(19)
(11) EP 0 317 111 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
03.03.1993 Bulletin 1993/09

(21) Application number: 88310218.8

(22) Date of filing: 31.10.1988
(51) International Patent Classification (IPC)5F23G 5/16, F23G 5/46, F23J 15/00

(54)

Low nox incineration process for hazardous waste

Abfallverbrennungsverfahren mit niedriger NOx-Produktion

Procédé d'incinération des déchets à faible production de NOx


(84) Designated Contracting States:
DE ES FR GB IT NL

(30) Priority: 18.11.1987 US 122067
03.10.1988 US 252681

(43) Date of publication of application:
24.05.1989 Bulletin 1989/21

(73) Proprietor: RADIAN CORPORATION
Austin, TX 78720-1088 (US)

(72) Inventor:
  • Bell, Ronald D.
    Austin Texas 78759 (US)

(74) Representative: Read, Matthew Charles et al
Venner Shipley & Co. 20 Little Britain
London EC1A 7DH
London EC1A 7DH (GB)


(56) References cited: : 
EP-A- 0 277 604
US-A- 4 060 378
US-A- 4 405 587
GB-A- 2 077 135
US-A- 4 395 223
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] This invention relates to ensuring low NOX content of products of combustion and is more particularly concerned with a hazardous waste incineration process which ensures low NOX content of the evolved gases.

    [0002] Many combustion processes generate effluent gases having an unacceptable NOX content. Thus, oxides of nitrogen are one of the principal contaminants emitted by combustion processes. In every combustion process, the high temperatures at the burner result in the fixation of some oxides of nitrogen. These compounds are found in stack gases mainly as nitric oxide (NO) with lesser amounts of nitrogen dioxide (NO₂) and only traces of other oxides. Since nitric oxide (NO) continues to oxidize to nitrogen dioxide (NO₂) in the air at ordinary temperatures, there is no way to predict with accuracy the amounts of each separately in vented gases at a given time. Thus, the total amount of nitric oxide (NO) plus nitrogen dioxide (NO₂) in a sample is determined and referred to as "oxides of nitrogen (NOX).

    [0003] Oxides of nitrogen emissions from stack gases, through atmospheric reactions, produce "smog" that stings eyes and causes acid rains. For these reasons, the content of oxides of nitrogen present in gases vented to the atmosphere is severely limited by various state and federal agencies. To meet the regulations for NOX emissions, several methods of NOX control have been employed. These can be classified as either equipment modification or injection methods. Injection methods include injection of either water or steam to lower the temperature since the amount of NOX formed generally increases with increasing temperatures, or injection of ammonia to selectively reduce NOX. Water or steam injection, however, adversely affects the overall fuel efficiency of process. A process involving the injection of ammonia into the products of combustion is shown, for example, in Welty, U.S. 4,164,546. Examples of processes utilizing ammonia injection and a reducing catalyst are disclosed in Sakari et at, U.S. 4,106,286; and Haeflich, U.S. 4,572,110. Selective reduction methods using ammonia injection are expensive and somewhat difficult to control. Thus, these methods have the inherent problem of requiring that the ammonia injection be carefully controlled so as not to inject too much and create a possible emission problem by emitting excess levels of ammonia. In addition the temperature necessary for the reduction of the oxides of nitrogen must be carefully controlled to get the required reaction rates.

    [0004] Equipment modifications include modifications to the burner or firebox to reduce the formation of NOX. Although these methods do reduce the level of NOX, each has its own drawbacks. A selective catalytic reduction system is presently considered by some authorities to be the best available control technology for the reduction of NOX. Currently available selective catalytic reduction systems used for the reduction of NOX employ ammonia injection into the exhaust gas stream for reaction with the NOX in the presence of a catalyst to produce nitrogen and water vapor. Such systems typically have an efficiency of 80 - 90 percent when the gas stream is at temperature within a temperature range of approximately 315 - 371°C (600°-700° F). The NOX reduction efficiency of the system will be significantly less if the temperature is outside the stated temperature range and the catalyst may be damaged at higher temperatures. As Applicant Bell has disclosed in Mc Gill et al 4,405,587, of which he is a co-patentee, oxides of nitrogen can be reduced by reaction in a reducing atmosphere such as disclosed in that patent at temperatures in excess of 1093°C (2000° F).

