(19) |
|
|
(11) |
EP 0 308 936 B1 |
(12) |
EUROPEAN PATENT SPECIFICATION |
(45) |
Mention of the grant of the patent: |
|
06.07.1994 Bulletin 1994/27 |
(22) |
Date of filing: 22.09.1988 |
|
|
(54) |
Antibody heteroconjugates for the killing of HIV-infected cells
Antikörper-Heterokonjugate zur Töting von HIV-infizierten Zellen
Hétéroconjugués d'anticorps pour tuer des cellules infectées par VIH
|
(84) |
Designated Contracting States: |
|
AT BE CH DE ES FR GB GR IT LI LU NL SE |
(30) |
Priority: |
23.09.1987 US 100157
|
(43) |
Date of publication of application: |
|
29.03.1989 Bulletin 1989/13 |
(73) |
Proprietor: Bristol-Myers Squibb Company |
|
New York, N.Y. 10154 (US) |
|
(72) |
Inventors: |
|
- Zarling, Joyce M.
Seattle, WA 98112 (US)
- Ledbetter, Jeffrey A.
Seattle, WA 98117 (US)
|
(74) |
Representative: Kinzebach, Werner, Dr. |
|
Patentanwälte
Reitstötter, Kinzebach und Partner
Postfach 86 06 49 81633 München 81633 München (DE) |
(56) |
References cited: :
EP-A- 0 180 171 WO-A-83/03679 US-A- 4 676 980
|
EP-A- 0 255 249 WO-A-88/03565
|
|
|
|
|
- BIOLOGICAL ABSTRACTS, vol. 84, no. 2, 1987, Philadelphia, PA (US); L.H. GOSTING et
al., no. 21468#
- THE JOURNAL OF IMMUNOLOGY, vol. 139, no. 2, 15 July 1987, American Association of
Immunologists, US; G. JUNG et al., pp. 639-644#
- BIOLOGICAL ABSTRACTS, vol. 83, no. 11, 1987, Philadelphia, PA (US); A. LANZAVECCHIA
et al., no. 108039#
- BIOTECHNOLOGY, vol. 5, September 1987; A. KLAUSNER, pp. 867-868#
- THE JOURNAL OF IMMUNOLOGY, vol. 140, no. 8, 15 April 1988, American Association of
Immunologists, US; J.M. ZARLING et al., pp. 2609-2613#
|
|
|
|
|
|
Remarks: |
|
The file contains technical information submitted after the application was filed
and not included in this specification |
|
Note: Within nine months from the publication of the mention of the grant of the European
patent, any person may give notice to the European Patent Office of opposition to
the European patent
granted. Notice of opposition shall be filed in a written reasoned statement. It shall
not be deemed to
have been filed until the opposition fee has been paid. (Art. 99(1) European Patent
Convention).
|
TECHNICAL FIELD OF THE INVENTION
[0001] The present invention relates to novel antibody heteroconjugates and their use in
methods for killing cells infected with Human Immunodeficiency Virus (HIV) in the
treatment of HIV infections. More particularly, the invention relates to the construction
of antibody heteroconjugates comprising an antibody specific for a particular peripheral
blood effector cell cross-linked to an antibody specific for an HIV antigen present
on the surface of HIV-infected cells. Such antibody heteroconjugates physically bridge
the effector cell to the target cell to be killed and may activate the lytic mechanism
of the effector cell in the killing of the HIV-infected target cell. The antibody
heteroconjugates and methods of this invention provide a novel approach to the treatment
of HIV-infected individuals by amplifying endogenous HIV-specific effector mechanisms
and may also be of prophylactic value, before the development of HIV immune responses,
in individuals newly infected or accidentally exposed to the HIV virus.
BACKGROUND OF THE INVENTION
[0002] The infectious agents responsible for acquired immunodeficiency syndrome (AIDS) and
its prodromal phases, AIDS-related complex (ARC) and lymphadenopathy syndrome (LAS),
are novel lymphotropic retroviruses recently termed Human Immunodeficiency Virus (HIV
1 and 2). Isolates of these viruses include LAV-1, LAV-2, HTLV-III, and ARV.
[0003] The general structure of HIV is that of a ribonucleoprotein core surrounded by a
lipid-containing envelope which the virus acquires during the course of budding from
the membrane of the infected host cell. Embedded within the envelope and projecting
outward are the viral-encoded glycoproteins. For example, the envelope glycoproteins
of HIV-1 are initially synthesized in the infected cell as a precursor molecule of
150,000-160,000 daltons (gp150 or gp160), which is then processed in the cell into
an N-terminal fragment of 110,000-120,000 daltons (known in the art as gp110 or gp120)
to generate the external glycoprotein, and a C-terminal fragment of 41,000-46,000
daltons (gp41), which represents the transmembrane envelope glycoprotein. The internal
viral proteins of HIV include the "gag" and "pol" proteins.
[0004] As the spread of HIV reaches pandemic proportions, the treatment of infected individuals
and prevention of the virus' transmission to uninfected individuals at risk of exposure
is of paramount concern. A variety of therapeutic strategies have targeted different
stages in the life cycle of the virus and are outlined in Mitsuya and Broder,
Nature, 325, p. 773 (1987). One approach involves the use of antibodies specific for antigens
on the HIV glycoproteins. These antibodies may inhibit viral replication, either by
interfering with viral entry into host cells or by some other mechanism. Once the
viral proteins or the antigenic determinants on those proteins that are susceptible
to antibody intervention are identified, antibody titers sufficient to neutralize
the infectivity of the virus could be engendered by vaccination or, alternatively,
by the passive administration of immunoglobulins or monoclonal antibodies of the desired
antigenic specificity.
[0005] The gp110 glycoprotein of HIV-1 has been the object of much investigation as a potential
target for interfering with the virus' infectivity. Sera from HIV-infected individuals
have been shown to neutralize HIV
in vitro and antibodies that bind to purified gp110 are present in the sera [see M. Robert-Guroff
et al.,
Nature, 316, pp. 72-74 (1985); R.A. Weiss et al.,
Nature, 316, pp. 69-72 (1985); and Mathews et al.,
Proc. Natl. Acad. Sci. U.S.A., 83, p. 9709 (1986)]. Purified and recombinant gp110 have stimulated the production
of neutralizing serum antibodies when used to immunize animals [see Robey et al.,
Proc. Natl. Acad. Sci. U.S.A., 83, p. 7023 (1986) and Lasky et al.,
Science, 233, p. 209 (1986)]. Immunization of a human with a recombinant vaccinia virus that
expresses HIV gp110 and gp41 induced HIV-neutralizing antibodies [see Zagury et al.,
Nature, 326, p. 249 (1986)]. Binding of the gp110 molecule to the CD4 (T4) receptor has
also been shown and monoclonal antibodies which recognize certain epitopes of the
CD4 receptor have been shown to block HIV binding, syncytia formation and infectivity
[see McDougal et al.,
Science, 231, p. 382 (1986)]. Putney et al.,
Science, 234, p. 1392 (1986) elicited neutralizing serum antibodies in animals after immunizing
with a recombinant fusion protein containing the carboxyl-terminal half of the gp110
molecule and further demonstrated that glycosylation of the envelope protein is unnecessary
for a neutralizing antibody response. Furthermore, monoclonal antibodies to HIV glycoproteins
such as gp110 and gp41 have been produced [see, e.g., L.H. Gosting et al.,
J. Clin. Microbiol., 25, (No. 5), pp. 845-848 (1987)].
[0006] HIV may spread in an infected individual in two ways: as cell-free virus present
in body fluids or by fusion of infected cells with uninfected cells to form syncytia.
Although neutralizing antibody to HIV may reduce the spread of cell-free virus, a
different approach is required to kill HIV-infected cells.
[0007] Ordinarily, a healthy immune system enables an individual to recover from infections
caused by a variety of viruses. The immune mechanisms which may play a role in prevention
or recovery from viral infections include the following: First, neutralizing antibodies
may prevent the spread of cell-free virus. Second, antibody dependent cell-mediated
cytotoxicity (ADCC), which involves coating of virus-infected cells with antibody,
enables effector cells within the peripheral blood leukocyte population to lyse the
infected cells. Third, complement-dependent antibody cytotoxicity may contribute to
the lysis of virus-infected cells. Fourth, T cell-mediated immunity may also be involved
in the killing of virus-infected cells [see
Introduction To Immunology (2nd ed.), J.W. Kimball (ed.), MacMillan Publishing Co. (1986) for a general review
of the cells and functions of the human immune system].
[0008] However, the HIV virus itself causes immunodeficiencies. Thus, a large proportion
of HIV-infected humans go on to develop AIDS, indicating that the immune responses
to HIV in those individuals are inadequate to prevent the development of this fatal
disease. Therefore, there is a great need, particularly in the treatment of HIV infections,
for a new approach that will enable or augment effector cell mechanisms for the killing
of HIV-infected cells.
[0009] The use of antibody heteroconjugates (also known in the art as heteroaggregates or
heteroantibodies) for the killing of tumor cells is known. See, e.g., EP-A-0 180 171,
United States Patent 4,676,980, issued to D.M. Segal et al.; G. Jung et al.,
Proc. Natl. Acad. Sci. U.S.A., 83, pp. 4479-4483 (1983); P. Perez et al.,
J. Immunol., 137, No. 7, pp. 2069-2072 (1986); and J.A. Titus et al.,
J. Immunol., 138, No. 11, pp. 4018-4022 (1987). For example, Perez et al.,
supra, disclose the cross-linking of anti-T3, a monoclonal antibody to the T receptor on
T lymphocytes, to various anti-tumor monoclonal antibodies. The heteroaggregates so
produced were shown to promote the lysis of human tumor lines and fresh tumor cells
by cytotoxic T lymphocytes. See also, B. Karpovsky et al.,
J. Exp. Med., 160, pp. 1686-1701 (1984), which discloses heteroaggregates containing antibodies
to the Fc receptor on ADCC effector cells cross-linked to antibodies to TNP-treated
tumor cells for the lysis of those tumor cells.
[0010] However, no where in the art is there a suggestion or a teaching as to how to select
and use monoclonal antibodies specific for HIV antigens cross-linked to effector cells
such as cytotoxic T lymphocytes or large granular lymphocytes for the killing of HIV-infected
cells in the treatment of HIV infections. Furthermore, because of the immune deficiencies
caused by the HIV virus, one would not be led by previous studies to use the heteroconjugate
approach in AIDS patients.
SUMMARY OF THE INVENTION
[0011] The present invention relates to the use of novel antibody heteroconjugates for the
treatment of HIV-infected individuals. The heteroconjugates of the invention are comprised
of an antibody specific for an HIV antigen that is expressed on HIV-infected cells
cross-linked to an antibody specific for an effector cell of the peripheral blood
capable of killing an HIV-infected target cell. According to the method of this invention,
the anti-HIV antibody of the heteroconjugate binds to an HIV-infected cell, i.e.,
the target cell to be killed, whereas the anti-effector antibody of the heteroconjugate
binds to an effector cell such as those found within the peripheral blood lymphocyte
(PBL) population, e.g., cytotoxic T lymphocytes (also referred to in the art as T
cells) or large granular lymphocytes (LGLs). Thus, the antibody components of the
heteroconjugate bridge the effector and target cells and promote killing of the target
cell by the cytotoxic effector cell.
[0012] According to preferred embodiments of this invention, monoclonal antibodies to either
gp110 or gp41 of HIV-1 have been cross-linked to either a monoclonal antibody specific
for the CD3/T cell receptor complex found on T lymphocytes or a monoclonal antibody
to the Fc receptor found on certain leukocytes to form heteroconjugates that target
the respective effector cells (e.g., T lymphocytes or LGLs) from HIV seropositive
or seronegative humans to kill HIV-infected cells.
[0013] The heteroconjugates of this invention may be used in anti-HIV compositions, such
as those comprising a pharmaceutically effective amount of at least one heteroconjugate
of the invention. The present invention also encompasses combinations for use in methods
for treating HIV-infected individuals comprising the step of treating the individual
in a pharmaceutically acceptable manner with a pharmaceutically effective amount of
the compositions of this invention. In addition to
in vivo treatment of HIV-infected individuals with the heteroconjugates, a method for treating
HIV-infected individuals involves the
in vitro activation of effector cells such as peripheral blood lymphocytes and administration
of the activated effector cells and the heteroconjugates to the HIV-infected patient.
[0014] The heteroconjugates, pharmaceutical compositions and combinations of this invention
are useful for killing HIV-infected cells in individuals suffering from HIV infections
and may be particularly useful if the heteroconjugates contain one or more antibodies
that neutralize HIV infectivity or if the heteroconjugates are administered together
with HIV-neutralizing antibodies. In addition, these heteroconjugates may be of prophylactic
value in the treatment of individuals newly or accidentally infected with HIV.
BRIEF DESCRIPTION OF THE DRAWINGS
[0015] Figure 1 depicts a comparative graphical presentation of the % lysis of HIV-infected
cells by anti-CD3-pretreated or untreated PBL from seronegative donors vs. antibody
concentration of either the 110.4 x G19-4 heteroconjugate of one embodiment of this
invention or a control mixture of the individual antibodies that make up the heteroconjugate.
[0016] Figure 2A depicts in table form the % lysis of HIV-infected and uninfected cells
by anti-CD3-pretreated PBL from seropositive and seronegative donors in the presence
of either the 110.4 x G19-4 heteroconjugate of one embodiment of the invention or
a control mixture of the individual antibodies that make up the heteroconjugate (NT
= not tested).
