| (19) |
 |
|
(11) |
EP 0 466 511 B1 |
| (12) |
EUROPEAN PATENT SPECIFICATION |
| (45) |
Mention of the grant of the patent: |
|
11.01.1995 Bulletin 1995/02 |
| (22) |
Date of filing: 12.07.1991 |
|
|
| (54) |
Motor fuels of enhanced properties
Motortreibstoffe mit erhöhten Eigenschaften
Carburants à propriétés augmentées
|
| (84) |
Designated Contracting States: |
|
BE DE ES FR GB IT |
| (30) |
Priority: |
13.07.1990 US 552446
|
| (43) |
Date of publication of application: |
|
15.01.1992 Bulletin 1992/03 |
| (73) |
Proprietor: ETHYL PETROLEUM ADDITIVES, INC. |
|
Richmond,
Virginia 23219-4304 (US) |
|
| (72) |
Inventors: |
|
- Hanlon, John Vincent
Town and Country,
Missouri 63131 (US)
- Hager, William Maynard
Ellisville,
Missouri 63011 (US)
- Cunningham, Lawrence Joseph
Kirkwood,
Missouri 63122 (US)
|
| (74) |
Representative: Sandmair, Kurt, Dr. Dr. et al |
|
Patentanwälte
Schwabe, Sandmair, Marx
Stuntzstrasse 16 81677 München 81677 München (DE) |
| (56) |
References cited: :
WO-A-87/01384 GB-A- 1 145 930 US-A- 2 818 417 US-A- 4 139 349
|
FR-A- 1 140 411 US-A- 2 609 279 US-A- 4 005 993
|
|
| |
|
|
- OIL AND GAS JOURNAL. April 9, 1990, TULSA US pages 43 - 48; UNZELMAN:'REFORMULATED
GASOLINES WILL CHALLENGE PRODUCT-QUALITY MAINTENANCE '
|
|
| |
|
|
|
Remarks: |
|
The file contains technical information submitted after the application was filed
and not included in this specification |
|
| Note: Within nine months from the publication of the mention of the grant of the European
patent, any person may give notice to the European Patent Office of opposition to
the European patent
granted. Notice of opposition shall be filed in a written reasoned statement. It shall
not be deemed to
have been filed until the opposition fee has been paid. (Art. 99(1) European Patent
Convention).
|
[0001] This invention relates to unleaded gasoline fuel compositions having superior environmental
and performance properties.
[0002] As is known, light ends of gasoline tend to evaporate into the atmosphere, especially
during warm or hot weather; but removal of the light ends to reduce atmospheric pollution
reduces the octane quality of the gasoline. Increased proportions of aromatic gasoline
hydrocarbons of high octane quality, such as benzene, toluene, and xylene, can be
used to compensate for this reduction in octane quality. However, since aromatics
are not particularly desirable from the toxicological standpoint, it would be desirable
to provide a way of reducing the front end volatility of gasoline without having to
increase the aromatics content.
[0003] International Patent publication WO87/01384 describes non-leaded gasoline compositions
to which are added a combination of C₁₋₆ aliphatic alcohols, cyclopentadienyl manganese
tricarbonyl antiknock agents and aromatic hydrocarbons to improve emissions and other
pollution problems.
[0004] United States Patent No. 4139349 describes lead-free gasoline compositions comprising
a synergistic combination of dicyclopentadienyl iron and cyclopentadienyl manganese
tricarbonyl antiknocks.
