(19) |
|
|
(11) |
EP 0 317 789 B1 |
(12) |
EUROPEAN PATENT SPECIFICATION |
(45) |
Mention of the grant of the patent: |
|
12.08.1992 Bulletin 1992/33 |
(22) |
Date of filing: 29.10.1988 |
|
(51) |
International Patent Classification (IPC)5: B22D 11/12 |
|
(54) |
Method and device for treatment of non-solidified parts of a cast strand
Verfahren und Vorrichtung zur Behandlung der nicht erstarrten Bereiche eines Giessstranges
Procédé et dispositif pour traiter les parties non solidifiées d'une barre de coulée
|
(84) |
Designated Contracting States: |
|
DE FR GB IT |
(30) |
Priority: |
02.11.1987 SE 8704259
|
(43) |
Date of publication of application: |
|
31.05.1989 Bulletin 1989/22 |
(73) |
Proprietor: ASEA BROWN BOVERI AB |
|
721 83 Västeras (SE) |
|
(72) |
Inventors: |
|
- Eriksson, Jan Erik
S-260 34 Mörarp (SE)
- Suzuki, Hiroshi
Ichihara-city
Chiba pref. (JP)
|
(74) |
Representative: Boecker, Joachim, Dr.-Ing. |
|
Adelonstrasse 58 65929 Frankfurt am Main 65929 Frankfurt am Main (DE) |
(56) |
References cited: :
|
|
|
|
- PATENT ABSTRACTS OF JAPAN, vol. 11, no. 128 (M-583)[2575], 22nd April 1987; & JP-A-61
269 960 (KAWASAKI STEEL CORP.) 29-11-1986
- PATENT ABSTRACTS OF JAPAN, vol. 10, no. 142 (M-481)[2199], 24th May 1986; & JP-A-61
1459 (KAWASAKI SEITETSU K.K.) 07-01-1986
- PATENT ABSTRACTS OF JAPAN, vol. 6, no. 190 (M-159)[1068], 29th September 1982; & JP-A-57
97 849 (SHIN NIPPON SEITETSU K.K.) 17-06-1982
- PATENT ABSTRACTS OF JAPAN, vol. 8, no. 186 (M-320)[1623], 25th August 1984; & JP-A-59
76 647 (KAWASAKI SEITETSU K.K.) 01-05-1984
- PATENT ABSTRACTS OF JAPAN, vol. 11, no. 111 (M-578)[2558], 8th April 1987; & JP-A-61
255 749 (KAWASAKI STEEL CORP.) 13-11-1986
|
|
|
|
Note: Within nine months from the publication of the mention of the grant of the European
patent, any person may give notice to the European Patent Office of opposition to
the European patent
granted. Notice of opposition shall be filed in a written reasoned statement. It shall
not be deemed to
have been filed until the opposition fee has been paid. (Art. 99(1) European Patent
Convention).
|
[0001] The present invention relates to a method for the treatment of the non-solidified
parts of a cast strand according to the introductory part of claim 1. The invention
also relates to a device for carrying out the method. A method and a device of this
kind is known from the Patent Abstracts of Japan, Volume 10, No. 142, (M-481)(2199)
24.05.1986.
[0002] EP-A-0 040 383 discloses a method for stirring of the above-mentioned kind. In this
prior art method, the path of the tapping jet in the mold is arranged to pass through
a static magnetic field produced by a permanent magnet or created by a flowing electrical
direct current. When the inflowing metallic melt passes through this magnetic field,
the velocity of the tapping jet is reduced and the tapping jet is being divided so
that the effect of its impact on the rest of the melt in the mold is at least weakened.
This publication also describes a device for carrying out the known method described.
[0003] The above-mentioned known method has also been improved in such a way that magnetic
poles, which produce the static magnetic field, are placed so close to the casting
pipe or the mold that those parts of the melt which are located at the side of the
incoming casting jet, and are thus not directly influenced thereby, are instead stirred
by cooperation between the magnetic field which emanates from the magnetic poles and
the currents induced when the tapping jet is slowed down (see EP-A-0 092 126).
[0004] It has been found that the investment costs for a plant for these methods tend to
increase because of the special design that is required for the mold together with
the coils/magnets.
[0005] The Patents Abstracts of Japan, Volume 10, No. 142, (M-481)(2199) 24.05.1986 discloses
a continuous casting plant with a permanent magnet arranged immediately under the
mold, with the field of the magnet being directed transversly to the longitudinal
direction of the strand.
[0006] The Patents Abstracts of Japan, Volume 11, No. 128, (M-583)(2575) 22.04.1987 discloses
a continuous casting plant with two stirrers arranged on the small sides of the slab
and disposed in the lower part of the supporting part of the mold. These stirrers
too are positioned relatively close to the lower edge of the mold. Each stirrer generates
a travelling magnetic field which travels in the longitudinal direction of the strand
but opposite to the movement of the strand itself.