[0017] Figure 2B depicts in table form the % of HIV-infected cells by anti-CD3-pretreated
unseparated or CD8⁺-enriched PBL from seronegative donors in the presence of the 110.4
x G19-4 heteroconjugate of one embodiment of this invention.
[0018] Figure 3 depicts a comparative graphical presentation of the % lysis of HIV-infected
cells by untreated or (A) interleukin-2 (IL-2)-pretreated or (B) β-interferon (β-IFN)-pretreated
PBL from seronegative donors vs. antibody concentration of either the 110.4 x Fc2
heteroconjugate of one embodiment of this invention or a control mixture of the individual
antibodies that make up the heteroconjugate.
[0019] Figure 4 depicts in table form the % lysis of HIV-infected cells by PBL from seronegative
donors, that were pretreated for 3 hours with varying concentrations of β-IFN, in
the presence of the 110.4 x Fc2 heteroconjugate of one embodiment of the invention,
a mixture of the individual antibodies that make up the heteroconjugate, each individual
antibody of the conjugate alone or in the absence of any heteroconjugate or antibodies.
[0020] Figure 5 depicts in table form the % lysis of HIV-infected and uninfected cells by
IL-2-pretreated seropositive and seronegative PBL in the presence of either the 110.4
x Fc2 heteroconjugate of one embodiment of this invention or a control mixture of
the individual antibodies that make up the heteroconjugate.
[0021] Figure 6 depicts a comparative graphical presentation of the % lysis of HIV-infected
cells by CD16⁺-enriched seronegative PBL pretreated with IL-2, unseparated seronegative
PBL pretreated with IL-2, and untreated unseparated seronegative PBL, in the presence
of the 110.4 x Fc2 heteroconjugate over a range of effector:target (E:T) cell ratios.
[0022] Figure 7 depicts in table form the % lysis of HIV-infected cells by PBL from seronegative
donors in the presence of varying concentrations of either the 41.1 x G19-4 heteroconjugate
of one embodiment of the invention, a mixture of the individual antibodies that make
up the heteroconjugate or each individual antibody of the heteroconjugate alone.
DETAILED DESCRIPTION OF THE INVENTION
[0023] In order that the invention herein described may be more fully understood, the following
detailed description is set forth.
[0024] The present invention relates to novel antibody heteroconjugates and their use in
methods for killing HIV-infected cells. More particularly, the invention relates to
heteroconjugates comprised of at least two antibodies cross-linked to each other.
One antibody is specific for and reactive with an HIV antigen expressed on HIV-infected
cells. The other antibody is specific for and reactive with an antigen found on effector
cells of the peripheral blood capable of killing an HIV-infected target cell. Such
effector cells may include cytotoxic T cells, monocytes (or macrophages), granulocytes,
and LGLs, which include cells with natural killer (NK) cell activity or ADCC activity.
Since the HIV-specific antibody of the heteroconjugate binds to HIV-infected cells
and the effector cell-specific antibody of the heteroconjugate binds to the cytotoxic
effector cell, the heteroconjugate of this invention provides a means to bridge the
two cells, bringing the cytotoxic effector cell in contact with the infected target
cell and thus promoting lysis of the target cell.
[0025] Without being bound by theory, it is believed that the heteroconjugates described
herein act not only to bridge cytotoxic effector cells to the HIV-infected target
cells but also activate the lytic mechanisms of the effector cells [see, e.g., M.A.
Liu et al.,
Proc. Natl. Acad. Sci. U.S.A., 82, pp. 8648-8652 (1985) and P. Perez et al.,
J. Exp. Med., 163, pp. 166-178 (1986)]. Thus, although an effector cell such as a T cell may have
its own antigenic specificity, it can be retargeted by the interaction with the heteroconjugate
of this invention to kill HIV-infected cells bound by the heteroconjugate. The heteroconjugate
approach of this invention, therefore, provides for an enhanced HIV-specific effector
cell response in HIV-infected individuals by activating effector cells such as cytotoxic
T cells or LGLs and then bringing them into close proximity, via the antibody heteroconjugate
bridge, with the HIV-infected target cells to be killed. In addition, such heteroconjugates
can render effector cells from individuals who have not yet developed anti-HIV immunity
(e.g., newly infected individuals) cytotoxic because naive effector cells can be targeted
by the heteroconjugates of this invention to kill HIV-infected cells.
[0026] The antibodies that comprise the heteroconjugates of this invention may be polyclonal
or preferably, monoclonal. The term "antibody" as used in this application includes
intact antibody molecules or Fab or F(ab′)₂ fragments. If monoclonal antibodies are
used, the antibodies may be of mouse or human origin or chimeric antibodies. The antibodies
that comprise the heteroconjugates of this invention can be covalently bound to each
other by techniques well known in the art such as the use of the heterobifunctional
cross-linking reagent SPDP (N-succinimidyl-3-(2-pyridyldithio)propionate) [see e.g.,
B. Karpovsky et al.,
supra]. Alternatively, the antibodies may be covalently bound to each other using GMBS
(maleimido butryloxysuccinimide) as described by R.R. Hardy, in
Methods Immunol., 4th Ed., D.M. Weir (ed.), pp. 31.1-31.12 (1986). Furthermore, an embodiment of
the invention may involve heteroconjugates comprised of more than two antibodies.
For example, a heteroconjugate of the invention may be comprised of two antibodies
specific for the effector cell and one antibody specific for the target HIV-infected
cell. Alternatively, the heteroconjugate may be comprised of two antibodies specific
for the target cell and one antibody specific for the effector cell. These heteroconjugates
are covalently bound to each other by techniques known in the art as cited above.
[0027] The HIV-specific antibody of the heteroconjugate may be any antibody that is specific
for and reactive with an HIV antigen that is sufficiently exposed or expressed on
the surface of HIV-infected cells. The antibody should, additionally, have an affinity
for the HIV antigen on the cell surface such that the antibody heteroconjugate forms
a stable bridge between the infected target cell and the effector cell. The antibody
should preferably have an affinity association constant on the order of about 10⁻⁸
to about 10⁻¹².
[0028] The effector-specific antibody of the heteroconjugate may be any antibody that is
specific for and reactive with an effector cell of the peripheral blood capable of
killing an HIV-infected cell. Preferably, the antibody is one that reacts with an
antigen on the surface of the effector cell such that the lytic mechanism of the effector
cell is activated. Such antibodies may include antibodies that react with epitopes
on T lymphocytes such as CD3 [see S.C. Meuer et al.,
J. Exp. Med., 157, p. 705 (1983)], CD28 (also known in the art as Tp44) [see J.A. Ledbetter et
al.,
J. Immunol., 137, pp. 3299-3305 (1986) and
Leukocyte Typing III, A.J. McMichael (ed.), Oxford University Press, Oxford (in press)], and CD2 [see
C.H. June et al.,
J. Clin. Invest., 77, p. 1224 (1986) and
Leukocyte Typing, A. Bernard et al. (ed.s), Springer-Verlag, New York (1984)]. Alternatively, the
effector-specific antibody component of the heteroconjugate may include antibodies
that react with epitopes on the Fc receptors of certain effector cells such as LGLs,
granulocytes or monocytes. Examples of such antibodies include antibodies specific
for the CD3/T cell receptor complex on T lymphocytes such as the G19-4 antibody [see,
e.g., J.A. Ledbetter et al.,
J. Immunol., 135, pp. 2331-2336 (1985)] and antibodies that react with the CD16 Fc receptor of
LGLs such as the Fc2 antibody [see, e.g., J.A. Ledbetter et al., In
Perspectives In Immunogenetics And Histocompatibility, Vol. 6, E. Heise (ed.), Lymphocyte Surface Antigens 1984, pp. 325-340, American
Society For Histocompatibility And Immunogenetics, New York (1984)]. Both anti-CD3
and anti-CD16 monoclonal antibodies are commercially available (e.g., Leu 4 and Leu
11 antibodies, respectively, Becton Dickinson, Mountainview, CA).
[0029] According to one preferred embodiment of this invention, a monoclonal antibody to
the HIV-1 glycoprotein gp110 (110.4) was cross-linked to a monoclonal antibody to
the CD3 antigen found on the T cell receptor (G19-4). The heteroconjugate targeted
T cells from PBL of seropositive and seronegative humans to kill HIV-infected cells.
[0030] According to our experimental protocol, PBL were incubated with radiolabeled chromium
(⁵¹Cr) HIV-infected target cells in the presence of a 110.4 x G19-4 heteroconjugate
of this invention and lysis of the target cells determined by the release of the ⁵¹Cr
label into the medium. We found that the PBL lysed the HIV-infected cells in the presence
of the heteroconjugate whereas little or no lysis occurred in the presence of a mere
mixture of the individual monoclonal antibodies that made up the conjugate.
[0031] In addition, we found that PBL preincubated with anti-CD3 and then exposed to the
target cells in the presence of the 110.4 x G19-4 heteroconjugate were even more cytotoxic
to the HIV-infected cells than untreated PBL. This result is in agreement with studies
directed to the use of heteroconjugates against tumor cells which reported that pretreatment
with antibody to the T3 antigen on T cells stimulates or augments the lytic mechanism
of the T cell [see, e.g., G. Jung et al.,
supra].
[0032] Of great importance was the fact that PBL from asymptomatic HIV-infected, i.e., seropositive
individuals, were also capable of lysing HIV-infected cells in the presence of the
110.4 x G19-4 heteroconjugate. Thus, the heteroconjugates of this invention may provide
a means for enabling or augmenting the ability of effector cells in the blood of individuals
already infected with HIV to kill HIV-infected cells.
[0033] Furthermore, we found that anti-CD3-activated PBL enriched for CD8+ cells (CD8 being
an antigenic marker for cytotoxic T cells) were more cytotoxic then unfractionated
PBL. This observation suggests that CD8⁺ cytotoxic T cells within the PBL population
are targeted by the 110.4 x G19-4 heteroconjugate for the lysis of the HIV-infected
cells.
[0034] In a second preferred embodiment, a monoclonal antibody to gp110 (110.4) was cross-linked
to Fc2, a monoclonal antibody to CD16, an antigen identified as the Fc receptor expressed
on LGLs and granulocytes. LGLs are effector cells that mediate ADCC and natural killing
[see, e.g., C. Ohlander et al.,
Scand. J. Immunol., 15, pp. 409-415 (1982)]. The heteroconjugate targeted LGLs from PBL of seropositive
and seronegative individuals to kill HIV-infected cells.
[0035] Thus, PBL were incubated with ⁵¹Cr-labeled HIV-infected cells in the presence of
a 110.4 x Fc2 heteroconjugate and lysis determined by release of ⁵¹Cr. The PBL lysed
the HIV-infected cells in the presence of the heteroconjugates. Less lysis was observed
in control experiments where the PBL were incubated with target cells in the presence
of a mere mixture of the monoclonal antibodies that make up the 110.4 x Fc2 heteroconjugate.
Furthermore, as with the preceding embodiment, PBL from HIV seropositive humans were
also targeted to lyse HIV-infected cells in the presence of the 110.4 x Fc2 heteroconjugate.
[0036] To determine which cells within the PBL population were actually targeted by this
heteroconjugate, PBL enriched for CD8⁺ T cells and PBL enriched for CD16⁺ cells were
tested for their ability to lyse HIV-infected cells. PBL enriched for CD16⁺ cells,
mainly LGLs, were more cytotoxic for the HIV-infected cells than unfractionated PBL.
In fact, PBL enriched for CD8⁺ T cells were less cytotoxic than the unfractionated
population. Thus, CD16⁺ LGLs present within the PBL population lysed the HIV-infected
cells in the presence of the 110.4 x Fc2 heteroconjugate.
[0037] The present invention makes possible the treatment of HIV-infected individuals with
pharmaceutical compositions comprising the heteroconjugates of this invention. This
method of treatment may be carried out
in vivo by the administration to an HIV-infected individual of a pharmaceutically effective
amount of at least one antibody heteroconjugate of the invention. The administration
of the heteroconjugate in conjunction with or after treatment with β-interferon (β-IFN),
interleukin 2 (IL-2), other interferons such as α- or γ-interferon, interferon inducers
or other immunomodulators may augment the effectiveness of the treatment. For example,
our experiments have shown that pretreatment of PBL with β-IFN or IL-2 caused more
lysis of HIV-infected cells in the presence of the heteroconjugates of this invention
than the lysis observed with untreated PBL. It may also be desireable to treat HIV-infected
individuals with the heteroconjugates of this invention wherein the heteroconjugates
themselves are comprised of HIV-neutralizing antibodies (i.e., as the HIV-specific
antibody component of the heteroconjugate) or with the heteroconjugates in conjunction
with HIV-neutralizing antibodies to enhance the body's overall attack on the HIV virus.
[0038] Alternatively, the treatment of HIV-infected individuals may involve the steps of
treating effector cells of the peripheral blood such as PBL with at least one antibody
heteroconjugate of the invention
in vitro and administering the effector cells and the heteroconjugate to the HIV-infected
individual. This method of treatment may also involve the
in vitro co-incubation or preincubation of the effector cells with β-IFN or IL-2, other interferons
such as α- or γ-interferon, interferon inducers or other immunomodulators, and the
administration of the activated effector cells with the heteroconjugates to an HIV-infected
individual. Alternatively, the effector cells may be co-incubated or preincubated
in vitro with an antibody specific for and reactive with the particular effector cell utilized;
preferably, an antibody that stimulates the lytic mechanism of the effector cell,
resulting in the cell's activation. For example, when using heteroconjugates comprising
antibodies to cytotoxic T cells, treatment may include co-incubation or preincubation
of the effector cells with an antibody specific for T cells because of the studies
that indicate that such treatment may further stimulate the lytic mechanism of cytotoxic
T cells. Finally, the effector cells can also be pretreated with a mitogen such as
PHA or ConA before administration along with the heteroconjugate to the HIV-infected
patient. Regardless of the method of treatment, it may be useful to use heteroconjugates
comprising antibody fragments such as Fab or F(ab′)₂ or chimeric antibodies.
