(19)
(11) EP 0 535 504 A1

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
07.04.1993  Patentblatt  1993/14

(21) Anmeldenummer: 92116174.1

(22) Anmeldetag:  22.09.1992
(51) Internationale Patentklassifikation (IPC)5B41M 5/035, B41M 5/38
(84) Benannte Vertragsstaaten:
AT BE CH DE DK ES FR GB GR IE IT LI NL PT SE

(30) Priorität: 30.09.1991 DE 4132484

(71) Anmelder: GLUNZ AG
D-59063 Hamm (DE)

(72) Erfinder:
  • Kramer, Jürgen, Dr.
    2107 Rosengarten (DE)

(74) Vertreter: Rehberg, Elmar, Dipl.-Ing. 
Patentanwalt Postfach 31 62
37021 Göttingen
37021 Göttingen (DE)


(56) Entgegenhaltungen: : 
   
       


    (54) Verfahren und Vorrichtung zur Bildübertragung auf beschichtete Oberflächen


    (57) Bei einem Verfahren zur Bildübertragung auf beschichtete Oberflächen, insbesondere diejenigen von Holzwerkstoffen, wird die Oberfläche mit einer auszuhärtenden Polymerschicht beschichtet und die Polymerschicht unter Wärmeeinwirkung mit einem Farbpigmente tragenden Transfermedium in innigen Kontakt gebracht. Die Polymerschicht setzt sich hierbei aus niedermolekularen Polymeren zusammen, die nach dem innigen Kontakt der Polymerschicht mit dem Transfermedium zur Aushärtung der Polymerschicht vernetzt werden.




    Beschreibung


    [0001] Das Verfahren bezieht sich auf ein Verfahren zur Bildübertragung auf beschichtete Oberflächen, insbesondere diejenigen von Holzwerkstoffen, wobei die Oberfläche mit einer auszuhärtenden Polymerschicht beschichtet und die Polymerschicht unter Wärmeeinwirkung mit einem Farbpigmente tragenden Transfermedium in innigen Kontakt gebracht wird. Ferner wird eine Vorrichtung zur Durchführung des Verfahrens beschrieben. Unter Holzwerkstoffen sind in diesem Zusammenhang beispielsweise Spanplatten mit oder ohne Furnier oder Grundierung, mitteldichte Faserplatten, Sperrholzplatten und beliebige Massivholzteile zu verstehen.

    [0002] Ein Verfahren der eingangs beschriebenen Art ist aus dem Artikel "Das Reproprint-Verfahren" (Holz- und Möbelindustrie, DRW-Verlag, Stuttgart Ausgabe 1/88, Seiten 83 bis 85) bekannt. Die Oberfläche wird zuerst mit in Lösungsmittel gelösten Polymeren, also einem Lack beschichtet. Dieser Lack wird getrocknet, wobei die aufgebrachte Polymerschicht aushärtet. Anschließend wird ein bedrucktes Papier als Transfermedium auf die ausgehärtete Polymerschicht aufgelegt. In einer Presse, die beispielsweise eine Vakuumpresse, eine Kalander, eine Taktpresse oder eine Doppelbandpresse sein kann, wird ein inniger Kontakt zwischen dem Transfermedium und der Polymerschicht hergestellt und das Transfermedium erwärmt. Hierbei sublimieren die zuvor auf das Transfermedium aufgebrachten Farbpigmente von dem Papier ab und diffundieren in die Polymerschicht ein. Auf diese Weise bildet sich das auf das Papier aufgedruckte Negativ als Positiv auf, bzw. in der Polymerschicht ab. Nach Verlassen der Presse liegt das fertige Verfahrensprodukt vor. Die Auswahl der Farbpigmente gestaltet sich bei diesem bekannten Verfahren als äußerst schwierig. Zum einen sollten grundsätzlich nur solche Farbpigmente Verwendung finden, die lichtecht sind. Bei diesen stellt sich jedoch in aller Regel eine gewisse Molekülgröße ein, die für die Diffusionsgeschwindigkeit in die Polymerschicht nicht förderlich ist. Dementsprechend muß das Eindiffundieren der Farbpigmente in die Polymerschicht bei relativ hohen Temperaturen erfolgen. Hierdurch entstehen wiederum Einschränkungen bei der Wahl der Farbpigmente da nun auch eine Resistenz gegenüber der Diffusionstemperatur zu fordern ist. Die Diffusionstemperatur bei dem bekannten Verfahren beträgt über 200 °C. Bei dieser Temperatur zersetzt sich bereits eine Vielzahl der bekannten lichtechten Farbpigmente. Vorteilhaft bei dem bekannten Verfahren ist die Brillianz des auf bzw. in der Polymerschicht entstehenden Bildes. Bei Wahl eines klaren Lacks lassen sich sogar dreidimensionale Effekte erzielen. Ebenso ist die Bildübertragung auf profilierte, d. h. dreidimensionale Oberflächen bekannt. Hierzu muß natürlich das zu übertragende Bild zur Ausbildung des Negativs auf dem Transfermedium in eine geeignete zweidimensionale Vorform überführt werden.