    [0005] An important source of NOX emissions is the incineration of hazardous wastes. Such incineration can be carried out in incinerators wherein the waste is combusted in a primary combustion zone followed by a secondary combustion zone. Excessive NOX emissions from such combustion are a serious environmental problem and various efforts to suppress them, such as the techniques referred to above, have been attempted, with varying results. GB-A-2 077 135 discloses the use of a catalyst in a combustion process for conventional fuel. This process cannot, however,be used for hazardous waste because the catalyst would be damaged.

    [0006] A process for low NOX combustion is known from US-A-4 395 223 and comprises:

    a) combusting a fuel in the presence of air in a first incineration zone, the air being supplied in stoichiometric excess with respect to combustible materials incinerated therein, to produce a first gas stream,

    b) supplying to said first gas stream additional fuel such as to produce a combustible gas stream wherein the combustible material is in stoichiometric excess with respect to available oxygen, and incinerating said combustible gas stream in a second incineration zone in a reducing atmosphere, whereby a second gas stream results wherein the combustible material is in stoichiometric excess with respect to available oxygen,

    c) using a portion of heat energy of the second gas stream to convert water into steam,

    d) adding air to said second gas stream to produce a third gas stream wherein the oxygen is in stoichiometric excess with respect to the available combustible material,

    e) passing the said resultant third gas stream through an oxidising combustion chamber to produce an oxidised gaseous stream,

    f) removing heat from said oxidised stream, and

    g) venting the resultant cooled stream. However, this process also uses conventional fuel, such as oil, kerosene or LPG.



    [0007] It is an object of this invention to provide an improved process, and an apparatus for carrying out the process, involving incineration of hazardous waste which brings about effective lowering of NOX in the incineration emissions.

    [0008] The present invention addresses the problem of low NOX combustion of hazardous waste by introducing the following steps:

    a) supplying a hazardous waste to be incinerated to said first incineration zone,

    b) removing any acidic materials from said second gas stream by means of an alkaline adsorbent,

    c) separating any solid material from said second gas stream and

    d) oxidising the said third gas stream in said oxidising combustion chamber by means of a catalyst.



    [0009] In addition, the present invention provides for an apparatus for carrying out the process comprising a two stage incinerator defining a first combustion zone with a secondary combustion zone, means for adding fuel to said secondary combustion zone to produce a reducing atmosphere, means for producing steam from water using a portion of the heat energy of the effluent from said secondary combustion zone, means for adding air downstream of said secondary combustion zone, an oxidising reaction chamber to receive the air enriched effluent from said means for adding air, heat recovery means for removing heat from the effluent downstream of said oxidising reaction chamber, and a vent for removal of cooled effluent, characterised in that the first combustion zone includes means for supplying hazardous waste thereto, and by means for adding an alkaline adsorbent to the effluent from said secondary combustion zone, a bag house immediately downstream of said means for adding an alkaline adsorbent and immediately upstream of said means for adding air and a catalyst disposed in said oxidising reaction chamber.

    [0010] An embodiment of the present invention will now be described, by way of example, with reference to the accompanying Figure which is a diagrammatic flow sheet of a hazardous waste combustion system embodying the features of the present invention.

    [0011] Referring now to the figure of the drawing, there is shown an illustrative embodiment of the invention involving a hazardous waste incinerator. In the drawing, the reference numeral 200 designates a hazardous waste incinerator comprising a primary combustion chamber 202 and a secondary combustion chamber 204. Waste to be incinerated is supplied through charge inlet 206, whereas fuel, e.g. gas, such as natural gas, is supplied through line 208, and combustion air is supplied through line 210. The primary conbustion chamber is suitably in the form of a rotary kiln to accommodate solid hazardous waste, but liquid and gaseous waste can also be handled. When liquid waste is charged it suitably is atomized to ensure efficient combustion. Primary combustion of the waste takes place in the primary combustion chamber or zone 202. Combustion generally occurs at a temperature of 816° to 1093°C (1500° to 2000°F). Should there be any ash and/or noncombustible materials in the waste incinerated in the primary combustion zone 202, generally characterized as "slag", it is discharged by gravity through bottom outlet 212. In the primary combustion chamber, combustion takes place in an oxygen-rich atmosphere, i.e., the amount of oxygen in the air supplied is in stoichiometric excess with respect to combustible materials provided by the fuel and the waste being incinerated. Consequently, the effluent gas from the primary combustion chamber or zone 202 as it enters secondary combustion chamber or zone 204 also has excess oxygen with respect to any combustible material in it. In the secondary zone, however, additional fuel and, optionally, additional liquid or gaseous waste are added to the effluent gases from the primary zone in amounts such that combustible material in the form of waste and/or fuel is now in stoichiometric excess with respect to available oxygen, e.g., 10 to 25% excess, and combustion takes place in the secondary combustion zone 204 under reducing conditions, generally at about 1204° to 1427°C (2200° to 2600°F). A residence time of 0.5 second is required. A greater residence time can be employed, e .g., 1 second or more, but serves no useful purpose.