[0039] The heteroconjugates of the invention can be administered using conventional modes
of administration which include, but are not limited to, intravenous, oral, subcutaneous,
intraperitoneal or intralymphatic. Intravenous administration is preferred.
[0040] The pharmaceutical compositions of the invention --comprising the heteroconjugates
-- may be in a variety of dosage forms which include, but are not limited to, solid,
semi-solid and liquid dosage forms such as tablets, pills, powders, liquid solutions
or suspensions, suppositories, polymeric microcapsules or microvesicles, liposomes,
and injectable or infusible solutions. The preferred form depends upon the mode of
administration and the therapeutic application.
[0041] The heteroconjugate compositions may include conventional pharmaceutically acceptable
carriers known in the art such as serum proteins such as human serum albumin, buffer
substances such as phosphates, water or salts or electrolytes.
[0042] The most effective mode of administration and dosage regimen for the heteroconjugate
compositions of this invention depends upon the severity and course of the disease,
the patient's health and response to treatment and the judgement of the treating physician.
Accordingly, the dosages of the heteroconjugates and any accompanying compounds such
as β-IFN or IL-2 should be titrated to the individual patient.
[0043] Nevertheless, an effective dose of heteroconjugate of this invention may be in the
range of from about 1 to about 100 mg/m². For
in vitro treatment of effector cells, a dose of from about 200 »g - 2 mg of heteroconjugate/10⁹
cells administered may be used. An effective dose of β-IFN, α-IFN, or γ-IFN may be
in the range of about 3X10⁶ U/patient to about 360x10⁶ U/patient with an optimum dose
of 1x10⁷ U/patient. Intravenous administration is preferred when using β-IFN, whereas
subcutaneous administration is preferred when using α- or γ-IFN. And, an effective
dose of IL-2 may be in the range of about 1000 to about 100,000 U/kg body weight.
Using a constant infusion, an effective dose may be from about 1-7 x 10⁶ U per square
meter of body surface per day [see W.H. West et al.,
New Eng. J. Med., 316 (No. 15), pp. 898-905 (1987)]. Finally, an effective dose of HIV-neutralizing
antibody may be in the range of about 1 to about 100 mg/m².
[0044] In order that the invention described herein may be more fully understood, the following
examples are set forth. It should be understood that these examples are for illustrative
purposes only and are not to be construed as limiting the scope of this invention
in any manner.
EXAMPLE 1
[0045] The following example demonstrates the targeting of PBL from HIV seropositive and
seronegative individuals by the heteroconjugates of this invention for the lysis of
HIV-infected cells.
[0046] The monoclonal antibodies cross-linked to form a heteroconjugate according to this
invention were an HIV-specific antibody, 110.4, and a T cell-specific, anti-CD3 antibody,
G19-4. Antibody 110.4 is of subclass IgG₁, reacts with the gp110 glycoprotein of LAV
within the region coded for by nucleotides 6598-7178 of LAV [see L.H. Gosting et al.,
supra], and neutralizes the infectivity of HIV. G19-4 is of subclass IgG₁ and is specific
for the CD3 antigen on the T cell receptor of T lymphocytes.
[0047] Monoclonal antibody, 110.4, was prepared as follows: LAV-1 virus purified from infected
CEM cells (A.T.T.C. No. CRL8904) [see F. Barre-Sinoussi et al.,
Science, 220, pp. 868-871 (1983)] was disrupted in 50 mM Tris, pH 7.4, 0.15 M NaCl, 1.0%
Aprotinin, 2.0% Nonidet P-40
(R)(NP-40) (octylphenoxypolyethoxyethanol). The extract was clarified twice by centrifugation
and adjusted to 0.5% NP-40 with the addition of three volumes of disruption buffer
without NP-40. Lentil lectin Sepharose® (Pharmacia, Piscataway, N.J.) was prewashed
in disruption buffer without NP-40 and then equilibrated in adsorption buffer (50
mM Tris, pH 7.4, 0.15 M NaCl, 1.0% Aprotinin, 0.5% NP-40). Clarified viral extract
was adsorbed with lentil lectin Sepharose® for 42 hours at 4°C. Unadsorbed material
was removed by washing with excess adsorption buffer. Elution of adsorbed material
was carried out with 0.2 M alpha methyl mannoside in adsorption buffer. The eluent
was dialyzed against PBS to remove the sugar and the material was readsorbed to the
lentil lectin Sepharose®.
[0048] The glycoprotein-lentil lectin Sepharose® complex was used to immunize BALB/c mice
by three intraperitoneal injections without adjuvant given 2-3 weeks apart. Spleens
were removed from immunized mice that demonstrated circulating antibody to glycoproteins
of HIV by immunoblot, radioimmunoprecipitation and/or ELISA.
[0049] The procedures used for the generation of hybridoma cell lines were generally those
of Kohler and Milstein,
Nature, 256, p. 495 (1975) with the modifications of Goldstein et al.,
Infect. Immun., 38, p. 273 (1982). Splenic B lymphocytes from the immunized mice were fused with
NS-1 myeloma cells using 40% (w/v) polyethylene glycol. Following fusion, the cell
mixture was resuspended in HAT medium (RPMI-1640 medium supplemented with 15% fetal
calf serum, 1x10⁻⁴ M hypoxanthine, 4x10⁷ M aminopterin and 1.6x10⁻⁵ M thymidine) to
select for the growth of hybrid cells, and then dispensed into 96-well microculture
trays at a concentration of 1-3x10⁶ cells/ml and incubated at 37°C in a humidified
atmosphere containing 6% C0₂. Cultures were fed by replacement of one-half the supernatant
with fresh HAT medium. The wells were observed using an inverted microscope for signs
of cell proliferation and when the cells were of sufficient density, the supernatants
were tested for anti-LAV antibody.
[0050] Wells containing hybrid cells producing antibody to LAV were identified by ELISAs
measuring the binding to either purified whole disrupted virus or biologically-expressed
fusion proteins. ELISA assays using disrupted virus were carried out on LAV EIA plates
(Genetic Systems, Seattle, Washington). Plates were incubated with cell culture fluids
at 37°C for 45 minutes and then washed three times with 0.05% Tween®20 in phosphate
buffered saline (PBS-Tween®).
[0051] Peroxidase-goat anti-mouse IgG (1:2,000 dilution in PBS-Tween®; Zymed Laboratories,
Inc., South San Francisco, California) was added (100 ul per well) and the plates
were incubated for 45 minutes at 37°C and washed as above. Substrate (0.025 M citric
acid, 0.05 M dibasic sodium phosphate, pH 5.0, containing 14 mg of
o-phenylenediamine and 10 ul of 30% hydrogen peroxide per 50 ml) was added and the
plates were incubated for 30 minutes at room temperature in the dark. The reaction
was stopped with 3N sulfuric acid, and colorimetric reactions were quantitated with
an automated microplate reader. Wells that gave positive results were subcloned by
limiting dilution, retested for specificity, and then expanded.
[0052] The monoclonal antibodies secreted by the resulting hybrid cell lines were further
characterized as to specificity and reactivity by immunoblotting, immunoprecipitation
and ELISA using disrupted LAV virus, recombinant LAV fusion proteins and synthetic
LAV peptides. All antibodies were determined to be of the IgG₁ isotype. The hybridoma
that produced the 110.4 antibody utilized in this embodiment was deposited with the
American Type Culture Collection under A.T.C.C. No. HB9405 in connection with commonly-owned
GB 2 196 634 B. In addition, the production of monoclonal antibodies to the gp110
and gp41 glycoproteins of HIV-1 has been described by L.H. Gosting et al.,
J. Clin. Microbiol., 25 (No. 5), pp. 845-848 (1987). The anti-CD3 monoclonal antibody, G19-4, was prepared
as described by J.A. Ledbetter and E. Clark,
Human Immunology, 15, pp. 30-43 (1986). In addition, monoclonal antibodies to the CD3 antigen are
also commercially available [see, e.g., P. Perez et al., 1986,
supra]. The hybridoma that produces the particular anti-CD3 monoclonal antibody utilized
in this embodiment of the invention, i.e., G19-4, was deposited with the American
Type Culture Collection prior to the filing of this application.
[0053] The 110.4 and G19-4 monoclonal antibodies were cross-linked according to the method
of B. Karpovsky et al.,
supra, using SPDP, and separated from free antibody by Sephacryl® S300 size exclusion chromatography.
Fractions containing high molecular weight conjugates of >300 Kd were tested in immunofluorescence
assays [see, e.g., J.A. Ledbetter et al.,
J. Exp. Med., 152, pp. 280-295 (1980)] for reactivity with a) CD3 on viable human PBL and b) acetone-fixed
CEM cells that had been infected with LAV-1. Fractions with the highest binding activity
to both the CD3 and the HIV antigens were then used in ⁵¹Cr-release cytotoxicity assays
to test the ability of PBL from HIV seropositive or seronegative individuals to lyse
HIV-infected CEM cells in the presence of the 110.4 x G19-4 heteroconjugate.
[0054] The cytotoxicity assay was performed as follows: CEM cells were infected with the
LAV-1 isolate for 48 hours until virtually 100% of the cells expressed gp110 as determined
by indirect immunofluorescence using monoclonal antibody 110.4 followed by treatment
with fluorescein isothiocyanate-labeled goat anti-mouse immunoglobulin G F(ab')₂(Zymed).
The infected cells were then labeled for 1 hour with ⁵¹Cr (Na₂CrO₄, New England Nuclear,
Boston, MA) and used as target cells in the assay.
[0055] The effector cells were ficoll-hypaque purified PBL from HIV seronegative or seropositive
individuals. The PBL were cultured with or without monomeric anti-CD3 (G19-4) on solid
phase for 3 days and then in anti-CD3-free medium for 24 hours. The untreated and
treated PBL were then incubated for 4 hours at 37°C with 3x10³ ⁵¹Cr-labeled target
CEM cells in 96-well microtiter plates at an effector:target cell (E:T) ratio of 50:1
with varying concentrations of the 110.4 x G19-4 heteroconjugate or mere mixtures
of the individual 110.4 and G19-4 antibodies as a control. Supernatants were harvested
and counted in a gamma counter. The % lysis as represented by % ⁵¹Cr release was calculated
as follows:
where spontaneous release = cpm released from target cells in medium alone and maximal
release = cpm released from target cells in detergent. Spontaneous ⁵¹Cr release was
usually less than 15% of maximal release. Results shown are the mean values of % ⁵¹Cr
released from cells in 4 replicate wells.
[0056] Figure 1 depicts the % lysis of HIV-infected target cells by the treated and untreated
PBL from seronegative individuals in the presence of the 110.4 x G19-4 heteroconjugate.
As the figure indicates, the untreated PBL lysed the HIV-infected target cells in
the presence of 20 to 200 ng/ml of the heteroconjugate. PBL pretreated with the anti-CD3
were even more cytotoxic than the untreated PBL.
[0057] Figure 2A depicts in table form the % lysis of HIV-infected cells vs. uninfected
cells by anti-CD3-pretreated PBL from HIV seropositive and seronegative individuals
in the presence of the 110.4 x G19-4 heteroconjugate or in the presence of mixtures
of the individual 110.4 and G19-4 antibodies. PBL from HIV seropositive and seronegative
donors were cultured with monomeric anti-CD3 (G19-4) on solid phase for 3 days and
then cultured in anti-CD3-free medium for 24 hours. The PBL were then tested for cytotoxicity
against HIV-infected and uninfected CEM cells at an E:T ratio of 50:1 in the presence
of 200 ng/ml of the 110.4 x G19-4 heteroconjugate or a mixture of the 110.4 and G19-4
antibodies.
[0058] The data shows that a greater degree of lysis was mediated by the PBL in the presence
of the heteroconjugate than in the presence of the mixture whereas there were negligible
differences in the level of lysis of uninfected cells in the presence of the heteroconjugate
vs. the antibody mixture. Thus, the PBL had been targeted by the heteroconjugate to
kill the HIV-infected cells. The % lysis of HIV-infected or uninfected cells was not
higher in the presence of the mixture of antibodies then in the absence of antibodies.
Furthermore, Figure 2A indicates that PBL from asymptomatic HIV seropositive individuals
are capable of lysing HIV-infected cells in the presence of the 110.4 x G19-4 heteroconjugate.
[0059] Figure 2B depicts the % lysis of HIV-infected cells by CD8⁺ enriched PBL vs. unseparated
seronegative PBL in the presence of the 110.4 x G19-4 heteroconjugate. Enrichment
of the PBL was performed as follows: seronegative PBL were enriched for CD8⁺ cells
by negative selection as described by T. Lea et al.,
Scand. J. Immunol., 22, pp. 207-216 (1985). Briefly, PBL, activated for 3 days with anti-CD3 on solid
phase, were treated with monoclonal antibodies to DR, CD20, CD16, CD11, CD4 and CDw14
to coat B cells, monocytes, LGLs (e.g., NK or K cells) and CD4 cells. The antibody-coated
cells were then incubated with magnetic particles coated with sheep anti-mouse Ig
(Dynal Inc., Fort Lee, N.J.) and were removed by a Dynal M-450 magnet. All the monoclonal
antibodies used -- DR (HB10a), CD20 (IF5), CD16 (Fc2.2), CD11 (60.1), CD4 (G19-2)
and CDw14 (f13) have been described [see, e.g.,
Leukocyte Typing, A. Bernard et al. (ed.s), Springer-Verlag, New York (1984);
Leukocyte Typing II, E. Reinherz et al. (ed.s), Springer-Verlag, New York (1986); and
Leukocyte Typing III, A.J. McMichael (ed.), Oxford University Press, Oxford (in press). The cell separation
method resulted in an approximately three-fold enrichment for CD8⁺ cells -- from 23%
CD8⁺ cells in the unseparated PBL population to 62% CD8⁺ cells in the enriched population.