[0007] If a casting machine is used for higher velocities (exceeding 2.0 m/min) or for thinner
cast strands, it may be difficult, using these known methods, to obtain a purer steel
because of the deeper penetration of non-metallic bodies entering with the tapping
jet, among other things from a nozzle which is passed by Argon (Ar) bubbles, and because
of a higher degree of meniscus changes and fluctuations in the surface of the melt
in the mold, which may be difficult to control.
[0008] The invention aims to provide a solution to the above-mentioned problems and other
problems associated therewith, while at the same time utilizing the advantages of
the prior art methods.
[0009] To achieve this aim the invention suggests a method for treatment of non-solidified
parts of a cast strand according to the introductory part of Claim 1, which is characterized
by the features of the characterizing part of Claim 1.
[0010] A device for carrying out the method according to Claim 1 is characterized by the
features of Claim 2.
[0011] The magnetic field, which is applied on the melt, may be created by a flowing direct
or low-frequency (less than 1 Hz) alternating current. The field may also be created
by permanent magnets. This method provides a possibility of improving the braking
intensity in relation to the geometry of the elements included in the casting device.
The investment costs for the plant are reduced and the mold need not be modified with
respect to coils and the like. The method can also be applied to thin slabs and to
all types of steel alloys. A very intense brake power in relation to what has hitherto
been possible can be obtained. The inventive concept can also be applied to slab casting
at high velocities as well as to the casting of blooms.
[0012] The coils (magnets) are positioned with their centre between 1.5 m and 4 m below
the melt surface (the meniscus) in the mold, thus obtaining the most efficient braking.
[0013] It is also possible to apply the method and the device in connection with continuous
casting of billets, but the thrust of the invention centers on the casting of slabs,
i.e. blanks having a greater width than thickness, for example of the order of magnitude
of 2.0 x 0.2 m in cross section.
[0014] The invention will now be described in greater detail with reference to the accompanying
drawings showing - by way of example - in
- Figure 1
- continuous casting without the use of a magnetic brake,
- Figure 2
- electromagnetic braking using known methods,
- Figure 3
- braking in accordance with the invention.
[0015] Figure 1 shows continuous casting of slabs without a magnetic brake. Melt arrives
at an open-bottomed mold 2 via a tapping pipe 1 from a container or furnace, located
above the mold. The movements of the gas bubbles are indicated by arrows 3. As can
be seen, the casting jet penetrates the non-solidified parts of the blank far below
the mold.
[0016] Figure 2 shows the prior art method described above. Melt arrives at an open-bottomed
mould 6 via a casting pipe 4. The movement of the melt, caused by the tapping jet
from the pipe 4, is retarded by the magnetic field 5, and the movement of the melt
is split up according to the arrows 7, thus obtaining a purer steel. Slag particles
accumulate on the melt surface and the gas bubbles (Ar) are prevented from travelling
deeper down into the melt.
[0017] Figure 3 shows the method according to the invention. Melt arrives (possibly at high
velocity) via a tapping pipe or nozzle 8. This pipe (nozzle) 8 is also passed by Ar-bubbles.
The braking of the movement of the melt takes place downstream of the mold 9, that
is, 1.5 to 4 m below the melt surface (meniscus) 11, by means of magnetic fields 10
produced by means of DC-powered or low-frequency (< 1 Hz) AC-powered coils or by permanent
magnets. The movement of the melt is split up according to the arrows 12. A pure steel
is obtained as end product, preferably slabs, possibly blooms.
[0018] Also the device according to the invention is shown in Figure 3. The device is effective
in reducing non-metallic in clusions, for example from powder, possibly from the mold,
entering the melt. It is also effective to optimize the braking intensity in relation
to the geometry of the elements included, such as the angle of incidence of nozzles
and the position of the coils (magnets). The method and the device can also be used
for distances below the mold extending from immediately below the mold to 5 m from
the meniscus 11.
1. Method for treatment of the non-solidified parts of a cast strand being formed in
a mold (9) from a tapping jet of molten material entering the mold directly or via
a casting pipe (8), with a magnetic field created at the cast strand downstream of
the mold and acting transversely to the longitudinal direction of the mold, characterized in that the strand is cast at a speed exceeding 2 m/min, and that the magnetic field
(10), - a permanent-magnetic field, a DC-powered magnetic field or an AC-powered magnetic
field with a frequency below 1 Hz -, is positioned with its centre between 1.5 and
4 m below the melt surface/meniscus (11) in the mold (9), the magnetic field reducing
and splitting up the movement of the melt when passing through said magnetic field.