    [0012] The hot effluent from the secondary combustion zone 204 of the incinerator is fed to a boiler 216 wherein heat in the effluent is used to generate steam, and the temperature of the hot effluent is reduced to about to 204° to 288°C (400° to 550°F), typically about 232°C (450°F). In order to protect the downstream catalyst bed, which will be described below, against fouling and possible deactivation, it is important that any SO₂, and HCl and like acidic materials be removed from the gas before it reaches the catalyst. Removal of SO₂ HCl, and the like, from the gas is achieved by means of an alkaline absorbent, e.g., sodium carbonate, sodium bicarbonate, sodium hydroxide, calcium carbonate, and the like, either in dry form or as an aqueous solution or suspension, or other means, introduced through inlet 218. Removal of these corrosive substances is important not only to protect the catalyst but in order to protect the downstream equipment itself against damage. The effluent gas from the incinerator may also carry along some ash and other solid particles. These solid materials are suitably separated from the gas in any convenient manner, e.g., by passing the gas through a bag house 220, the separated ash, and the like, being removed through drain line 222. At this point, the effluent gas stream is still oxygen deficient in terms of the stoichiometric relationship between its content of oxygen and combustible material, e.g., fuel. Thereupon, it is passed into conduit 224.

    [0013] The gas is, however, low in NOX and the treatment of the gases flowing through the system has brought about a reduction of any NOX formed, or a suppression of the formation of the NOX, without the use of ammonia or like treatment widely used in the prior art. In order, however, to utilize to the maximum the heat potential of the gas and any fuel which it may contain, air is added to the stream in conduit 224 and the resulting gaseous stream is passed to a gas-treatment unit 226 wherein the gas stream is passed over an oxidizing catalyst. The air is added in an amount relative to the stream in conduit 224 such that the resulting stream will contain oxygen stoichiometrically in excess of the amount needed to burn any fuel or other combustible material which may be present in the stream, e.g. , 10% to 50% excess. Thus, products at approximately the boiler discharge temperature, e.g., 232°C (450°F). are mixed with air and passed over an oxidizing catalyst.

    [0014] Either noble metal oxidizing catalysts such as platinum or palladium, or base metal oxides, such as copper oxide, chrome oxide, or manganese oxide, or the like, may be used for this purpose. The noble metal oxidizing catalysts, e.g., platinum or palladium catalysts, are most suitably the noble metals deposited in the zero valent state upon a support, such as alumina, silica, kiesel-guhr, or a metal alloy, and the like. The metal oxide catalysts are also most suitably the metal oxides supported on supports of this character. The making of such catalysts is well known to persons skilled in the art. Catalyst volumes will vary depending on the particular catalyst used. Ordinarily, the quantity of catalyst and the flow rate are such that the space velocity is typically in the range of 30,000 to 50,000 hr.⁻¹.

    [0015] Data indicate that NOX levels in the parts per billion range can be realized by the combined reduction-oxidation operations of this invention. The oxidized gaseous effluent from the unit 226 passes into a conduit 227 which leads to an economizer or a low-pressure, waste heat boiler, or the like, indicated at 228, and the heat content of the oxidized gaseous effluent is extracted to the maximum amount economically feasible. As seen in the drawing, the boiler feed water, which is first passed in indirect heat-exchange relationship through economizer 228, is heated by heat exchange with the gas and is passed via line 229 to boiler 216. The cooled gas at a temperature of about 149 to 204°C (300° to 400°F) is then discharged through an outlet conduit 230 into a stack 232 and vented to the atmosphere with the assurance that the vented effluent will comply with NOX emission standards. It will have a NOX content of less than 50 ppm.