[0005] The unleaded gasoline fuel composition of this invention has a Reid vapor pressure
(ASTM test method D-323) of 8.5 psi (58.6 kPa) or less, preferably 8.0 psi (55.2 kPa)
or less, and contains no more than 25% by volume aromatic hydrocarbon components and
up to 1/32 gram of manganese per gallon (0.008g/liter) as at least one fuel-soluble
cyclopentadienyl manganese tricarbonyl compound. The use of cyclopentadienyl manganese
tricarbonyls increases the octane quality of the low Reid vapor pressure gasoline
without increasing its volatility and without requiring an increase in its aromatics
content, and it has been found that these manganese compounds tend to exert a greater
octane-improving effect in paraffinic and naphthenic hydrocarbons than they do in
aromatic gasoline hydrocarbons. Moreover, the use of the fuels of the invention results
in reduced emission of carbon monoxide and nitrogen oxides (NO
x) during engine operation while having little effect on the level of tailpipe hydrocarbon
emissions; and they exhibit virtually no adverse effect upon exhaust gas catalysts
and oxygen sensors of the type commonly used in present day vehicles. Thus, the fuels
of the invention are "environmentally friendly".
[0006] In the improved preparation of the gasoline, the aforementioned cyclopentadienyl
manganese tricarbonyl and low Reid vapor pressure fuel are blended in any suitable
manner, e.g., by (a) blending the fuel-soluble additive into the gasoline during or
after completion of the gasoline blending procedures or (b) mixing the additive with
one or more streams of gasoline hydrocarbons or other blending components, such as
oxygenated fuel blending components, before the streams are blended together. The
octane-enriched gasoline thus obtained may then be stored in at least one storage
tank in a tank farm, if desired, before being distributed for use in fueling motor
vehicles; and it may then be dispensed to motor vehicles.
[0007] Use of the present invention lessens the amount of volatile hydrocarbons released
into the atmosphere during storage and/or during fueling of a motor vehicle; and,
in comparison with corresponding fuels containing no cyclopentadienyl manganese tricarbonyl,
the amount of carbon monoxide and nitrogen oxides released into the atmosphere during
operation of motor vehicles is reduced.
[0008] As noted above, the unleaded gasolines utilized in the practice of this invention
must have a Reid vapor pressure of 8.5 psi (58.6 kPa) or below, and preferably 8.0
psi (55.2 kPa) or below. As is well known, Reid vapor pressures are determined at
100°F (37.8°C). Such gasolines are lead-free in the sense that no organolead antiknock
agent is blended into the fuel, although they may contain trace amounts of lead contaminants.
The hydrocarbonaceous gasoline base stocks that are used in forming the gasoline blends
include straight run stocks, light naphtha fractions, cracked gasoline stocks obtained
from thermal or catalytic cracking, hydrocracking, or similar methods, reformate obtained
by catalytic reformation or like processes, polymer gasolines formed via polymerization
of olefins, alkylates obtained by addition of olefins to isobutane or other hydrocarbons
by alkylation processes, isomerates formed by isomerization of lower straight chain
paraffins such as n-hexane, n-heptane, and the like, and other hydrocarbons of the
gasoline boiling range formed by suitable refinery processing operations. Suitable
amounts of appropriate hydrocarbons formed by other methods such as production from
coal or shale can be included, if desired. For example reformates based on liquid
fuels formed by the Fischer-Tropsch process can be included in the blends. In all
cases, the resultant gasoline must satisfy the Reid vapor pressure requirements of
this invention and additionally will possess the distillation characteristics typical
of conventional regular, midgrade, premium, or super-premium unleaded gasolines. Thus
the motor gasolines are generally within the parameters of ASTM D 4814 and typically
have initial boiling points in the range of 70-115°F (21.1-46.1°C) and final boiling
points in the range of 370-440°F (187.8-226.7°C) as measured by the standard ASTM
distillation procedure (ASTM D 86). The hydrocarbon composition of gasolines according
to volume percentages of saturates, olefins, and aromatics is typically determined
by ASTM test procedure D 1319.
[0009] Generally, the base gasoline will be a blend of stocks obtained from several refinery
processes. The final blend may also contain hydrocarbons made by other procedures
such as alkylates made by the reaction of C₄ olefins and butanes using an acid catalyst
such as sulfuric acid or hydrofluoric acid, and aromatics made from a reformer.