The anti-CD3-treated unseparated and CD8⁺-enriched cells were then incubated overnight
in the absence of anti-CD3 before testing for cytotoxicity with the 110.4 x CD3 heteroconjugate.
[0060] Figure 2B indicates that CD3-activated CD8⁺-enriched cells are more cytotoxic to
the target cells then the unseparated cells, suggesting that the CD8⁺ cells (i.e.,
cytotoxic T cells) within the PBL population are largely responsible for lysing the
HIV-infected cells.
[0061] This example demonstrates, therefore, the ability of the 110.4 x G19-4 heteroconjugate
of this invention to target both untreated and anti-CD3-treated PBL from either HIV
seropositive or seronegative individuals to lyse HIV-infected cells. The data provided
clearly indicates the utility of this approach for the treatment of HIV-infected individuals.
EXAMPLE 2
[0062] This example demonstrates the ability of a heteroconjugate of the invention, comprised
of monoclonal antibody 110.4 cross-linked to a monoclonal antibody specific for the
Fc receptor of certain effector cells (e.g., LGLs) to target PBL to lyse HIV-infected
cells.
[0063] In this example, antibody 110.4, described above, is cross-linked by the methods
described above to antibody Fc2, which is specific for the CD16 antigen identified
as the Fc receptor expressed on LGLs and granulocytes. Fc2 has been prepared as described
by J.A. Ledbetter et al., in
Perspectives In Immunogenetics And Histocompatibility,
supra. Furthermore, the hybridoma that produces the Fc2 antibody was deposited with the
American Type Culture Collection prior to the filing of this application. The resulting
heteroconjugate was designated 110.4 x Fc2.
[0064] Using the same ⁵¹Cr- release cytotoxicity assay described in Example 1, we tested
the ability of this heteroconjugate to target seronegative PBL that were a) cultured
for 2 days with or without human IL-2 (100 U/ml, Biotest Diagnostics, Fairfield, N.J.)
or b) cultured overnight with or without β-IFN (300 U/ml, HEM, Maryland) to kill HIV-infected
cells. The untreated and treated PBL were incubated for 4 hours at 37°C with 3x10³
⁵¹Cr-labeled HIV-infected CEM cells at an E:T ratio of 50:1 with varying concentrations
of the heteroconjugate or an antibody mixture and % lysis determined as described
in Example 1.
[0065] Figure 3 depicts the results of the assay. The PBL, both treated and untreated, were
able to lyse the target cells in the presence of the heteroconjugate at heteroconjugate
concentrations as low as 15 ng/ml. As shown in Figure 3A, the IL-2 activated cells
were somewhat more cytotoxic toward the HIV-infected cells than the untreated PBL
in the presence of the heteroconjugate. No appreciable lysis occurred in the presence
of only the antibody mixture. Similarly, Figure 3B demonstrates that pretreatment
of the PBL with β-IFN results in cells that are somewhat more lytic than untreated
PBL in the presence of the heteroconjugate.
[0066] Figure 4 further demonstrates the ability of pretreatment with β-IFN to enhance the
cytotoxicity of PBL in the presence of the 110.4 x Fc2 heteroconjugate. PBL from seronegative
donors were isolated by ficoll-hypaque centrifugation, suspended at 1x10⁶ cells/ml
in RPMI-1640 medium supplemented with 10% heat-inactivated human serum and β-IFN at
0, 300 or 1000 U/ml and incubated at 37°C for 3 hours. The PBL were then washed, resuspended
in RPMI-1640 medium supplemented with 15% heat-inactivated fetal calf serum prior
to testing for cytotoxicity against ⁵¹Cr-labeled HIV-infected CEM cells. The assay
was carried out as described above at an E:T cell ratio of 50:1 in a 4 hour assay
in the presence of 200 ng/ml of the 110.4 x Fc2 heteroconjugate, a mixture of the
individual antibodies of the heteroconjugate, the single antibodies or no antibodies.
As the table in Figure 4 indicates, short term treatment of the PBL with β-IFN augments
the cytotoxicity of the PBL in the presence of the heteroconjugate and thus, overnight
treatment with β-IFN is not necessary.
[0067] Figure 5 depicts in table form the % lysis of HIV-infected cells by IL-2 pretreated
PBL from HIV seropositive and seronegative individuals in the presence of the 110.4
x Fc2 heteroconjugate. PBL from HIV seropositive and seronegative donors were cultured
for 2 days at 37°C with IL-2 (100 U/ml) and tested for cytotoxicity against HIV-infected
and uninfected CEM cells at an E:T ratio of 50:1 in the presence of 200 ng/ml of the
110.4 x Fc2 heteroconjugate or a mixture of the two antibodies. This figure demonstrates
the ability of PBL from seropositive (as well as seronegative) individuals to be targeted
to lyse HIV-infected cells by the heteroconjugate of the invention. Augmented lysis
of the uninfected cells in the presence of the heteroconjugate was not observed.
[0068] In order to determine which cells within the PBL population were responsible for
the lysis seen with 110.4 x Fc2, we enriched PBL for CD16⁺ cells by the method described
in Example 1, except that the monoclonal antibodies used for coating the PBL were
CD28 (9.3), CD5 (10.2), CD4 (G19-2), DR (HB10a), CD20 (IF5), and CDw14 (f13), all
of which have been described in the
Leukocyte Typing publications cited earlier. The PBL were enriched by this method from 17% CD16⁺ cells
in the unseparated PBL population to 66% CD16⁺ cells in the enriched population. The
unseparated and CD16⁺-enriched cells were cultured for 2 days with IL-2 prior to testing
for cytotoxicity at various E:T ratios in the presence of 200 ng/ml of 110.4 x Fc2.
As Figure 6 indicates, the IL-2-treated PBL enriched for CD16⁺ cells were more cytotoxic
for HIV-infected cells than the unseparated cells, suggesting that CD16⁺ LGL cells
within the PBL population are targeted by this heteroconjugate for the lysis of the
HIV-infected cells.
[0069] This example therefore demonstrates the ability of the heteroconjugates of this invention
to target a second effector cell of the peripheral blood, i.e., LGL cells, for the
killing of HIV-infected cells. In addition, we have demonstrated that pretreatment
of the effector cells with either IL-2 or β-IFN enhances the ability of the heteroconjugates
to target the effector cell to lyse the HIV-infected cell.
EXAMPLE 3
[0070] This example demonstrates the ability of another heteroconjugate of the invention,
comprising a monoclonal antibody to a second HIV glycoprotein, gp41, cross-linked
to monoclonal antibody, G19-4, to target PBL to lyse HIV-infected cells.
[0071] In this example, we utilized monoclonal antibody 41.1 as the HIV-specific antibody
of the heteroconjugate. 41.1 is an antibody of subclass IgG₁ and reacts with an epitope
on a highly conserved region of gp41 encoded by nucleotides 7178-7698 of LAV-1. The
production of this monoclonal antibody is described in detail in L.H. Gosting et al.,
supra, and the hybridoma that produces the antibody has been deposited with the American
Type Culture Collection prior to the filing of this application.
[0072] 41.1 and G19-4 were cross-linked as described in Example 1 and the resulting heteroconjugate
was designated 41.1 x G19-4. As in Example 1, the heteroconjugate was separated from
free antibody by size exclusion chromatography using Sephacryl® S300 and the fraction
with the highest binding activity to both gp41 on HIV-infected cells and to CD3 antigen
on human PBL was then tested in the cytotoxicity assay described in Example 1. Briefly,
the effector cells were PBL from seronegative donors that had been cultured for three
days with anti-CD3 on solid phase followed by overnight incubation in anti-CD3-free
medium. The effector cells were then incubated for 4 hours at 37°C with 3x10³ ⁵¹Cr-labeled
target CEM cells as described in Example 1 at a E:T ratio of 50:1 in the presence
of either a) the 41.1 x G19-4 heteroconjugate; b) a 41.1 plus G19-4 antibody mixture;
c) 41.1 alone or d) G19-4 alone and % lysis of the CEM cells determined. The results
of this assay are depicted in Figure 7. The figure indicates the ability of the 41.1
x G19-4 heteroconjugate to target PBL to kill HIV-infected cells. The PBL were stimulated
to lyse the HIV-infected cells in the presence of approximately 50 to 200 ng/ml of
the heteroconjugate. Lysis in the presence of the antibody mixture or the individual
antibodies alone was negligible.
[0073] Thus, the heteroconjugate approach of this invention for killing HIV-infected cells
can employ any of a number of HIV-specific antibodies cross-linked to effector cell-specific
antibodies. In fact, the 41.1 monoclonal antibody is particularly useful in this approach
because it was reactive with a majority of the isolates of HIV tested (10 out of 13),
the isolates having been derived from various geographical areas of the world.
[0074] Hybridomas prepared by the processes described herein are exemplified by cultures
deposited in the American Type Culture Collection , Rockville, Maryland. The cultures
were deposited on September 15, 1987, and are there identified as follows:
- Hybridoma G19-4:
- ATCC No. HB9536
- Hybridoma Fc2:
- ATCC No. HB9535
- Hybridoma 41.1:
- ATCC No. HB9534
While we have hereinbefore presented a number of embodiments of this invention,
it should be understood that the scope of this invention is to be defined by the claims
appended hereto rather than by the specific embodiments which have been presented
hereinbefore by way of example.
Claims for the following Contracting State(s): AT, BE, CH, DE, FR, GB, IT, LI, LU,
NL, SE
1. An antibody heteroconjugate comprising at least one antibody reactive with an HIV
antigen expressed on the surface of an HIV-infected cell cross-linked to at least
one antibody reactive with an effector cell of the peripheral blood capable of killing
an HIV-infected cell.
2. The antibody heteroconjugate of claim 1, wherein the HIV antigen is one found on an
HIV envelope glycoprotein.
3. The antibody heteroconjugate of claim 1, wherein the effector cell is selected from
T lymphocytes, large granular lymphocytes, granulocytes, monocytes and macrophages.
4. The antibody heteroconjugate of claim 1, wherein the effector cell-reactive antibody
is selected from antibodies reactive with the T cell receptor on T lymphocytes and
an Fc receptor on leukocytes.
5. The antibody heteroconjugate of claim 1, wherein the effector cell-reactive antibody
is an antibody to the CD3 antigen on the T cell receptor of T lymphocytes.
6. The antibody heteroconjugate of claim 1, wherein the effector cell-reactive antibody
is an antibody to the CD16 Fc receptor of large granular lymphocytes and granulocytes.
7. The antibody heteroconjugate of claim 1, wherein the antibodies are antibody fragments
selected from Fab and F(ab')₂ fragments.
8. The antibody heteroconjugate of claim 1, wherein the antibodies are chimeric antibodies.
9. An antibody heteroconjugate comprising a first antibody reactive with an HIV antigen
expressed on the surface of an HIV-infected cell cross-linked to a second antibody
reactive with an effector cell of the peripheral blood capable of killing an HIV-infected
cell.
10. The antibody heteroconjugate of claim 9 selected from 110.4 x G19-4, 110.4 x Fc2 and
41.1 x G19-4.
11. The use of effector cells of the peripheral blood in the presence of at least one
antibody-heteroconjugate according to one of claims 1 to 10 for preparing a pharmaceutical
composition for killing HIV infected cells.
12. The use of claim 11, wherein the effector cells are selected from peripheral blood
lymphocytes, granulocytes, monocytes and macrophages.
13. The use of claim 11, wherein the effector cells are obtained from HIV seropositive
or seronegative individuals.
14. The use of claim 11, wherein the effector cells are pretreated with a compound selected
from interleukin-2, β-interferon, α-interferon and γ -interferon.
15. The use of claim 11, wherein the effector cells are pretreated with an antibody specific
for the effector cells.
16. The use of claim 15, wherein the antibody is one that stimulates the lytic mechanism
of the effector cells.
17. The use of claim 16, wherein the antibody is an anti-CD3 antibody.
18. The use of claim 11 or 14, wherein the effector cells are cytotoxic T lymphocytes
and the antibody heteroconjugate is selected from 110.4 x G19-4 and 41.1 x G19-4.
19. The use of claim 11 or 14, wherein the effector cells are large granular lymphocytes
and the antibody heteroconjugate is 110.4 x Fc2.
20. A pharmaceutically acceptable composition useful in the treatment of HIV infections
which comprises a pharmaceutically effective amount of at least one antibody heteroconjugate
according to one of claims 1 to 10.
21. The use of a pharmaceutically effective amount of at least one antibody heteroconjugate
according to anyone of claims 1 to 10 for preparing a pharmaceutical composition for
treating HIV infections.
22. The use of claim 21, wherein additionally a pharmaceutically effective amount of a
compound selected from interleukin-2, β-interferon, α-interferon and γ-interferon
is employed.
23. The use of effector cells of the peripheral blood capable of killing HIV-infected
cells which effector cells were treated with at least one antibody heteroconjugate
according to anyone of claims 1 to 10 in vitro and of said heteroconjugate for preparing a pharmaceutical composition for treating
HIV infections.
24. The use of claim 23, wherein the effector cell is selected from T lymphocytes, large
granular lymphocytes, granulocytes, monocytes and macrophages.