    [0003] In jüngster Zeit sind auf dem Markt lichtechte Farbpigmente erhältlich, die lichtecht sind und bereits bei Diffusionstemperaturen von bis hinab zu 150 °C hinreichend große Diffusionsgeschwindigkeiten in der Polymerschicht aufweisen. Diese Farbpigmente müssen daher nicht den extremen Temperaturen über 200 °C ausgesetzt werden. Andererseits ist die Maximalmenge der von dem Transfermedium in die Polymerschicht übertragenen Farbe auch bei diesen Farbpigmenten in Anwendung des bekannten Verfahrens begrenzt. Als Maximalwert sind ca. 4 g Farbe pro m² Oberfläche der Polymerschicht anzusehen.

    [0004] Beim lösungsmittelfreien Drucken ist es bekannt, Farben mit mono-, oligo- oder niedermolekular polymeren Basissubstanzen nach dem Aufbringen auf das zu bedruckende Objekt mittels Bestrahlung mit Elektronen auszuhärten. Hierbei vernetzen die mono-, oligo- bzw. niedermolekular polymeren Substanzen zu hochmolekularen, festen Schichten. Statt der Anwendung von Elektronenstrahlung ist zur Vernetzung auch die Anwendung von UV-Strahlung bekannt. Hierbei ist jedoch nachteilig, daß die Farbpigmente der Farben die Vernetzung stören und zusätzlich Fotoinitiatoren zur Absorption und Umwandlung der ultravioletten Strahlung der Farbe zugesetzt werden müssen.

    [0005] Der Erfindung liegt die Aufgabe zugrunde ein Verfahren der eingangs beschriebenen Art derart weiterzuentwickeln, daß die Einschränkungen hinsichtlich der Wahl der Farbpigmente weitgehend wegfallen und eine größere Farbmenge übertragbar ist.