    [0016] It will, of course, be understood that in the foregoing description of the drawing, reference to an incinerator, boiler, waste-heat boiler, economizer, gas treatment unit, and the like, contemplates the use of standard equipment well known to persons skilled in the art. The gas treatment unit, for example, can be any container adapted for gas passage and containing an oxidizing catalyst.

    [0017] Minimizing the formation of oxides of nitrogen in combustion, in accordance with the invention, offers several advantages over the current state of the art. This process does not require that a potentially obnoxious gas, such as ammonia, be injected into the system; the reaction conditions do not require that a narrowly-controlled temperature be maintained for the reduction of oxides of nitrogen to occur; the operating conditions are compatible with conventional incineration conditions; and greater NOX reduction efficiencies can be achieved.

    [0018] The following example will serve more fully to illustrate the features of the invention.

    [0019] In a typical operation, the primary combustion zone of an incinerator is fed with solid or liquid hazardous waste, auxiliary fuel, and air to produce a combustible mixture which is combusted at a temperature of 816° - 1093°C (1500° - 2000°F). to produce a stream of combustion products. The effluent stream from the primary combustion zone at a temperature of about 816° -1093°C (1500° - 2000°F). contains about 4% oxygen. Auxiliary fuel or more liquid waste at ambient temperature is injected into this stream to give the resultant stream a fuel content such that the combustible content is 10% in stoichiometric excess relative to the oxygen present. The resultant stream is then incinerated in the secondary incineration zone at a temperature of about 1093° - 1427°C (2000° - 2400°F). and, since the combustible material is in excess, the combustion takes place in a reducing atmosphere. Heat present in the combustion products is at least partially converted into steam by heat exchange with water, e.g., in boiler tubes, and the resulting gaseous stream, which is of course, oxygen depleted, has a temperature of about 232°C (450°F). To this oxygen-depleted stream is then added an aqueous solution of sodium carbonate or similar alkaline reagent sufficient to react with the acidic components of the stream, expressed as SO₂ and HCl, and the stream is passed through a bag house to separate solid components. Air at ambient temperature is then added to the stream in an amount such that the resultant stream has an oxygen content which is 10-50% stoichiometrically in excess relative to any combustible material present in the oxygen-depleted stream to which the air is added. The resultant oxygen-rich stream is then fed through a bed containing a noble metal, e.g., platinum or palladium, supported on alumina, with a space velocity of 30,000 - 50,000 hr.⁻¹. At this point the gaseous stream being processed has a temperature of about 232°C (450°F). This temperature increases across the catalyst bed to about 427°C (800°F). Heat is then extracted by appropriate heat exchange to leave a final stream to be vented having a temperature of about 204°C (400°F). and a NOX content of less than 50ppm.


    Claims

    1. A low Nox combustion process comprising:

    a) combusting a fuel (208) in the presence of air (210) in a first incineration zone (202), the air being supplied in stoichiometric excess with respect to combustible materials incinerated therein, to produce a first gas stream,

    b) supplying to said first gas stream additional fuel such as to produce a combustible gas stream wherein the combustible material is in stoichiometric excess with respect to available oxygen, and incinerating said combustible gas stream in a second incineration zone (204) in a reducing atmosphere, whereby a second gas stream (224) results wherein the combustible material is in stoichiometric excess with respect to available oxygen,

    c) using a portion of heat energy of the second gas stream to convert water into steam,

    d) adding air to said second gas stream to produce a third gas stream wherein the oxygen is in stoichiometric excess with respect to the available combustible material,

    e) passing the said resultant third gas stream through an oxidising combustion chamber (226) to produce an oxidised gaseous stream (227),

    f) removing heat from said oxidised stream, and

    g) venting the resultant cooled stream,
    characterised by

    h) supplying a hazardous waste to be incinerated to said first incinceration zone,

    j) removing any acidic materials from said second gas stream by means of an alkaline adsorbent,

    k) separating any solid material from said second gas stream and

    1) oxidising the said third gas stream in said oxidising combustion chamber by means of a catalyst.


     
    2. A process as defined in claim 1, wherein said hazardous waste is incinerated in said first incineration zone at a temperature of 816° - 1093°C (1500° - 2000°F).
     