25. The use of claim 23, wherein the effector cells are pretreated with a compound selected
from interleukin-2, β-interferon, α-interferon and γ-interferon.
26. The use of claim 23, wherein the effector cells are pretreated with an antibody specific
for the effector cells.
27. The use of claim 26, wherein the antibody is one that stimulates the lytic mechanism
of the effector cell.
28. The use of claim 27, wherein the antibody is an anti-CD3 antibody.
29. A process for preparing an antibody heteroconjugate having at least one first antibody
reactive with an HIV antigen expressed on the surface of an HIV-infected cell cross-linked
to at least one second antibody reactive with an effector cell of the peripheral blood
capable of killing an HIV-infected cell, comprising the step of reacting said first
and second antibody with a heterobifunctional cross-linking agent.
30. The process of claim 29, wherein the cross-linking agent is N-succinimidyl-3-(2-pyridylthio)-propionate
(SPDP) or maleimidobutryloxysuccinimide (GMBS).
31. The process of claim 29, wherein said first antibody is 110.4 and said second antibody
is G19-4;
said first antibody is 110.4 and said second antibody is Fc2; or
said first antibody is 41.1 and said second antibody is G19-4.
Claims for the following Contracting State(s): ES
1. A process for preparing an antibody heteroconjugate having at least one first antibody
reactive with an HIV antigen expressed on the surface of an HIV-infected cell cross-linked
to at least one second antibody reactive with an effector cell of the peripheral blood
capable of killing an HIV-infected cell, comprising the step of reacting said first
and second antibody with a heterobifunctional cross-linking agent.
2. The process of claim 1, wherein the HIV antigen is one found on an HIV envelope glycoprotein.
3. The process of claim 1, wherein the effector cell is selected from T lymphocytes,
large granular lymphocytes, granulocytes, monocytes and macrophages.
4. The process of claim 1, wherein the effector cell-reactive antibody is selected from
antibodies reactive with the T cell receptor on T lymphocytes and an Fc receptor on
leukocytes.
5. The process of claim 1, wherein the effector cell-reactive antibody is an antibody
to the CD3 antigen on the T cell receptor of T lymphocytes.
6. The process of claim 1, wherein the effector cell-reactive antibody is an antibody
to the CD16 Fc receptor of large granular lymphocytes and granulocytes.
7. The process of claim 1, wherein the antibodies are antibody fragments selected from
Fab and F(ab')₂ fragments.
8. The process of claim 1, wherein the antibodies are chimeric antibodies.
9. The process of one of claims 1 to 8, wherein the antibody heteroconjugate comprises
a first antibody reactive with an HIV antigen expressed on the surface of an HIV-infected
cell cross-linked to a second antibody reactive with an effector cell of the peripheral
blood capable of killing an HIV-infected cell.
10. The process of one of the claims 1 to 9, wherein said first antibody is 110.4 and
said second antibody is G19-4;
said first antibody is 110.4 and said second antibody is Fc2; or
said first antibody is 41.1 and said second antibody is G19-4.
11. The process of one of the claims 1 to 10, wherein the cross-linking agent is N-succinimidyl-3(2-pyrridylthio)-propionate
(SPDP) or maleimidobutryloxysuccinimide (GMBS).
12. The use of effector cells of the peripheral blood in the presence of at least one
antibody heteroconjugate prepared according to one of claim 1 to 11 for preparing
a pharmaceutical composition for killing HIV-infected cells.
13. The use of claim 12, wherein the effector cells are selected from blood lymphocytes,
granulocytes, monocytes and macrophages.
14. The use of claim 12, wherein the effector cells are obtained from HIV seropositive
or seronegative individuals.
15. The use of claim 12, wherein the effector cells are pretreated with a compound selected
from interleukin-2, β-interferon, α-interferon and γ-interferon.
16. The use of claim 12, wherein the effector cells are pretreated with an antibody specific
for the effector cells.
17. The use of claim 16, wherein the antibody is one that stimulates the lytic mechanism
of the effector cells.
18. The use of claim 17, wherein the antibody is an anti-CD3 antibody.
19. The use of claim 12 or 15, wherein the effector cells are cytotoxic T lymphocytes
and the antibody heteroconjugate is selected from 110.4 x G19-4 and 41.1 x G19-4.
20. The use of claim 12 or 15, wherein the effector cells are large granular lymphocytes
and the antibody heteroconjugate is 110.4 x Fc2.
21. The use of a pharmaceutically effective amount of at least one antibody heteroconjugate
prepared according to anyone of claims 1 to 11 for preparing a pharmaceutical composition
for treating HIV infections.
22. The use of claim 21, wherein additionally a pharmaceutically effective amount of a
compound selected from interleukin-2, β-interferon, α-interferon and γ-interferon
is employed.
23. The use of effector cells of the peripheral blood capable of killing HIV-infected
cells which effector cells were treated with at least one antibody heteroconjugate
prepared according to anyone of claims 1 to 11 in vitro and of said heteroconjugate for preparing a pharmaceutical composition for treating
HIV infections.
24. The use of claim 23, wherein the effector cell is selected from T lymphocytes, large
granular lymphocytes, granulocytes, monocytes and macrophages.
25. The use of claim 23, wherein the effector cells are pretreated with a compound selected
from interleukin-2, β-interferon, α-interferon and γ-interferon.
26. The use of claim 23, wherein the effector cells are pretreated with in antibody specific
for the effector cells.
27. The use of claim 26, wherein the antibody is one that stimulates the lytic mechanism
of the effector cell.
28. The use of claim 27, wherein the antibody is an anti-CD3 antibody.
29. A process for preparing a pharmaceutically accceptable composition useful in the treatment
of HIV-infections which comprises providing a pharmaceutically effective amount of
at least one antibody heteroconjugate prepared according to one of claims 1 to 11.
30. The process of claim 29 wherein additionally a pharmaceutically effective amount of
a compound selected from interleukin-2, β-interferon, α-interferon and γ-interferon
is employed.
31. A process for preparing a pharmaceutical composition for killing HIV infected cells
which comprises providing pharmaceutically effective amounts of effector cells and
antibody heteroconjugates as defined in one of the claims 12 to 20.
32. A process for preparing a pharmaceutical composition for treating HIV-infections,
which comprises providing pharmaceutically effective amounts of effector cells and
antibody heteroconjugates as defined in one of claims 23 to 28.
Claims for the following Contracting State(s): GR
1. An antibody heteroconjugate comprising at least one antibody reactive with an HIV
antigen expressed on the surface of an HIV-infected cell cross-linked to at least
one antibody reactive with an effector cell of the peripheral blood capable of killing
an HIV-infected cell.
2. The antibody heteroconjugate of claim 1, wherein the HIV antigen is one found on an
HIV envelope glycoprotein.
3. The antibody heteroconjugate of claim 1, wherein the effector cell is selected from
T lymphocytes, large granular lymphocytes, granulocytes, monocytes and macrophages.
4. The antibody heteroconjugate of claim 1, wherein the effector cell-reactive antibody
is selected from antibodies reactive with the T cell receptor on T lymphocytes and
an Fc receptor on leukocytes.
5. The antibody heteroconjugate of claim 1, wherein the effector cell-reactive antibody
is an antibody to the CD3 antigen on the T cell receptor of T lymphocytes.
6. The antibody heteroconjugate of claim 1, wherein the effector cell-reactive antibody
is an antibody to the CD16 Fc receptor of large granular lymphocytes and granulocytes.
7. The antibody heteroconjugate of claim 1, wherein the antibodies are antibody fragments
selected from Fab and F(ab')₂ fragments.
8. The antibody heteroconjugate of claim 1, wherein the antibodies are chimeric antibodies.
9. An antibody heteroconjugate comprising a first antibody reactive with an HIV antigen
expressed on the surface of an HIV-infected cell cross-linked to a second antibody
reactive with an effector cell of the peripheral blood capable of killing an HIV-infected
cell.
10. The antibody heteroconjugate of claim 9 selected from 110.4 x G19-4, 110.4 x Fc2 and
41.1 x G19-4.
11. The use of effector cells of the peripheral blood in the presence of at least one
antibody-heteroconjugate according to one of claims 1 to 10 for preparing a pharmaceutical
composition for killing HIV infected cells.
12. The use of claim 11, wherein the effector cells are selected from peripheral blood
lymphocytes, granulocytes, monocytes and macrophages.
13. The use of claim 11, wherein the effector cells are obtained from HIV seropositive
or seronegative individuals.
14. The use of claim 11, wherein the effector cells are pretreated with a compound selected
from interleukin-2, β-interferon, α-interferon and γ-interferon.
15. The use of claim 11, wherein the effector cells are pretreated with an antibody specific
for the effector cells.
16. The use of claim 15, wherein the antibody is one that stimulates the lytic mechanism
of the effector cells.
17. The use of claim 16, wherein the antibody is an anti-CD3 antibody.
18. The use of claim 11 or 14, wherein the effector cells are cytotoxic T lymphocytes
and the antibody heteroconjugate is selected from 110.4 x G19-4 and 41.1 x G19-4.
19. The use of claim 11 or 14, wherein the effector cells are large granular lymphocytes
and the antibody heteroconjugate in 110.4 x Fc2.
20. A process for preparing a pharmaceutically acceptable composition useful in the treatment
of HIV infections which comprises providing a pharmaceutically effective amount of
at least one antibody heteroconjugate according to one of claims 1 to 10.
21. The use of a pharmaceutically effective amount of at least one antibody heteroconjugate
according to anyone of claims 1 to 10 for preparing a pharmaceutical composition for
treating HIV infections.
22. The use of claim 21, wherein additionally a pharmaceutically effective amount of a
compound selected from interleukin-2, β-interferon, α-interferon and γ-interferon
is employed.
23. The use of effector cells of the peripheral blood capable of killing HIV-infected
cells which effector cells were treated with at least one antibody heteroconjugate
according to anyone of claims 1 to 10 in vitro and of said heteroconjugate for preparing a pharmaceutical composition for treating
HIV infections.
24. The use of claim 23, wherein the effector cell is selected from T lymphocytes, large
granular lymphocytes, granulocytes, monocytes and macrophages.
25. The use of claim 23, wherein the effector cells are pretreated with a compound selected
from interleukin-2, β-interferon, α-interferon and γ-interferon.
26. The use of claim 23, wherein the effector cells are pretreated with an antibody specific
for the effector cells.
27. The use of claim 26, wherein the antibody is one that stimulates the lytic mechanism
of the effector cell.
28. The use of claim 27, wherein the antibody is an anti-CD3 antibody.
29. A process for preparing an antibody heteroconjugate having at least one first antibody
reactive with an HIV antigen expressed on the surface of an HIV-infected cell cross-linked
to at least one second antibody reactive with an effector cell of the peripheral blood
capable of killing an HIV-infected cell, comprising the step of reacting said first
and second antibody with a heterobifunctional cross-linking agent.
30. The process of claim 29, wherein the cross-linking agent is N-succinimidyl-3-(2-pyridylthio)-propionate
(SPDP) or maleimidobutryloxysuccinimide (GMBS).
31. The process of claim 29, wherein said first antibody is 110.4 and said second antibody
is G19-4;
said first antibody is 110.4 and said second antibody is Fc2; or
said first antibody is 41.1 and said second antibody is G19-4.
Patentansprüche für folgende(n) Vertragsstaat(en): AT, BE, CH, DE, FR, GB, IT, LI,
LU, NL, SE
1. Antikörper-Heterokonjugat, umfassend wenigstens einen Antikörper, der mit einem HIV-Antigen
reagiert, das auf der Oberfläche einer HIV-infizierten Zelle exprimiert wird, der
mit wenigstens einem Antikörper verknüpft ist, der mit einer Effektorzelle des peripheren
Blutsystems reagiert, die zur Abtötung einer HIV-infizierten Zelle befähigt ist.
2. Antikörper-Heterokonjugat nach Anspruch 1, wobei das HIV-Antigen auf einem HIV-Envelope-Glykoprotein
zu finden ist.
3. Antikörper-Heterokonjugat nach Anspruch 1, worin die Effektorzelle ausgewählt ist
unter T-Lymphocyten, großen granulären Lymphocyten, Granulocyten, Monocyten und Makrophagen.
4. Antikörper-Heterokonjugat nach Anspruch 1, worin der mit der Effektorzelle reagierende
Antikörper ausgewählt ist unter Antikörpern, die mit dem T-Zellrezeptor auf T-Lymphocyten
und einem Fc-Rezeptor auf Leukocyten reagieren.
5. Antikörper-Heterokonjugat nach Anspruch 1, worin der mit der Effektorzelle reagierende
Antikörper ein Antikörper für das CD3 Antigen auf dem T-Zellrezeptor von T-Lymphocyten
ist.
6. Antikörper-Heterokonjugat nach Anspruch 1, worin der mit der Effektorzelle reagierende
Antikörper ein Antikörper für den CD16 Fc-Rezeptor von großen granulären Lymphocyten
und Granulocyten ist.
7. Antikörper-Heterokonjugat nach Anspruch 1, worin die Antikörper und Antikörperfragmente
ausgewählt sind unter Fab und F(ab')₂-Fragmenten.
8. Antikörper-Heterokonjugat nach Anspruch 1, worin die Antikörper chimäre Antikörper
sind.
9. Antikörper-Heterokonjugat, umfassend einen ersten Antikörper, der mit einem HIV-Antigen
reagiert, das auf der Oberfläche einer HIV-infizierten Zelle exprimiert wird, der
mit einem zweiten Antikörper verbunden ist, welcher mit einer Effektorzelle des peripheren
Blutsystems reagiert, die zur Abtötung einer HIV-infizierten Zelle befähigt ist.
