichen Winkelversätzen,
und Erzeugen eines Motorsteuerungssignals zum Steuern einer Drehung der Rotationseinrichtung
(38), um zu bewirken, daß die Freistempeldruckeinrichtung (44) mit dem Blatt (16)
in dem Laufpfad (18) zum erstenmal in einem vorbestimmten Abstand von der führenden
Kante des Blattes (16) in Eingriff tritt.
46. Verfahren nach Anspruch 45,
dadurch gekennzeichnet, daß
Schritt a) den Schritt des Erfassens aufeinander folgender Ankünfte eines Blattes
(16) an zwei beabstandeten Stellen in dem Laufpfad (18) einschließt.
47. Verfahren nach Anspruch 45 oder 46,
dadurch gekennzeichnet, daß
Schritt c) den Schritt des Erfassens der Richtung eines Winkelversatzes des Gleichstrommotors
(120) einschließt.
48. Verfahren nach einem der Ansprüche 45 bis 47,
dadurch
gekennzeichnet, daß
Schritt d) die Schritte einschließt:
1/ Vergleichen von Beträgen, welche jeweilige gewünschte und tatsächliche Winkelversätze
darstellen; und
2/ Erzeugen eines Fehlersignales, welches die Differenz zwischen jeweiligen gewünschten
und tatsächlichen Winkelversätzen darstellt und daraufhin Erzeugen eines Motorsteuerungssignales,
welches die Differenz zwischen den gewünschten und tatsächlichen Winkelversätzen kompensiert.
49. Verfahren nach einem der Ansprüche 45 bis 48,
dadurch gekennzeichnet, daß
Schritt c) den Schritt des Beschleunigens der Peripherie der Rotationseinrichtungen
(38) auf die Geschwindigkeit des Blattes (16) im wesentlichen koinzident mit dem in
Eingriff treten der Peripherie und eines Blattes (16) einschließt.
50. Verfahren nach Anspruch 49,
dadurch gekennzeichnet, daß
Schritt c) den Schritt des Verzögerns der Peripherie der Rotationseinrichtung (38)
zur Ruhe einschließt, nachdem die Peripherie und ein Blatt (16) ausser Eingriff getreten
sind.
51. Verfahren nach einem der Ansprüche 45 bis 50,
dadurch gekennzeichnet, daß
Schritt c) den Schritt des Berechnens des Motorsteuerungssignales von einer Funktion
eines regressiven mathematischen Ausdruckes einschließt.
52. Verfahren nach einem der Ansprüche 54 bis 51,
dadurch gekennzeichnet, daß
der Schritt a) den Schritt des Erzeugens jeweiliger Zahlen einschließt, die gewünschte
Winkelversätze der Rotationseinrichtung darstellen.
53. Verfahren nach einem der Ansprüche 45 bis 57,
dadurch gekennzeichnet, daß
der Schritt c) den Schritt des Erzeugens jeweiliger Zahlen einschließt, die tatsächliche
Winkelversätze der Rotationseinsätze (38) darstellen.
54. Verfahren nach einem der Ansprüche 45 bis 53,
dadurch
gekennzeichnet, daß
Schritt d) die Schritte einschließt:
1/ Erzeugen eines impulsbreitenmodulierten Motorsteuerungssignales;
2/ Verstärken des impulsbreitenmodulierten Steuerungssignales; und
3/ Liefern des verstärkten, impulsbreitenmodulierten Steuerungssignales an den Gleichstrommotor
(120).
55. Verfahren nach einem der Ansprüche 45 bis 54;
dadurch gekennzeichnet, daß
Schritt d) ferner das Steuern einer Drehung der Rotationseinrichtung einschließt,
um zu bewirken, daß der lineare Versatz der Peripherie der Rotationseinrichtung im
wesentlichen angepaßt ist an den linearen Versatz des Blattes (16) während jeweiliger
Abtastzeitperioden.
56. Verfahren nach einem der Ansprüche 45 bis 55, zur Verwendung mit einem Frankierwerk,
in welchem die Rotationseinrichtung eine rotierende Drucktrommel des Frankierwerkes
ist.