    3. A process as defined in claim 1 or 2, wherein said combustible gas stream is incinerated in said second incineration zone at a temperature of 1093°C to 1427°C (2000° to 2400°F).
     
    4. A process as defined in claim 1, 2 or 3, wherein said second gas stream is cooled to a temperature of about 240°C (450°F) during said conversion of water to steam.
     
    5. A process as defined in any preceding claim, wherein the space velocity of said resultant stream passing over said oxidizing catalyst is about 30,000 to 50,000 hr. -1
     
    6. A process as defined in any preceding claim wherein said air is added to said second gas stream in an amount to provide a stoichiometric excess of oxygen present in the resultant stream of 10 to 50%.
     
    7. A process as defined in any preceding claim, wherein the cooled gas vented to the atmosphere is at a temperature of about 149° to 204°C (300° to 400°F).
     
    8. An apparatus for incineration of hazardous waste comprising a two stage incinerator (200) defining a first combustion zone (202) with a secondary combustion zone (204), means for adding fuel to said secondary combustion zone to produce a reducing atomosphere, means (216) for producing steam from water using a portion of the heat energy of the effluent from said secondary combustion zone (204), means for adding air downstream of said secondary combustion zone (204), an oxidising reaction chamber (226) to receive the air enriched effluent from said means for adding air, heat recovery means (228) for removing heat from the effluent downstream of said oxidising reaction chamber (226), and a vent (232) for removal of the cooled effluent,
    characterised in that
    the first combustion zone (202) includes means for supplying hazardous waste thereto,
    and by
    means (218) for adding an alkaline adsorbent to the effluent from said secondary combustion zone (204), a bag house (220) immediately downstream of said means (218) for adding an alkaline adsorbent and immediately upstream of said means (204) for adding air, and a catalyst disposed in said oxidising reaction chamber (226).
     
    9. An apparatus as defined in claim 8, wherein said means for removing heat is an economiser.
     
    10. An apparatus as defined in claim 8 or 9, wherein said vent is a stack.
     


    Ansprüche

    1. Verbrennungsverfahren mit geringer NOx-Erzeugung, das folgende Schritte umfaßt:

    a) Verbrennen eines Brennstoffs (208) in Anwesenheit von Luft (210) in einer ersten Verbrennungszone (202) zur Erzeugung eines ersten Gasstroms, wobei die Luft bezüglich des verbrennbaren Materials, das in dieser Zone verbrannt wird, mit stöchiometrischem Überschuß zugeführt wird,

    b) Zuführen von zusätzlichem Brennstoff zu dem ersten Gasstrom, um auf diese Weise einen brennbaren Gasstrom zu erzeugen, in dem sich das brennbare Material bezüglich des zur Verfügung stehenden Sauerstoffs in stöchiometrischem Überschuß befindet, und Verbrennen des brennbaren Gasstroms in einer zweiten Verbrennungszone (204) in einer reduzierenden Atmosphäre, wodurch ein zweiter Gasstrom (224) entsteht, in dem sich das verbrennbare Material bezüglich des zur Verfügung stehenden Sauerstoffs in stöchiometrischem Überschuß befindet,

    c) Verwendung eines Teils der Wärmeenergie des zweiten Gasstroms um Wasser in Dampf überzuführen,

    d) Hinzufügen von Luft zum zweiten Gasstrom, um einen dritten Gasstrom zu erzeugen, in dem sich der Sauerstoff bezüglich des zur Verfügung stehenden brennbaren Materials in stöchiometrischem Überschuß befindet,

    e) Hindurchführen des sich ergebenden dritten Gasstroms durch eine oxidierende Verbrennungskammer (226), um einen oxidierten Gasstrom (227) zu erzeugen,

    f) Entnebmen von Wärme aus dem oxidierten Strom und

    g) Ablüften des sich ergebenden abgekühlten Stroms,

    gekennzeichnet durch die Schritte

    h) Zuführen von zu verbrennendem gefährlichen Abfall zur ersten Verbrennungszone,

    j) Entfernen aller sauren Materialien aus dem zweiten Gasstrom mit Hilfe eines basischen Adsorbers,

    k) Abtrennen aller Feststoffe vom zweiten Gasstrom und

    l) Oxidieren des dritten Gasstroms in der Oxidations-Verbrennungskammer mit Hilfe eines Katalysators.