10. Antikörper-Heterokonjugat nach Anspruch 9, ausgewählt unter 110.4 x G19-4, 110.4 x
Fc2 und 41.1 x G19-4.
11. Verwendung von Effektorzellen des peripheren Blutsystems in Gegenwart von wenigstens
einem Antikörper-Heterokonjugat gemäß einem der Ansprüche 1 bis 10 zur Herstellung
eines pharmazeutischen Mittels zur Abtötung HIV-infizierter Zellen.
12. Verwendung nach Anspruch 11, worin die Effektorzellen ausgewählt sind unter Peripherblut-Lymphocyten,
Granulocyten, Monocyten und Makrophagen.
13. Verwendung nach Anspruch 11, worin die Effektorzellen erhalten wurden aus HIV-seropositiven
oder -seronegativen Individuen.
14. Verwendung nach Anspruch 11, worin die Effektorzellen mit einer Verbindung vorbehandelt
wurden, die ausgewählt ist unter Interleukin-2, β-Interferon, α-Interferon und γ-Interferon.
15. Verwendung nach Anspruch 11, worin die Effektorzellen mit einem Effektorzellen-spezifischen
Antikörper vorbehandelt wurden.
16. Verwendung nach Anspruch 15, worin der Antikörper den lytischen Mechanismus der Effektorzellen
stimuliert.
17. Verwendung nach Anspruch 16, worin der Antikörper ein Anti-CD3-Antikörper ist.
18. Verwendung nach Anspruch 11 oder 14, worin die Effektorzellen cytotoxische T-Lymphocyten
sind und das Antikörper-Heterokonjugat ausgewählt ist unter 110.4 x G19-4 und 41.1
x G19-4.
19. Verwendung nach Anspruch 11 oder 14, worin die Effektorzellen große granuläre Lymphocyten
sind und das Antikörper-Heterokonjugat 110.4 x Fc2 ist.
20. Pharmazeutisch verträgliche Zusammensetzung zur Behandlung von HIV-Infektionen, umfassend
eine pharmazeutisch wirksame Menge wenigstens eines Antikörper-Heterokonjugats gemäß
einem der Ansprüche 1 bis 10.
21. Verwendung einer pharmazeutisch wirksamen Menge wenigstens eines Antikörper-Heterokonjugats
gemäß einem der Ansprüche 1 bis 10 zur Herstellung eines pharmazeutischen Mittels
zur Behandlung von HIV-Infektionen.
22. Verwendung nach Anspruch 21, worin zusätzlich eine pharmazeutisch wirksame Menge wenigstens
einer Verbindung verwendet wird, die ausgewählt ist unter Interleukin-2, β-Interferon,
α-Interferon und γ-Interferon.
23. Verwendung von Effektorzellen des peripheren Blutsystems, die zur Abtötung von HIV-infizierten
Zellen befähigt sind, wobei die Effektorzellen mit wenigstens einem Antikörper-Heterokonjugat
gemäß einem der Ansprüche 1 bis 10 in vitro behandelt wurden, und des Heterokonjugats
zur Herstellung eines pharmazeutischen Mittels zur Behandlung von HIV-Infektionen.
24. Verwendung nach Anspruch 23, worin die Effektorzelle ausgewählt ist unter T-Lymphocyten,
großen granulären Lymphocyten, Granulocyten, Monocyten und Makrophagen.
25. Verwendung nach Anspruch 23, worin die Effektorzellen vorbehandelt wurden mit einer
Verbindung, die ausgewählt ist unter Interleukin-2, β-Interferon, α-Interferon und
γ-Interferon.
26. Verwendung nach Anspruch 23, worin die Effektorzellen mit einem Effektorzellen-spezifischen
Antikörper vorbehandelt wurden.
27. Verwendung nach Anspruch 26, worin der Antikörper den lytischen Mechanismus der Effektorzelle
stimuliert.
28. Verwendung nach Anspruch 27, worin der Antikörper ein Anti-CD3-Antikörper ist.
29. Verfahren zur Herstellung eines Antikörper-Heterokonjugats, umfassend wenigstens einen
ersten Antikörper, der mit einem HIV-Antigen reagiert, das auf der Oberfläche einer
HIV-infizierten Zelle exprimiert wird, der mit wenigstens einem zweiten Antikörper
vernetzt ist, welcher mit einer Effektorzelle des peripheren Blutsystems reagiert,
die zur Abtötung einer HIV-infizierten Zelle befähigt ist, wobei man den ersten und
den zweiten Antikörper mit einem heterobifunktionellen Vernetzungsmittel umsetzt.
30. Verfahren nach Anspruch 29, wobei das Vernetzungsmittel N-Succinimidyl-3-(2-pyridylthio)-propionat
(SPDP) oder Maleimidobutryloxysuccinimid (GMBS) ist.
31. Verfahren nach Anspruch 29, wobei der erste Antikörper 110.4 und der zweite Antikörper
G19-4 ist; oder
der erste Antikörper 110.4 und der zweite Antikörper Fc2 ist; oder
der erste Antikörper 41.4 und der zweite Antikörper G19-4 ist.
Patentansprüche für folgende(n) Vertragsstaat(en): ES
1. Verfahren zur Herstellung eines Antikörper-Heterokonjugats, umfassend wenigstens einen
ersten Antikörper, der mit einem HIV-Antigen reagiert, das auf der Oberfläche einer
HIV-infizierten Zelle exprimiert wird, der mit wenigstens einem zweiten Antikörper
vernetzt ist, welcher mit einer Effektorzelle des peripheren Blutsystems reagiert,
die zur Abtötung einer HIV-infizierten Zelle befähigt ist, wobei man den ersten und
den zweiten Antikörper mit einem heterobifunktionellen Vernetzungsmittel umsetzt.
2. Verfahren nach Anspruch 1, wobei das HIV-Antigen auf einem HIV-Envelope-Glykoprotein
zu finden ist.
3. Verfahren nach Anspruch 1, worin die Effektorzelle ausgewählt ist unter T-Lymphocyten,
großen granulären Lymphocyten, Granulocyten, Monocyten und Makrophagen.
4. Verfahren nach Anspruch 1, worin der mit der Effektorzelle reagierende Antikörper
ausgewählt ist unter Antikörpern, die mit dem T-Zellrezeptor auf T-Lymphocyten und
einem Fc-Rezeptor auf Leukocyten reagieren.
5. Verfahren nach Anspruch 1, worin der mit der Effektorzelle reagierende Antikörper
ein Antikörper für das CD3 Antigen auf dem T-Zellrezeptor von T-Lymphocyten ist.
6. Verfahren nach Anspruch 1, worin der mit der Effektorzelle reagierende Antikörper
ein Antikörper für den CD16 Fc-Rezeptor von großen granulären Lymphocyten und Granulocyten
ist.
7. Verfahren nach Anspruch 1, worin die Antikörper und Antikörperfragmente ausgewählt
sind unter Fab und F(ab')₂-Fragmenten.
8. Verfahren nach Anspruch 1, worin die Antikörper chimäre Antikörper sind.
9. Verfahren nach einem der Ansprüche 1 bis 8, worin das Antikörper-Heterokonjugat einen
ersten Antikörper umfaßt, der mit einem HIV-Antigen reagiert, das auf der Oberfläche
einer HIV-infizierten Zelle exprimiert wird, der mit einem zweiten Antikörper vernetzt
ist, welcher mit einer Effektorzelle des peripheren Blutsystems reagiert, die zur
Abtötung einer HIV-infizierten Zelle befähigt ist.
10. Verfahren nach einem der Ansprüche 1 bis 9, wobei der erste Antikörper 110.4 und der
zweite Antikörper G19-4 ist; oder
der erste Antikörper 110.4 und der zweite Antikörper Fc2 ist; oder
der erste Antikörper 41.4 und der zweite Antikörper G19-4 ist.
11. Verfahren nach einem der Ansprüche 1 bis 10, worin das Vernetzungsmittel ausgewählt
ist unter N-Succinimidyl-3-(2-pyridylthio)-propionat (SPDP) oder Maleimidobutryloxysuccinimid
(GMBS).
12. Verwendung von Effektorzellen des peripheren Blutsystems in Gegenwart eines Antikörper-Heterokonjugats,
hergestellt gemäß einem der Ansprüche 1 bis 11, zur Herstellung eines pharmazeutischen
Mittels zur Abtötung von HIV-infizierten Zellen.
13. Verwendung nach Anspruch 12, worin die Effektorzellen ausgewählt sind unter Blutlymphocyten,
Granulocyten, Monocyten und Makrophagen.
14. Verwendung nach Anspruch 12, worin die Effektorzellen von HIV-seropositiven oder -seronegativen
Individuen erhalten wurden.
15. Verwendung nach Anspruch 12, worin die Effektorzellen mit einer Verbindung vorbehandelt
wurden, die ausgewählt ist unter Interleukin-2, β-Interferon, α-Interferon und γ-Interferon.
16. Verwendung nach Anspruch 12, worin die Effektorzellen mit einem Effektorzellen-spezifischen
Antikörper vorbehandelt wurden.
17. Verwendung nach Anspruch 16, worin der Antikörper den lytischen Mechanismus der Effektorzellen
stimuliert.
18. Verwendung nach Anspruch 17, worin der Antikörper ein Anti-CD3-Antikörper ist.
19. Verwendung nach Anspruch 12 oder 15, worin die Effektorzellen cytotoxische T-Lymphocyten
sind und das Antikörper-Heterokonjugat ausgewählt ist unter 110.4 x G19-4 und 41.1
x G19-4.
20. Verwendung nach Anspruch 12 oder 15, worin die Effektorzellen große granuläre Lymphocyten
sind und das Antikörper-Heterokonjugat 110.4 x Fc2 ist.
21. Verwendung einer pharmazeutisch wirksamen Menge wenigstens eines Antikörper-Heterokonjugats,
hergestellt gemäß einem der Ansprüche 1 bis 11, zur Herstellung eines pharmazeutischen
Mittels zur Behandlung von HIV-Infektionen.
22. Verwendung nach Anspruch 21, worin zusätzlich eine pharmazeutisch wirksame Menge einer
Verbindung verwendet wird, die ausgewählt ist unter Interleukin-2, β-Interferon, α-Interferon
und γ-Interferon.
23. Verwendung von Effektorzellen des peripheren Blutsystems, die zur Abtötung von HIV-infizierten
Zellen befähigt sind, wobei die Effektorzellen mit wenigstens einem Antikörper-Heterokonjugat,
hergestellt gemäß einem der Ansprüche 1 bis 11, in vitro vorbehandelt wurden, und des Heterokonjugats zur Herstellung eines pharmazeutischen
Mittels zur Behandlung von HIV-Infektionen.
24. Verwendung nach Anspruch 23, worin die Effektorzelle ausgewählt ist unter T-Lymphocyten,
großen granulären Lymphocyten, Granulocyten, Monocyten und Makrophagen.
25. Verwendung nach Anspruch 23, worin die Effektorzellen vorbehandelt wurden mit einer
Verbindung, die ausgewählt ist unter Interleukin-2, β-Interferon, α-Interferon und
γ-Interferon.
26. Verwendung nach Anspruch 23, worin die Effektorzellen mit einem Effektorzellen-spezifischen
Antikörper vorbehandelt wurden.
27. Verwendung nach Anspruch 26, worin der Antikörper den lytischen Mechanismus der Effektorzelle
stimuliert.
28. Verwendung nach Anspruch 27, worin der Antikörper ein Anti-CD3-Antikörper ist.
29. Verfahren zur Herstellung eines pharmazeutisch verträglichen Mittels zur Behandlung
von HIV-Infektionen, wobei man eine pharmazeutisch wirksame Menge wenigstens eines
Antikörper-Heterokonjugats bereitstellt, das gemäß einem der Ansprüche 1 bis 11 hergestellt
wurde.
30. Verfahren nach Anspruch 29, wobei zusätzlich eine pharmazeutisch wirksame Menge einer
Verbindung verwendet wird, die ausgewählt ist unter Interleukin-2, β-Interferon, α-Interferon
und γ-Interferon.
31. Verfahren zur Herstellung eines pharmazeutischen Mittels zur Abtötung von HIV-infizierten
Zellen, wobei man pharmazeutisch wirksame Mengen von Effektorzellen und Antikörper-Heterokonjugaten
gemäß einem der Ansprüche 12 bis 20 bereitstellt.
32. Verfahren zur Herstellung eines pharmazeutischen Mittels zur Behandlung von HIV-Infektionen,
wobei man pharmazeutisch wirksame Mengen von Effektorzellen und Antikörper-Heterokonjugaten
gemäß einem der Ansprüche 23 bis 28 bereitstellt.
Patentansprüche für folgende(n) Vertragsstaat(en): GR
1. Antikörper-Heterokonjugat, umfassend wenigstens einen Antikörper, der mit einem HIV-Antigen
reagiert, das auf der Oberfläche einer HIV-infizierten Zelle exprimiert wird, der
mit wenigstens einem Antikörper verknüpft ist, der mit einer Effektorzelle des peripheren
Blutsystems reagiert, die zur Abtötung einer HIV-infizierten Zelle befähigt ist.
2. Antikörper-Heterokonjugat nach Anspruch 1, wobei das HIV-Antigen auf einem HIV-Envelope-Glykoprotein
zu finden ist.
3. Antikörper-Heterokonjugat nach Anspruch 1, worin die Effektorzelle ausgewählt ist
unter T-Lymphocyten, großen granulären Lymphocyten, Granulocyten, Monocyten und Makrophagen.