[0010] The saturated gasoline components comprise paraffins and naphthenates. These saturates
are generally obtained from: (1) virgin gasoline by distillation (straight run gasoline),
(2) alkylation processes (alkylates), and (3) isomerization procedures (conversion
of normal paraffins to branched chain paraffins of greater octane quality). Saturated
gasoline components also occur in so-called natural gasolines. In addition to the
foregoing, thermally cracked stocks, catalytically cracked stocks and catalytic reformates
contain some quantities of saturated components.
[0011] Olefinic gasoline components are usually formed by use of such procedures as thermal
cracking, and catalytic cracking. Dehydrogenation of paraffins to olefins can supplement
the gaseous olefins occurring in the refinery to produce feed material for either
polymerization or alkylation processes.
[0012] The gasoline gasoline base stock blends with which the cyclopentadienyl manganese
tricarbonyl additive is blended pursuant to this invention will generally contain
40 to 80 volume % of saturates, 1 to 30 volume % olefins, and up to 25 volume % aromatics.
Gasoline base stock blends for use in the practice of this invention contain no more
than 25% by volume of aromatics. Preferably, the overall fuel blend will contain no
more than 1% by volume and most preferably no more than 0.8% by volume of benzene.
[0013] Particularly preferred unleaded gasolines produced and/or utilized in the practice
of this invention not only meet the Reid vapor pressure criteria set forth hereinabove
but in addition, are characterized by having (1) a maximum sulfur content of 300 ppm,
(2) a maximum bromine number of 20, (3) a maximum aromatic content of 20% by volume,
(4) a maximum content of benzene of 1% by volume, and (5) a minimum content of contained
oxygen of 1% by weight in the form of at least one monoether or polyether, such gasoline
having dissolved therein up to 1/32 gram of manganese per gallon (3.8 liters) as methylcyclopentadienyl
manganese tricarbonyl. Gasolines of this type not containing the manganese additive
are sometimes referred to as reformulated gasolines. See for example
Oil & Gas Journal, April 9, 1990, pages 43-48.
[0014] From the standpoint of octane quality, the preferred gasoline base stock blends are
those having an octane rating of

ranging from 78-95.
[0015] Any of a variety of cyclopentadienyl manganese tricarbonyl compounds, e.g., those
of U.S. Pat. No. 2,818,417, can be used in the practice of this invention. Illustrative
examples of these manganese compounds include the cyclopentadienyl, methylcyclopentadienyl,
dimethylcyclopentadienyl, trimethylcyclopentadienyl, tetramethylcyclopentadienyl,
pentamethylcyclopentadienyl, ethylcyclopentadienyl, diethylcyclopentadienyl, propylcyclopentadienyl,
isopropylcyclopentadienyl, tert-butylcyclopentadienyl, octylcyclopentadienyl, dodecylcyclopentadienyl,
ethylmethylcyclopentadienyl, and indenyl manganese tricarbonyls, and mixtures of two
or more such compounds. Generally speaking, the preferred compounds or mixtures of
compounds are those which are in the liquid state of aggregation at ordinary ambient
temperatures, such as methylcyclopentadienyl manganese tricarbonyl, ethylcyclopentadienyl
manganese tricarbonyl, liquid mixtures of cyclopentadienyl manganese tricarbonyl and
methylcyclopentadienyl manganese tricarbonyl, and mixtures of methylcyclopentadienyl
manganese tricarbonyl and ethylcyclopentadienyl manganese tricarbonyl. The most preferred
compound because of its commercial availability and its excellent combination of properties
and effectiveness is methylcyclopentadienyl manganese tricarbonyl.
[0016] The practice of this invention and various embodiments thereof is illustrated by
the following examples wherein the percentages of gasoline hydrocarbons are by volume.
These examples are not intended to limit, and should not be construed as limiting,
this invention.