     
    2. Verfahren nach Anspruch 1, bei dem der gefährliche Abfall in der ersten Verbrennungszone bei einer Temperatur von 816°C bis 1093°C (1500°F bis 2000°F) verbrannt wird.
     
    3. Verfahren nach Anspruch 1 oder 2, bei dem der brennbare Gasstrom in der zweiten Verbrennungszone bei einer Temperatur von 1093°C bis 1427°C (2000°F bis 2400°F) verbrannt wird.
     
    4. Verfahren nach Anspruch 1, 2 oder 3, bei dem der zweite Gasstrom bei der Umwandlung von Wasser in Dampf auf eine Temperatur von ungefähr 240°C (450°F) abgekühlt wird.
     
    5. Verfahren nach einem der vorhergehenden Ansprüche, bei dem die Raumgeschwindigkeit des sich ergebenden Stroms, der über den oxidierenden Katalysator hinweg strömt, ungefähr 30000 bis 50000 hr⁻¹ beträgt.
     
    6. Verfahren nach einem der vorhergehenden Ansprüche, bei dem Luft dem zweiten Gasstrom in einer solchen Menge hinzugefügt wird, daß sich ein stöchiometrischer Überschuß des in dem sich ergebenden Strom vorhandenen Sauerstoffs von 10 % bis 50 % ergibt.
     
    7. Verfahren nach einem der vorhergehenden Ansprüche, bei dem das abgekühlte Gas, das an die Atmosphäre abgegeben wird, sich auf einer Temperatur von ungefähr 149°C bis 204°C (300°F bis 400°F) befindet.
     
    8. Vorrichtung zum Verbrennen von gefährlichem Abfall, die eine zweistufige Verbrennungsanlage (200) umfaßt, welche eine erste Verbrennungszone (202) mit einer sekundären Verbrennungszone (204) definiert, sowie mit Einrichtungen zum Zuführen von Brennstoff zur sekundären Verbrennungszone zur Erzeugung einer reduzierenden Atmosphäre, Einrichtungen (216) zur Erzeugung von Dampf aus Wasser unter Verwendung eines Teils der Wärmeenergie des aus der sekundären Verbrennungszone (204) ausströmenden Mediums, eine Einrichtung zum Hinzufügen von Luft stromabwärts der sekundären Verbrennungszone (204), eine oxidierende Reaktionskammer (226) zur Aufnahme des mit Luft angereicherten Mediums, das aus der Einrichtung zum Hinzufügen von Luft herausströmt, Wärmerückgewinnungs-Einrichtungen (228) stromabwärts der oxidierenden Reaktionskammer (226) zum Abführen von Wärme aus dem aus dieser Kammer herausströmenden Medium und eine Ausstromeinrichtung (232) zur Abgabe des abgekühlten Abgases,
    dadurch gekennzeichnet,
    daß die erste Verbrennungszone (202) Einrichtungen umfaßt, die dazu dienen, ihr gefährliche Abfälle zuzuführen, sowie durch Einrichtungen (218) zum Zusetzen eines basischen Adsorptionsmittels zu dem aus der sekundären Verbrennungszone (204) ausströmenden Medium, einen Feststoffabscheider (220) unmittelbar stromabwärts der Einrichtung (218) zum Zufügen eines basischen Adsorptionsmittels und unmittelbar stromaufwärts der Einrichtungen (204) zum Hinzufügen von Luft, sowie einen Katalysator, der in der oxidierenden Reaktionskammer (226) angeordnet ist.
     
    9. Vorrichtung nach Anspruch 8, bei der die Einrichtung zum Abführen von Wärme ein Abgasvorwärmer ist.
     
    10. Vorrichtung nach Anspruch 8 oder 9, bei der die Ausströmeinrichtung ein Schornstein ist.
     


    Revendications

    1. Procédé de combustion à faible émission de NOx, comprenant :

    a) la combustion d'un combustible (208) en présence d'air (210) dans une première zone d'incinération (202), l'air étant fourni en un excès stoechiométrique par rapport aux matières combustibles incinérées dans cette zone, pour produire un premier courant gazeux,

    b) l'introduction dans ledit premier courant gazeux d'une quantité supplémentaire de combustible de manière à produire un courant de gaz combustible dans lequel la matière combustible est présente en un excès stoechiométrique par rapport à l'oxygène disponible, et l'incinération dudit courant de gaz combustible dans une seconde zone d'incinération (204) sous une atmosphère réductrice, ayant pour résultat un deuxième courant gazeux (224) dans lequel la matière combustible est présente en un excès stoechiométrique par rapport à l'oxygène disponible,