4. Antikörper-Heterokonjugat nach Anspruch 1, worin der mit der Effektorzelle reagierende
Antikörper ausgewählt ist unter Antikörpern, die mit dem T-Zellrezeptor auf T-Lymphocyten
und einem Fc-Rezeptor auf Leukocyten reagieren.
5. Antikörper-Heterokonjugat nach Anspruch 1, worin der mit der Effektorzelle reagierende
Antikörper ein Antikörper für das CD3 Antigen auf dem T-Zellrezeptor von T-Lymphocyten
ist.
6. Antikörper-Heterokonjugat nach Anspruch 1, worin der mit der Effektorzelle reagierende
Antikörper ein Antikörper für den CD16 Fc-Rezeptor von großen granulären Lymphocyten
und Granulocyten ist.
7. Antikörper-Heterokonjugat nach Anspruch 1, worin die Antikörper und Antikörperfragmente
ausgewählt sind unter Fab und F(ab')₂-Fragmenten.
8. Antikörper-Heterokonjugat nach Anspruch 1, worin die Antikörper chimäre Antikörper
sind.
9. Antikörper-Heterokonjugat, umfassend einen ersten Antikörper, der mit einem HIV-Antigen
reagiert, das auf der Oberfläche einer HIV-infizierten Zelle exprimiert wird, der
mit einem zweiten Antikörper verbunden ist, welcher mit einer Effektorzelle des peripheren
Blutsystems reagiert, die zur Abtötung einer HIV-infizierten Zelle befähigt ist.
10. Antikörper-Heterokonjugat nach Anspruch 9, ausgewählt unter 110.4 x G19-4, 110.4 x
Fc2 und 41.1 x G19-4.
11. Verwendung von Effektorzellen des peripheren Blutsystems in Gegenwart von wenigstens
einem Antikörper-Heterokonjugat gemäß einem der Ansprüche 1 bis 10 zur Herstellung
eines pharmazeutischen Mittels zur Abtötung HIV-infizierter Zellen.
12. Verwendung nach Anspruch 11, worin die Effektorzellen ausgewählt sind unter Peripherblut-Lymphocyten,
Granulocyten, Monocyten und Makrophagen.
13. Verwendung nach Anspruch 11, worin die Effektorzellen erhalten wurden aus HIV-seropositiven
oder -seronegativen Individuen.
14. Verwendung nach Anspruch 11, worin die Effektorzellen mit einer Verbindung vorbehandelt
wurden, die ausgewählt ist unter Interleukin-2, β-Interferon, α-Interferon und γ-Interferon.
15. Verwendung nach Anspruch 11, worin die Effektorzellen mit einem Effektorzellen-spezifischen
Antikörper vorbehandelt wurden.
16. Verwendung nach Anspruch 15, worin der Antikörper den lytischen Mechanismus der Effektorzellen
stimuliert.
17. Verwendung nach Anspruch 16, worin der Antikörper ein Anti-CD3-Antikörper ist.
18. Verwendung nach Anspruch 11 oder 14, worin die Effektorzellen cytotoxische T-Lymphocyten
sind und das Antikörper-Heterokonjugat ausgewählt ist unter 110.4 x G19-4 und 41.1
x G19-4.
19. Verwendung nach Anspruch 11 oder 14, worin die Effektorzellen große granuläre Lymphocyten
sind und das Antikörper-Heterokonjugat 110.4 x Fc2 ist.
20. Verfahren zur Herstellung einer pharmazeutisch verträglichen Zusammensetzung, für
die Behandlung von HIV-Infektionen, wobei man eine pharmazeutisch wirksame Menge wenigstens
eines Antikörper-Heterokonjugats gemäß einem der Ansprüche 1 bis 10 bereitstellt.
21. Verwendung einer pharmazeutisch wirksamen Menge wenigstens eines Antikörper-Heterokonjugats
gemäß einem der Ansprüche 1 bis 10 zur Herstellung eines pharmazeutischen Mittels
zur Behandlung von HIV-Infektionen.
22. Verwendung nach Anspruch 21, worin zusätzlich eine pharmazeutisch wirksame Menge wenigstens
einer Verbindung verwendet wird, die ausgewählt ist unter Interleukin-2, β-Interferon,
α-Interferon und γ-Interferon.
23. Verwendung von Effektorzellen des peripheren Blutsystems, die zur Abtötung von HIV-infizierten
Zellen befähigt sind, wobei die Effektorzellen mit wenigstens einem Antikörper-Heterokonjugat
gemäß einem der Ansprüche 1 bis 10 in vitro behandelt wurden, und des Heterokonjugats
zur Herstellung eines pharmazeutischen Mittels zur Behandlung von HIV-Infektionen.
24. Verwendung nach Anspruch 23, worin die Effektorzelle ausgewählt ist unter T-Lymphocyten,
großen granulären Lymphocyten, Granulocyten, Monocyten und Makrophagen.
25. Verwendung nach Anspruch 23, worin die Effektorzellen vorbehandelt wurden mit einer
Verbindung, die ausgewählt ist unter Interleukin-2, β-Interferon, α-Interferon und
γ-Interferon.
26. Verwendung nach Anspruch 23, worin die Effektorzellen mit einem Effektorzellen-spezifischen
Antikörper vorbehandelt wurden.
27. Verwendung nach Anspruch 26, worin der Antikörper den lytischen Mechanismus der Effektorzelle
stimuliert.
28. Verwendung nach Anspruch 27, worin der Antikörper ein Anti-CD3-Antikörper ist.
29. Verfahren zur Herstellung eines Antikörper-Heterokonjugats, umfassend wenigstens einen
ersten Antikörper, der mit einem HIV-Antigen reagiert, das auf der Oberfläche einer
HIV-infizierten Zelle exprimiert wird, der mit wenigstens einem zweiten Antikörper
vernetzt ist, welcher mit einer Effektorzelle des peripheren Blutsystems reagiert,
die zur Abtötung einer HIV-infizierten Zelle befähigt ist, wobei man den ersten und
den zweiten Antikörper mit einem heterobifunktionellen Vernetzungsmittel umsetzt.
30. Verfahren nach Anspruch 29, wobei das Vernetzungsmittel N-Succinimidyl-3-(2-pyridylthio)-propionat
(SPDP) oder Maleimidobutryloxysuccinimid (GMBS) ist.
31. Verfahren nach Anspruch 29, wobei der erste Antikörper 110.4 und der zweite Antikörper
G19-4 ist; oder
der erste Antikörper 110.4 und der zweite Antikörper Fc2 ist; oder
der erste Antikörper 41.4 und der zweite Antikörper G19-4 ist.
Revendications pour l'(les) Etat(s) contractant(s) suivant(s): AT, BE, CH, DE, FR,
GB, IT, LI, LU, NL, SE
1. Hétéroconjugué d anticorps comprenant au moins un anticorps réactif avec un antigène
VIH exprimé sur la surface d'une cellule infectée par le VIH réticulé à au moins un
anticorps réactif avec une cellule d'effecteur du sang périphérique capable de tuer
une cellule infectée par le VIH.
2. Hétéroconjugué d'anticorps selon la revendication 1, dans lequel l'antigène VIH est
un de ceux trouvés sur une glycoprotéine enveloppe de VIH.
3. Hétéroconjugué d'anticorps selon la revendication 1, dans lequel la cellule d'effecteur
est choisie parmi les lymphocytes T, les grands lymphocyte granulaires, les granulocytes,
les monocytes et les macrophages.
4. Hétéroconjugué d'anticorps selon la revendication 1, dans lequel l'anticorps réactif
avec une cellule d'effecteur est choisi parmi les anticorps réactifs avec le récepteur
de cellule T sur dés lymphocytes T et un récepteur Fc sur des leucocytes.
5. Hétéroconjugué d'anticorps selon la revendication 1, dans lequel l'anticorps réactif
avec la cellule d'effecteur est un anticorps à l'antigène CD3 sur le récepteur de
cellule T de lymphocytes T.
6. Hétéroconjugué d'anticorps selon la revendication 1, dans lequel l'anticorps réactif
avec une cellule d'effecteur est un anticorps pour récepteur Fc CD16 de grands lymphocytes
granulaires et de granulocytes.
7. Hétéroconjugué d'anticorps selon la revendication 1, dans lequel les anticorps sont
des fragments d'anticorps choisis parmi les fragments Fab et F(ab')₂.
8. Hétéroconjugué d'anticorps selon la revendication 1, dans lequel les anticorps sont
des anticorps chimériques.
9. Hétéroconjugué d anticorps comprenant un premier anticorps réactif avec un antigène
VIH exprimé sur la surface d'une cellule infectée par le VIH réticulé à un second
anticorps réactif avec une cellule d'effecteur du sang périphérique capable de tuer
une cellule infectée par le VIH.
10. Hétéroconjugué d'anticorps selon la revendication 9, choisi parmi le 110.4 x G19-4,
110.4 x Fc2 et 41.1 x G19-4.
11. Utilisation de cellules d'effecteur du sang périphérique en présence d'au moins un
hétéroconjugué d'anticorps selon l'une des revendications 1 à 10 pour la préparation
d'une composition pharmaceutique pour tuer les cellules infectées par le VIH.
12. Utilisation selon la revendication 11, dans laquelle les cellules d'effecteur sont
choisies parmi les macrophages, monocytes, granulocytes et lymphocytes du sang périphérique.
13. Utilisation selon la revendication 11, dans laquelle les cellules d'effecteur sont
obtenues à partir d'individus séropositifs ou séronégatifs VIH.
14. Utilisation selon la revendication 11, dans laquelle les cellules d'effecteur sont
prétraitées avec un composé choisi parmi l'interleukine-2, le β-interféron, l'α-interféron
et le γ-interféron.
15. Utilisation selon la revendication 11, dans laquelle les cellules d'effecteur sont
prétraitées avec un anticorps spécifique pour les cellules d'effecteur.
16. Utilisation selon la revendication 15, dans laquelle l'anticorps est un de ceux qui
stimulent le mécanisme lytique des cellules d'effecteur.
17. Utilisation selon la revendication 16, dans laquelle l'anticorps est un anticorps
anti-CD3.
18. Utilisation selon la revendication 11 ou 14, dans laquelle les cellules d'effecteur
sont des lymphocytes T cytotoxiques et l'hétéroconjugué d'anticorps est choisi parmi
le 110.4 x G19-4 et le 41.1 x G19-4.
19. Utilisation selon la revendication 11 ou 14, dans laquelle les cellules d'effecteur
sont des grands lymphocytes granulaires et l'hétéroconjugué d'anticorps est le 110.4xFc2.
20. Composition pharmaceutiquement acceptable utile dans le traitement des infections
VIH qui comprend une quantité efficace pharmaceutiquement d'au moins un hétéroconjugué
d'anticorps selon l'une des revendications 1 à 10.
21. Utilisation d'une quantité pharmaceutiquement efficace d'au moins un hétéroconjugué
d'anticorps selon l'une quelconque des revendications 1 à 10 pour la préparation d'une
composition pharmaceutique pour traiter les infections VIH.
22. Utilisation selon la revendication 21, dans laquelle une quantité pharmaceutiquement
efficace d'un composé choisi parmi l'interleukine-2, le β-interféron, l'α-interféron
et le γ-interféron est additionnellement employée.
23. Utilisation de cellules d'effecteur du sang périphérique capable de tuer des cellules
infectées par le VIH, ces cellules d'effecteur ayant été traitées avec au moins un
hétéroconjugué d'anticorps selon l'une des revendications 1 à 10 in vitro et dudit hétéroconjugué pour la préparation d'une composition pharmaceutique pour
traiter les infections VIH.
24. Utilisation selon la revendication 23, dans laquelle la cellule d'effecteur est choisie
parmi les lymphocytes T, les grands lymphocytes granulaires, les granulocytes, les
monocytes et les macrophages.
25. Utilisation selon la revendication 23, dans laquelle les cellules d'effecteur sont
prétraitées avec un composé choisi parmi l'interleukine-2, le β-interféron, l'α-interféron
et le γ-interféron.
26. Utilisation selon la revendication 23, dans laquelle les cellules d'effecteur sont
prétraitées avec un anticorps spécifique pour les cellules d'effecteur.
27. Utilisation selon la revendication 26, dans laquelle l'anticorps est un de ceux qui
stimulent le mécanisme lytique de la cellule d'effecteur.
28. Utilisation selon la revendication 27, dans laquelle l'anticorps est un anticorps
anti-CD3.
29. Procédé pour préparer un hétéroconjugué d'anticorps ayant au moins un premier anticorps
réactif avec un antigène VIH exprimé sur la surface d'un cellule infectée par le VIH
réticulé à au moins un second anticorps réactif avec une cellule d'effecteur du sang
périphérique capable de tuer une cellule infectée par le VIH, comprenant l'étape de
réaction dudit premier et second anticorps avec un agent réticulant hétérobifonctionnel.
30. Procédé selon la revendication 29, dans lequel l'agent réticulant est le N-succinimidyl-3-(2-pyridylthio)-propionate
(SPDP) ou le maléimidobutryloxysuccinimide (GMBS).
31. Procédé selon la revendication 29, dans lequel ledit premier anticorps est le 110.4
et ledit second anticorps est le G19-4;
ledit premier anticorps est le 110.4 et ledit second anticorps est le Fc2; ou
ledit premier anticorps est le 41.1 et ledit second anticorps est le G19-4.
Revendications pour l'(les) Etat(s) contractant(s) suivant(s): ES
1. Procédé pour préparer un hétéroconjugué d'anticorps ayant au moins un premier anticorps
réactif avec un antigène VIH exprimé sur la surface d'une cellule infectée par le
VIH réticulé à au moins un second anticorps réactif avec une cellule d'effecteur du
sang périphérique capable de tuer les cellules infectées par le VIH, comprenant l'étape
de réaction dudit premier et second anticorps avec un agent réticulant hétérobifonctionnel.