    [0006] Erfindungsgemäß wird dies dadurch erreicht, daß die Polymerschicht aus niedermolekularen Polymeren zusammengesetzt ist, die nach dem innigen Kontakt der Polymerschicht mit dem Transfermedium zur Aushärtung der Polymerschicht vernetzt werden. Bei dem neuen Verfahren wird das Bild bereits in die noch nicht ausgehärtete Polymerschicht übertragen. Hierbei ist wesentlich, daß die Polymerschicht nicht aus in einem Lösungsmittel gelösten Polymeren, sondern aus niedermolekularen Polymeren ohne die Beimischung von Lösungsmitteln besteht, da ein Lösungsmittel bei der Wärmeeinwirkung während des innigen Kontakts des Transfermediums mit der Polymerschicht in die Dampfphase übergehen und die Bildübertragung unmöglich machen würde. Hingegen bietet die aus niedermolekularen Polymeren zusammengesetzte Polymerschicht den Vorteil einer bereits bei geringen Temperaturen relativ niedrigen Viskosität. Die Viskosität bestimmt nun über die Stokes-Einstein-Relation direkt die Diffusionsgeschwindigkeit der Farbpigmente in der Polymerschicht, so daß die Farbpigmente bei relativ tiefen Temperaturen und in relativ kurzer Zeit sicher weit in die Polymerschicht eindringen. Zudem erhöht sich die Aufnahmefähigkeit der Polymerschicht für die Farbpigmente, so daß die maximal in die Polymerschicht einbringbare Farbmenge mehr als 14 g/m² beträgt. Die Diffusion der Farbpigmente läuft sogar derart schnell ab, daß bei normalen Übertragungszeiten auch die unter der Polymerschicht liegende Oberfläche mit eingefärbt werden kann. Das Vernetzen der niedermolekularen Polymere zu hochmolekularen Polymeren nach dem Übertragen des Bildes führt zu einer vollständigen Aushärtung der Polymerschicht. Das Bild ist somit zuverlässig fixiert und geschützt. Ferner kann die Aushärtung der Polymerschicht sehr weit getrieben werden, was bei den aus dem Stand der Technik bekannten Verfahren nicht möglich war, da anschließend noch die Eindiffusion der Farbpigmente erfolgen mußte. Darüberhinaus stellt sich als vorteilhaft heraus, daß bei dem neuen Verfahren der Anpressdruck des Transfermediums an die Polymerschicht bei der Bildübertragung deutlich geringer gehalten werden kann. Dies und die geringere Temperatur bei der Bildübertragung lassen die Verwendung dünneren Papiers für das Transfermedium zu.

    [0007] Mono- und/oder Oligomere können auf die Oberfläche aufgebracht werden, wobei die Mono- und/oder Oligomere abschließend zu den niedermolekularen Polymeren vorvernetzt werden. Mit Hilfe von Mono- und/oder Oligomeren kann die Polymerschicht aus den niedermolekularen Polymeren ohne die Verwendung von Lösungsmitteln hergestellt werden. Dies ist hinsichtlich der von den Lösungsmitteln üblicherweise ausgehenden Arbeitsplatz- und Umweltbelastungen ein großer Vorteil.

    [0008] Bei der Wärmeeinwirkung können als Obergrenze für die Temperatur 150 °C gewählt werden. Ein Erwärmen der Farbpigmente über diese Temperatur ist ob ihrer hohen Diffusionsgeschwindigkeit in der Polymerschicht aus niedermolekularen Polymeren nicht notwendig. Bis zu der Temperatur von 150 °C ist eine große Anzahl lichtechter Farbpigmente temperaturbeständig.

    [0009] Die Maximaltemperatur bei der Wärmeeinwirkung kann sogar so begrenzt werden, daß die Farbpigmente nicht über 100 °C aufgewärmt werden. Die Farbtemperatur ist letztlich auf die Diffusionsgeschwindigkeit der Farbpigmente in der Polymerschicht und die zur Übertragung des Bildes zur Verfügung stehende Zeit abzustimmen.

    [0010] Die Vorvernetzung der Mono- bzw. Oligomere kann mittels Bestrahlung mit Elektronen durchgeführt werden. Die Vorvernetzung der Mono- bzw. Oligomere durch Bestrahlung mit Elektronen ist vorteilhaft mit der Möglichkeit verbunden, die Vorvernetzung sehr kontrolliert durchzuführen. Als Maß für die Vorvernetzung ist hierbei die von den Mono- bzw. Oligomeren aufgenommene Strahlendosis geeignet.

    [0011] Vorteilhaft kann eine Strahlendosis von 5 bis 40 kGy für die Vorvernetzung der Mono- bzw. Oligomere eingesetzt werden. Grundsätzlich ist die Strahlendosis auf den Zustand der Einsatzstoffe und das gewünschte Maß der Vorvernetzung abzustimmen.