    c) l'utilisation d'une partie de l'énergie calorifique du deuxième courant gazeux pour la transformation d'eau en vapeur d'eau,

    d) l'addition d'air audit deuxième courant gazeux pour produire un troisième courant gazeux dans lequel l'oxygène est présent en un excès stoechiométrique par rapport à la matière combustible disponible,

    e) le passage dudit troisième courant gazeux résultant à travers une chambre de combustion oxydante (226) pour produire un courant gazeux oxydé (227),

    f) l'évacuation de la chaleur dudit courant oxydé, et

    g) l'expulsion du courant refroidi résultant,
       caractérisé par

    h) l'alimentation de la première zone d'incinération avec une matière résiduelle dangereuse à incinérer,

    j) l'élimination de toutes les matières acides dudit deuxième courant gazeux au moyen d'un adsorbant alcalin,

    k) la séparation de toute matière solide dudit deuxième courant gazeux, et

    l) l'oxydation dudit troisième courant gazeux dans ladite chambre de combustion oxydante au moyen d'un catalyseur.


     
    2. Procédé suivant la revendication 1, dans lequel la matière résiduaire dangereuse est incinérée dans la première zone d'incinération à une température de 816° à 1093°C (1500° à 2000°F).
     
    3. Procédé suivant la revendication 1 ou 2, dans lequel le courant de gaz combustible est incinéré dans la seconde zone d'incinération à une température de 1093°C à 1427°C (2000° à 2400°F).
     
    4. Procédé suivant la revendication 1, 2 ou 3, dans lequel le deuxième courant gazeux est refroidi à une température d'environ 240°C (450°F) au cours de la transformation d'eau en vapeur d'eau.
     
    5. Procédé suivant l'une quelconque des revendications précédentes, dans lequel la vitesse spatiale du courant résultant passant sur le catalyseur oxydant est comprise dans l'intervalle de 30 000 à 50 000 h⁻¹.
     
    6. Procédé suivant l'une quelconque des revendications précédentes, dans lequel l'air est ajouté au deuxième courant gazeux en une quantité fournissant un excès stoechiométrique d'oxygène de 10 à 50 % dans le courant résultant.
     
    7. Procédé suivant l'une quelconque des revendications précédentes, dans lequel le gaz refroidi expulsé dans l'atmosphère est à une température d'environ 149° à 204°C (300° à 400°F).
     
    8. Appareil pour l'incinération d'une matière résiduaire dangereuse, comprenant un incinérateur (200) à deux étages définissant une première zone de combustion (202) avec une zone de combustion secondaire (204), des moyens d'introduction d'un combustible dans ladite zone de combustion secondaire pour produire une atmosphère réductrice, des moyens (216) pour produire de la vapeur d'eau à partir d'eau en utilisant une partie de l'énergie calorifique de l'effluent provenant de ladite zone de combustion secondaire (204), des moyens d'introduction d'air en aval de ladite zone de combustion secondaire (204), une chambre de réaction oxydante (226) pour recevoir l'effluent enrichi en air provenant desdits moyens d'introduction d'air, des moyens de récupération de chaleur (228) pour l'évacuation de la chaleur de l'effluent en aval de ladite chambre de réaction oxydante (226), et un évent (232) pour l'évacuation de l'effluent refroidi,
       caractérisé en ce que
       la première zone de combustion (202) comprend des moyens pour l'alimentation de cette zone avec une matière résiduaire dangereuse,
       et caractérisé par la présence
       de moyens (218) pour ajouter un adsorbant alcalin à l'effluent provenant de ladite zone de combustion secondaire (204), un sac de filtration (220) immédiatement en aval desdits moyens (218) pour l'addition d'un adsorbant alcalin et immédiatement en amont desdits moyens (204) pour l'addition d'air, et un catalyseur placé dans ladite chambre de réaction oxydante (226).
     
    9. Appareil suivant la revendication 8, dans lequel les moyens d'évacuation de chaleur consistent en un économiseur.
     
    10. Appareil suivant la revendication 8 ou 9, dans lequel l'évent est une cheminée.
     




    Drawing