2. Device for carrying out the method according to claim 1, comprising an open-bottomed
mold (9) in a continuous casting machine and a ladle or container from which tapping
into the mold is performed directly or via one or more casting pipes (8), with means
for creating a magnetic field (10) located at the cast strand downstream of the mold
and adapted to act transversely to the casting direction, characterized in that means for casting the strand at speeds exceeding 2 m/min are arranged, that
the means for creating the magnetic field (10) consist of permanent magnets, DC-powered
coils or AC-powered coils, that the means for creating the magnetic field (10) are
placed with their centre at a distance of between 1.5 and 4 m below the melt surface/meniscus
(11) in the mold said magnetic field being adapted to reduce and split up the movements
(12) of the melt.
1. Procédé de traitement des parties non solidifiées d'une barre de coulée en formation
dans une lingotière (9), à partir d'un jet de coulée de matériau fondu entrant dans
la lingotière directement ou par l'intermédiaire d'un conduit de coulée (8), un champ
magnétique étant créé sur la barre de coulée, en aval de la lingotière et à distance
transversalement à la direction longitudinale de la lingotière, caractérisé en ce
que la barre est coulée à une vitesse dépassant 2 m/minute, et en ce que le champ
magnétique (10)) -champ magnétique permanent, champ magnétique à courant continu ou
champ magnétique à courant alternatif d'une fréquence inférieure à 1 Hz- est disposé
de manière que son centre se trouve entre 1,5 et 4 m en-dessous de la surface de la
masse fondue/ménisque (11) dans la lingotière (9), le champ magnétique réduisant le
mouvement de la masse fondue et la subdivisant quand elle passe dans ce champ magnétique.
2. Dispositif pour la mise en oeuvre du procédé suivant la revendication 1, comprenant
une lingotière (9) à fond ouvert dans une machine de coulée continue et une poche
ou un réservoir, à partir duquel une coulée dans la lingotière est effectuée directement
ou par l'intermédiaire d'un ou de plusieurs conduits de coulée (8), des moyens pour
créer un champ magnétique (10) sur la barre de coulée, en aval de la lingotière et
destiné à agir transversalement par rapport à la direction de coulée, caractérisé
en ce qu'il est prévu des moyens pour couler la barre à des vitesses dépassant 2 m/minute,
en ce que les moyens pour créer le champ magnétique (10) consistent en aimants permanents,
en bobines à courant continu ou en bobine à courant alternatif, en ce que les moyens
pour créer le champ magnétique (10) sont placés en ayant leur centre à une distance
comprise entre 1,5 et 4 m en-dessous de la surface de la masse fondue/ménisque (11)
dans la lingotière, le champ magnétique étant tel qu'il réduit les mouvements (12)
de la masse fondue et qu'il la divise.
1. Verfahren zur Behandlung der nichterstarrten Teile eines Gießstranges, der in einer
Kokille (9) aus einem Gießstrahl aus flüssigem Material geformt wird, welcher direkt
oder über ein Gießrohr (8) in die Kokille eintritt, mit einem magnetischen Feld, welches
an dem Strang unterhalb der Kokille erzeugt wird und quer zur Längsrichtung der Kokille
wirkt, dadurch gekennzeichnet, daß der Strang mit einer Geschwindigkeit von mehr als zwei m/min gegossen wird und
daß das magnetische Feld (10) - ein dauermagnetisches Feld, ein durch Gleichstrom
erzeugtes magnetisches Feld oder ein durch Wechselstrom mit einer Frequenz unter ein
1 Hz erzeugtes magnetisches Feld - mit seinem Zentrum zwischen 1,4 und 4 m unter der
Schmelzenoberfläche/Meniskus (11) in der Kokille (9) liegt, wobei das magnetische
Feld die Bewegung der Schmelze bei ihrem Durchtritt durch das magnetische Feld reduziert.
2. Verfahren zur Durchführung des Verfahrens gemäß Anspruch 1 mit einer bodenlosen Kokille
(9) in einer Stranggießmaschine und einer Pfanne oder einem Behälter, von dem direkt
oder über ein oder mehrere Gießrohre (8) in die Kokille abgezapft wird, mit Einrichtungen
zur Erzeugung eines magnetischen Feldes (10), welches an dem Gießstrang unterhalb
der Kokille angeordnet ist und quer zur Gießrichtung wirkt, dadurch gekennzeichnet, daß Einrichtungen zum Gießen des Stranges mit einer Geschwindigkeit von mehr als
zwei m/min vorgesehen sind, daß die Einrichtung zur Erzeugung eines magnetischen Feldes
(10) aus Dauermagneten, gleichstromgespeisten Spulen oder wechselstromgespeisten Spulen
besteht, daß die Einrichtung zur Erzeugung des magnetischen Feldes (10) mit ihrem
Zentrum in einer Entfernung zwischen 1,5 und 4 m unterhalb der Schmelzenoberfläche/Meniskus
(11) in der Kokille liegt, wobei das genannte magnetische Feld die Bewegungen (12)
der Schmelze zu reduzieren und aufzusplittern vermag.