    [0012] Auch die Vernetzung der niedermolekularen Polymere kann mittels Bestrahlung mit Elektronen durchgeführt werden. Bei der Aushärtung der Polymerschicht ist die Elektronenstrahlhärtung ebenfalls von Vorteil. Bei diesem Verfahrensschritt wäre jedoch auch an die Anwendung anderer Aushärtetechniken zu denken. Bei der Vorvernetzung der Mono- bzw. Oligomere spielt der Vorteil der Kontrollierbarkeit der Elektronenstrahlhärtung jedoch eine ausgesprochen große Rolle. Sofern ein weiteres Verfahren zur kontrollierten Aushärtung bzw. teilweisen Vernetzung von Mono- bzw. Oligomeren geeignet ist, bestünden jedoch keine Bedenken gegen dessen Anwendung.

    [0013] Für die Vernetzung der niedermolekularen Polymere kann eine Strahlendosis von 40 bis 80 kGy eingesetzt werden. Hierbei sind wiederum der Grad der Vorvernetzung der Polymere und der gewünschte Endzustand zu berücksichtigen.

    [0014] Nach dem innigen Kontakt der Polymerschicht mit dem Transfermedium, aber vor deren Vernetzen, kann eine weitere Schicht von Mono-, Oligo- und/oder niedermolekularen Polymeren auf die Oberfläche aufgebracht werden. In Einzelfällen mag es sinnvoll sein, das auf bzw. in die Polymerschicht übertragene Bild mit einer weiteren Polymerschicht abzudecken. Vorteilhaft wäre diese in Form von Mono-, Oligo- und/oder niedermolekularen Polymeren dann vor dem endgütligen Aushärten, d. h. Vernetzen, der ersten Polymerschicht aufzubringen.

    [0015] Der Anpreßdruck beim innigen Kontakt der Polymerschicht mit dem Transfermedium kann kleiner als 500 hPa sein. Bereits bei diesem niedrigen Anpreßdruck lassen sich überraschenderweise große Farbmengen problemlos in die Polymerschicht übertragen.

    [0016] Eine Vorrichtung zur kontinuierlichen Durchführung des neuen Verfahrens mit einer Transporteinrichtung, einer Beschichtungsstation, einer Zuführeinrichtung für das Transfermedium, einer Kontaktpresse und einer Aushärtestation ist erfindungsgemäß dadurch gekennzeichnet, daß die Aushärtestation hinter der Kontaktpresse angeordnet ist. Hierbei kann die Aushärtestation eine Quelle für energiereiche Elektronen aufweisen. Ferner ist günstigerweise eine Vorvernetzungsstation vor der Zuführeinrichtung für das Transfermedium vorgesehen. Auch diese Vorvernetzungsstation kann eine Quelle für energiereiche Elektronen aufweisen. Letztlich ist eine weitere nach der Kontaktpresse und vor der Aushärtestation angeordnete Beschichtungsstation von Vorteil.

    [0017] Bei einer diskontinuierlichen Durchführung des neuen Verfahrens ohne Verwendung einer durchgehenden Transporteinrichtung ist die Vorrichtung durch das Vorhandensein einer Vorvernetzungsstation gekennzeichnet. Auch diese Vorrichtung kann insbesondere hinsichtlich Quellen für energiereiche Elektronen vorteilhaft weiter ausgestaltet sein.

    [0018] Das neue Verfahren soll nun anhand eines Ausführungsbeispiels näher erläutert und beschrieben werden. Hierbei zeigt die Figur den schematischen Aufbau der Vorrichtung zur kontinuierlichen Durchführung des Verfahrens.