2. Procédé selon la revendication 1, dans lequel l'antigène VIH est celui trouvé sur
une glycoprotéine enveloppe de VIH.
3. Procédé selon la revendication 1, dans lequel la cellule d'effecteur est choisie parmi
les lymphocytes T, les grands lymphocytes granulaires, les granulocytes, les monocytes
et les macrophages.
4. Procédé selon la revendication 1, dans lequel l'anticorps réactif avec la cellule
d'effecteur est choisi parmi les anticorps réactifs avec le récepteur de cellule T
sur des lymphocytes T et un récepteur Fc sur des leucocytes.
5. Procédé selon la revendication 1, dans lequel l'anticorps réactif avec la cellule
d'effecteur est un anticorps à l'antigène CD3 sur le récepteur de cellule T des lymphocytes
T.
6. Procédé selon la revendication 1, dans lequel l'anticorps réactif avec la cellule
d'effecteur est un anticorps au récepteur Fc CD16 des grands lymphocytes granulaires
et des granulocytes.
7. Procédé selon la revendication 1, dans lequel les anticorps sont des fragments d'anticorps
choisis parmi les fragments Fab et F(ab')₂.
8. Procédé selon la revendication 1, dans lequel les anticorps sont des anticorps chimériques.
9. Procédé selon l'une des revendications 1 à 8, dans lequel l'hétéroconjugué d'anticorps
comprend un premier anticorps réactif avec un antigène VIH exprimé sur la surface
d'une cellule infectée par le VIH réticulé à un second anticorps réactif avec une
cellule d'effecteur du sang périphérique capable de tuer une cellule infectée par
le VIH.
10. Procédé selon l'une des revendications 1 à 9, dans lequel ledit premier anticorps
est le 110.4 et ledit second anticorps est le G19-4;
ledit premier anticorps est le 110.4 et ledit second anticorps est le Fc2; ou
ledit premier anticorps est le 41.1 et ledit second anticorps est le G19-4.
11. Procédé selon l'une des revendications 1 à 10, dans lequel l'agent réticulant est
le N-succinimidyl-3-(2-pyrridylthio)-propionate (SPDP) ou le maléimidobutryloxysuccinimide
(GMBS).
12. Utilisation de cellules d'effecteur du sang périphérique en présence d'au moins un
hétéroconjugué d'anticorps préparé selon l'une des revendications 1 à 11 pour la préparation
d'une composition pharmaceutique pour tuer les cellules infectées par le VIH.
13. Utilisation selon la revendication 12, dans laquelle les cellules d'effecteur sont
choisies parmi les macrophages, les monocytes, les granulocytes et les lymphocytes
du sang.
14. Utilisation selon la revendication 12, dans laquelle les cellules d'effecteur sont
obtenues à partir d'individus séronégatifs ou séropositifs VIH.
15. Utilisation selon la revendication 12, dans laquelle les cellules d'effecteur sont
prétraitées avec un composé choisi parmi l'interleukine-2, le β-interféron, l'α-interféron
et le γ-interféron.
16. Utilisation selon la revendication 12, dans laquelle les cellules d'effecteur sont
prétraitées avec un anticorps spécifique pour les cellules d'effecteur.
17. Utilisation selon la revendication 16, dans laquelle l'anticorps est un de ceux qui
stimulent le mécanisme lytique des cellules d'effecteur.
18. Utilisation selon la revendication 17, dans laquelle l'anticorps est un anticorps
anti-CD3.
19. Utilisation selon la revendication 12 ou 15, dans laquelle les cellules d'effecteur
sont des lymphocytes T cytotoxiques et l'hétéroconjugué d'anticorps est choisi parmi
le 110.4 x G19-4 et le 41.1 x G19-4.
20. Utilisation selon la revendication 12 ou 15, dans laquelle les cellules d'effecteur
sont des grands lymphocytes granulaires et l'hétéroconjugué d'anticorps est le 110.4
x Fc2.
21. Utilisation d'une quantité pharmaceutiquement efficace d'au moins un hétéroconjugué
d'anticorps préparé selon l'une quelconque des revendications 1 à 11 pour la préparation
d'une composition pharmaceutique pour le traitement des infections VIH.
22. Utilisation selon la revendication 21, dans laquelle une quantité pharmaceutiquement
efficace d'un composé choisi parmi l'interleukine-2, le β-interféron, l'α-interféron
et le γ-interféron est additionnellement employée.
23. Utilisation des cellules d'effecteur du sang périphérique capables de tuer des cellules
infectées par le VIH, lesquelles cellules d'effecteur ont été traitées avec au moins
un hétéroconjugué d'anticorps préparé selon l'une quelconque des revendications 1
à 11 in vitro et dudit hétéroconjugué pour la préparation d'une composition pharmaceutique pour
le traitement des infections VIH.
24. Utilisation selon la revendication 23, dans laquelle la cellule d'effecteur est choisie
parmi les lymphocytes T, les grands lymphocytes granulaires, les granulocytes, les
monocytes et les macrophages.
25. Utilisation selon la revendication 23, dans laquelle les cellules d'effecteur sont
prétraitées avec un composé choisi parmi l'interleukine-2, le β-interféron, l'α-interféron
et le γ-interféron.
26. Utilisation selon la revendication 23, dans laquelle les cellules d'effecteur sont
prétraitées avec un anticorps spécifique pour les cellules d'effecteur.
27. Utilisation selon la revendication 26, dans laquelle l'anticorps est un de ceux qui
stimulent le mécanisme lytique de la cellule d'effecteur.
28. Utilisation selon la revendication 27, dans laquelle l'anticorps est un anticorps
anti-CD3.
29. Procédé pour préparer une composition pharmaceutiquement acceptable utile dans le
traitement d'une infection VIH qui comprend la fourniture d'une quantité pharmaceutiquement
efficace d'au moins un hétéroconjugué d'anticorps préparé selon l'une des revendications
1 à 11.
30. Procédé selon la revendication 29, dans lequel une quantité efficace pharmaceutiquement
d'un composé choisi parmi l'interleukine-2, le β-interféron, l'α-interféron et le
γ-interféron est additionnellement employée.
31. Procédé pour la préparation d'une composition pharmaceutique pour tuer les cellules
infectées par le VIH qui comprend la fourniture de quantités efficaces pharmaceutiquement
de cellules d'effecteur et d'hétéroconjugués d'anticorps tels que définis dans l'une
des revendication 12 à 20.
32. Procédé pour préparer une composition pharmaceutique pour traiter les infections VIH,
qui comprend la fourniture de quantités efficaces pharmaceutiquement de cellules d'effecteur
et d'hétéroconjugués d'anticorps tels que définis dans l'une des revendications 23
à 28.
Revendications pour l'(les) Etat(s) contractant(s) suivant(s): GR
1. Hétéroconjugué d'anticorps comprenant au moins un anticorps réactif avec un antigène
VIH exprimé sur la surface d'une cellule infectée par le VIH réticulé à au moins un
anticorps réactif avec une cellule d'effecteur du sang périphérique capable de tuer
une cellule infectée par le VIH.
2. Hétéroconjugué d'anticorps selon la revendication 1, dans lequel l'antigène VIH est
celui trouvé sur une glycoprotéine enveloppe de VIH.
3. Hétéroconjugué d'anticorps selon la revendication 1, dans lequel la cellule d'effecteur
est choisie parmi les lymphocytes T, les grands lymphocytes granulaires, les granulocytes
les monocytes et les macrophages.
4. Hétéroconjugué d'anticorps selon la revendication 1, dans lequel l'anticorps réactif
avec la cellule d'effecteur est choisie parmi les anticorps réactifs avec le récepteur
de cellule T sur les lymphocytes T ou un récepteur Fc sur les leucocytes.
5. Hétéroconjugué d'anticorps selon la revendication 1, dans lequel l'anticorps réactif
avec la cellule d'effecteur est un anticorps à l'antigène CD3 sur le récepteur de
cellule T des lymphocytes T.
6. Hétéroconjugué d'anticorps selon la revendication 1, dans lequel l'anticorps réactif
avec la cellule d'effecteur est un anticorps au récepteur Fc CD16 de grands lymphocytes
granulaires et de granulocytes.
7. Hétéroconjugué d'anticorps selon la revendication 1, dans lequel les anticorps sont
des fragments d'anticorps choisis parmi les fragments Fab et F(ab')₂.
8. Hétéroconjugué d'anticorps selon la revendication 1, dans lequel les anticorps sont
des anticorps chimériques.
9. Hétéroconjugué d'anticorps comprenant un premier anticorps réactif avec un antigène
VIH exprimé sur la surface d'une cellule infectée par le VIH réticulé à un second
anticorps réactif avec une cellule d'effecteur du sang périphérique capable de tuer
une cellule infectée par le VIH.
10. Hétéroconjugué d'anticorps selon la revendication 9, choisi parmi le 110.4 x G19-4,
le 110.4 x Fc2 et le 41,1 x G19-4.
11. Utilisation de cellules d'effecteur du sang périphérique en présence d'au moins un
hétéroconjugué d'anticorps selon l'une des revendications 1 à 10 pour la préparation
d'une composition pharmaceutique pour tuer les cellules infectées par le VIH.
12. Utilisation selon la revendication 11, dans laquelle les cellules d'effecteur sont
choisies parmi les macrophages, monocytes, granulocytes et lymphocytes du sang périphérique.
13. Utilisation selon la revendication 11 dans laquelle les cellules d'effecteur sont
obtenues à partir d'individus séropositifs ou séronégatifs VIH.
14. Utilisation selon la revendications 11, dans laquelle les cellules d'effecteur sont
prétraitées avec un composé choisi parmi l'interleukine-2, le β-inteféron, l'α-interféron
et le γ-interféron.
15. Utilisation selon la revendication 11, dans laquelle les cellules d'effecteur sont
prétraitées avec un anticorps spécifique pour les cellules d'effecteur.
16. Utilisation selon la revendication 15, dans laquelle l'anticorps est un de ceux qui
stimulent le mécanisme lytique des cellules d'effecteur.
17. Utilisation selon la revendication 16, dans laquelle l'anticorps est un anticorps
anti-CD3.
18. Utilisation selon la revendication 11 ou 14, dans laquelle les cellules d'effecteur
sont des lymphocytes T cytotoxiques et l'hétéroconjugué d'anticorps est choisi parmi
le 110.4 x G19-4 et le 41.1 x G19-4.
19. Utilisation selon la revendication 11 ou 14, dans laquelle les cellules d'effecteur
sont des grands lymphocytes granulaires et l'hétéroconjugué d'anticorps est le 110.4
x Fc2.
20. Procédé pour préparer une composition pharmaceutiquement acceptable utile dans le
traitement des infections VIH qui comprend la fourniture d'une quantité efficace pharmaceutiquement
d'au moins un hétéroconjugué d'anticorps selon l'une des revendications 1 à 10.
21. Utilisation d'une quantité efficace pharmaceutiquement d'au moins un hétéroconjugué
d'anticorps selon l'une quelconque des revendications 1 à 10 pour la préparation d'une
composition pharmaceutique pour traiter les infections VIH.
22. Utilisation selon la revendication 21, dans laquelle une quantité efficace pharmaceutiquement
d'un composé choisi parmi l'interleukine-2, le β-interféron, l'α-interféron et le
γ-interféron est additionnellement employée.
23. Utilisation de cellules d'effecteur du sang périphérique capable de tuer des cellules
infectées par le VIH, lesquelles cellules d'effecteur ont été traitées avec au moins
un hétéroconjugué d'anticorps selon l'une des revendications 1 à 10 in vitro et dudit hétéroconjugué pour la préparation d'une composition pharmaceutique pour
traiter les infections VIH.
24. Utilisation selon la revendication 23, dans laquelle la cellule d'effecteur est choisie
parmi les lymphocytes T, les grands lymphocytes granulaires, les granulocytes, les
monocytes et les macrophages.
25. Utilisation selon la revendication 23, dans laquelle les cellules d'effecteur sont
prétraitées avec un composé choisi parmi l'interleukine-2, le β-interféron, l'α-interféron
et le γ-interféron.
26. Utilisation selon la revendication 23, dans laquelle les cellules d'effecteur sont
prétraitées avec un anticorps spécifique pour les cellules d'effecteur.
27. Utilisation selon la revendication 26, dans laquelle l'anticorps est un de ceux qui
stimulent le mécanisme lytique de la cellule d'effecteur.
28. Utilisation selon la revendication 27, dans laquelle l'anticorps est un anticorps
anti-CD3.
29. Procédé pour préparer un hétéroconjugué d'anticorps ayant au moins un premier anticorps
réactif avec un antigène VIH exprimé sur la surface d'une cellule infectée par le
VIH réticulé à au moins un second anticorps réactif avec une cellule d'effecteur du
sang périphérique capable de tuer une cellule infectée par le VIH, comprenant l'étape
de réaction dudit premier et second anticorps avec un agent réticulant hétérobifonctionnel.
30. Procédé selon la revendication 29, dans lequel l'agent réticulant est le N-succinimidyl-3-(2-pyridylthio)-propionate
(SPDP) ou le maléimidobutryloxysuccinimide (GMBS).
31. Procédé selon la revendication 29, dans lequel ledit premier anticorps est le 110.4
et ledit second anticorps est le G19-4;
ledit premier anticorps est le 110.4 et ledit second anticorps est le Fc2; ou
ledit premier anticorps est le 41.1 et ledit second anticorps est le G19-4.