    [0019] Die in der Figur dargestellte Vorrichtung 1 zur kontinuierlichen Durchführung des Verfahrens zur Bildübertragung weist eine Transporteinrichtung 1 für Spanplatten 3 auf. Die Spanplatten 3 sind in bekannter Weise vorbehandelt und beispielsweise furniert, grundierfolienbeschichtet oder lackgrundiert. Wesentlich ist dabei nur, daß ein Objekt mit einer beschichtbaren Oberfläche 6, die auch profiliert, d. h. dreidimensional ausgestattet sein kann, vorliegt. In der Arbeitsrichtung der Transporteinrichtung 2, die durch einen Pfeil 4 angedeutet ist, durchlaufen die Spanplatten 3 zuerst eine Beschichtungsstation 5. In der Beschichtungsstation 5 werden auf die Oberfläche 6 der Spanplatten 3 Mono- und Oligomere aufgetragen. Diese Mono- und Oligomere werden in einer nachfolgenden Vorvernetzungsstation 7 durch die Bestrahlung mit Elektronen vorvernetzt. Hierbei findet eine Quelle für energiereiche Elektronen mit einem Glühdraht 8 und einer eine Kathode 9 und eine Anode 10 aufweisenden Beschleunigungsstrecke Verwendung. Die Elektronen treten aus dem Glühdraht 8 aus und werden zwischen der Kathode und der Anode durch eine Beschleunigungsspannung von etwa 180 bis 300 kV beschleunigt. Die Beschleunigungsspannung bestimmt die Energie der beschleunigten Elektronen und damit deren mögliche Eindringtiefe in die auf die Oberfläche 6 der Spanplatten aufgebrachten Mono- bzw. Oligomere. Eine Flächenbelegung der Oberfläche 6 mit 400 g/m² erfordert typischerweise eine Beschleunigungsspannung von 230 bis 250 kV, damit die Elektronen die gesamte aufgebrachte Schicht durchdringen. Weisen die auf die Oberfläche 6 aufgebrachten Mono- bzw. Oligomere Molekulargewichte zwischen 500 und 5.000 auf, so resultiert hieraus nach der Vorvernetzungsstation 7 eine Polymerschicht 11 aus niedermolekularen Polymeren mit Molekulargewichten etwa zwischen 50.000 und 100.000. Auf diese Polymerschicht 11 wird sodann ein mit Farbpigmenten beschichtetes, von einer Zuführeinrichtung 12 kommendes Transfermedium 13 aufgezogen. Gemeinsam mit dem Transfermedium 13, das in der Regel ein bedrucktes Papier ist, durchlaufen die Spanplatten 3 eine Doppelbandpresse 14. In der Doppelbandpresse 14 werden das Transfermedium 13 und die Polymerschicht 11 in innigen Kontakt gebracht, sowie erwärmt, so daß unter der Wärmeeinwirkung die Farbpigmente in die Polymerschicht eindiffundieren. Ob der lockeren Struktur der Polymerschicht aus niedermolekularen Polymeren reichen in der Doppelbandpresse 14 ein Anpreßdruck von weniger als 0,5 bar und eine Temperatur von weniger als 150 °C, vorzugsweise weniger als 100 °C aus. Eine Doppelbandpresse ist für das neue Verfahren dann besonders geeignet, wenn der Durchsatz an zu bedruckender Fläche sehr groß ist. Eine Doppelbandpresse eignet sich jedoch beispielsweise nicht für geformte Oberflächen 6. Zum Bedrucken geformter, insbesondere profilierter Oberflächen 6 sind Vakuumpressen, deren Betrieb jedoch nur diskontinuierlich ist, vorzuziehen. Im Anschluß an die Doppelbandpresse 14 wird das Transfermedium 13 mittels einer Aufwickelstation 15 wieder von der Spanplatte 3 bzw. der Polymerschicht 11 abgezogen. In einem letzten Schritt erfolgt nun die Vernetzung der niedermolekularen Polymere der Polymerschicht 11. Hierzu ist eine Aushärtestation 16 vorgesehen. Die Aushärtestation 16 weist wie die Vorvernetzungsstation 7 eine Quelle für energiereiche Elektronen auf, die ohne weiteres identisch ausgebildet sein kann. Nach dem Durchlauf der Aushärtestation 16 setzt sich die Polymerschicht 11 aus Polymeren mit Molekulargewichten größer als 1.000.000 zusammen. Hierdurch wird eine weitergehende Diffusion der Farbpigmente in der Polymerschicht 11 unterbunden und eine gute Oberflächenstabilität erreicht. Die Polymerschicht 11 weist im Anschluß an die Vorvernetzungsstation 7 bis zum Erreichen der Aushärtestation 16 nur eine geringe Oberflächenstabilität auf, die jedoch für ein beschädigungsloses Durchlaufen der Doppelbandpresse 14 unter Übertragung des Bildes von dem Transfermedium 13 ausreichend war. Die durch das neue Verfahren gewonnene Bildqualität auf bzw. in der Polymerschicht 11 auf der Oberfläche 6 der Spanplatte 3 ist brilliant. Dies ist insbesondere auf die Möglichkeit des Einsatzes einer großen Anzahl von Farbpigmenten und die Übertragung großer Farbpigmentmengen zurückzuführen.

    Bezugszeichenliste:



    [0020] 
    1
    = Vorrichtung
    2
    = Transporteinrichtung
    3
    = Spanplatte
    4
    = Pfeil
    5
    = Beschichtungsstation
    6
    = Oberfläche
    7
    = Vorvernetzungsstation
    8
    = Glühdraht
    9
    = Kathode
    10
    = Anode
    11
    = Polymerschicht
    12
    = Zuführeinrichtung
    13
    = Transfermedium
    14
    = Doppelbandpresse
    15
    = Aufwickelstation
    16
    = Aushärtestation



    Ansprüche

    1. Verfahren zur Bildübertragung auf beschichtete Oberflächen, insbesondere diejenigen von Holzwerkstoffen, wobei die Oberfläche mit einer auszuhärtenden Polymerschicht beschichtet und die Polymerschicht unter Wärmeeinwirkung mit einem Farbpigmente tragenden Transfermedium in innigen Kontakt gebracht wird, dadurch gekennzeichnet, daß die Polymerschicht (11) aus niedermolekularen Polymeren zusammengesetzt ist, die nach dem innigen Kontakt der Polymerschicht (11) mit dem Transfermedium (13) zur Aushärtung der Polymerschicht (11) vernetzt werden.
     
    2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß Mono- und/oder Oligomere auf die Oberfläche (6) aufgebracht werden, die zu den niedermolekularen Polymeren vorvernetzt werden.
     
    3. Verfahren nach einem der Ansprüche 1 und 2, dadurch gekennzeichnet, daß bei der Wärmeeinwirkung die Farbpigmente nicht über 150 °C, insbesondere nicht über 100 °C, erwärmt werden.
     
    4. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die Vorvernetzung der Mono- bzw. Oligomere mittels Bestrahlung mit Elektronen durchgeführt wird, wobei eine Strahlendosis von 5 bis 40 kGy einsetzt wird.
     
    5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Vernetzung der niedermolekularen Polymere mittels Bestrahlung mit Elektronen durchgeführt wird, wobei eine Strahlendosis von 40 bis 80 kGy eingesetzt wird.
     
    6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß nach dem innigen Kontakt der Polymerschicht (11) mit dem Transfermedium (13) aber vor deren Vernetzen eine weitere Schicht von Mono-, Oligo- und/oder niedermolekularen Polymeren auf die Oberfläche (6) aufgebracht wird.
     
    7. Vorrichtung zur kontinuierlichen Durchführung des Verfahrens nach einem der Ansprüche 1 bis 6, mit einer Beschichtungsstation, einer Zuführstation für das Transfermedium, einer Kontaktpresse und einer Aushärtestation, dadurch gekennzeichnet, daß eine Vorvernetzungsstation (7) vorgesehen ist.
     
    8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, daß die Aushärtestation (16) eine Quelle für energiereiche Elektronen aufweist.
     
    9. Vorrichtung nach einem der Ansprüche 7 und 8, dadurch gekennzeichnet, daß eine Vorvernetzungsstation (7) vor der Zuführeinrichtung (12) für das Transfermedium (13) vorgesehen ist und daß die Vorvernetzungsstation eine weitere Quelle für energiereiche Elektronen aufweist.
     
    10. Vorrichtung nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, daß eine weitere Beschichtungsstation nach der Kontaktpresse und vor der Aushärtestation (16) vorgesehen ist.
     




    Zeichnung







    Recherchenbericht