EXAMPLE 1
[0017] An unleaded motor gasoline blend is produced containing 58.9% saturated hydrocarbons,
17.5% olefinic hydrocarbons and 23.6% aromatic hydrocarbons, all of the gasoline boiling
range. The Reid vapor pressure of the blend is 8.5 psi (58.6 kPa). With this base
fuel are blended methylcyclopentadienyl manganese tricarbonyl to a concentration of
1/32 gram of manganese per gallon (0.008 g/liter) and 4-methyl-2,6-di-tert-butylphenol
to a concentration of 7.5 pounds per thousand barrels (21.4 g/m³). After storing the
motor gasoline over water in a field storage tank on a tank farm, the product is transported
by tank trucks to gasoline filling stations where it is dispensed on demand to motor
vehicles. The vehicles consume the same during their operation.
EXAMPLE 2
[0018] An unleaded motor gasoline of this invention is produced to contain 56.9 saturates,
20.0% olefins and 23.1% aromatics, all of the gasoline boiling range. The components
are selected such that the Reid vapor pressure of the blend is 8.4 psi (57.9 kPa).
A mixture of tertiary butylated phenolic antioxidants containing 85% by weight of
2,6-di-tert-butylphenol is blended into the fuel to a concentration of 6.5 pounds
per thousand barrels (18.5 g/m³). Methylcyclopentadienyl manganese tricarbonyl is
blended into the resultant blend to a concentration of 1/32 gram of manganese per
gallon (0.008 g/liter). This fuel is stored, transported, and dispensed to and utilized
in the operation of motor vehicles, the majority of which contain catalytic converters.
EXAMPLE 3
[0019] Into an unleaded motor gasoline (67.7% saturates, 7.5% olefins, 24.8% aromatics)
having a Reid vapor pressure of 8.0 are blended methylcyclopentadienyl manganese tricarbonyl
and methyl tert-butyl ether in amounts such that the resultant fuel contains 1/32
gram of manganese per gallon (0.008 g/liter) and 2.7% by weight of oxygen as methyl
tert-butyl ether. The finished fuel, which can contain, and preferably does contain,
conventional amounts of antioxidant, metal deactivator, and carburetor detergent,
is dispensed to and utilized in the operation of motor vehicles including passenger
cars, buses, trucks, vans, and motorcycles.
EXAMPLE 4
[0020] Examples 1-3 are repeated except that in one case the respective motor fuels contain
1/40 gram of manganese per gallon (0.007 g/liter), in another the respective motor
fuels contain 1/50 gram of manganese per gallon (0.005 g/liter), in a third case,
1/64 gram of manganese per gallon (0.004 g/liter) and in still another case, 1/100
gram of manganese per gallon (0.003 g/liter).
EXAMPLE 5
[0021] Examples 1-4 are repeated except that in each case the methylcyclopentadienyl manganese
tricarbonyl is replaced by an equal concentration of manganese as cyclopentadienyl
manganese tricarbonyl.
EXAMPLE 6
[0022] Examples 1-4 are repeated except that in one series of cases the respective fuels
contain instead of methylcyclopentadienyl manganese tricarbonyl, a mixture of 90%
by weight of methylcyclopentadienyl manganese tricarbonyl and 10% by weight of cyclopentadienyl
manganese tricarbonyl in amounts such that the respective fuels contain the same respective
concentrations of manganese as the fuels of Examples 1-4. In another series of cases,
the respective fuels of Examples 1-4 contain the same respective concentrations of
manganese in the form of dimethylcyclopentadienyl manganese tricarbonyl in lieu of
the methylcyclopentadienyl manganese tricarbonyl. And in still another series of cases
the specified concentrations of manganese in the fuels of Examples 1-4 are supplied
by tert-butylcyclopentadienyl manganese tricarbonyl. In yet another series of cases
the manganese additive used in forming the motor fuel compositions is indenylmanganese
tricarbonyl instead of methylcyclopentadienyl manganese tricarbonyl.
EXAMPLE 7
[0023] An unleaded motor gasoline blend having a Reid vapor pressure of 7.8 psi (53.8 kPa)
is formulated from 72.5% saturates, 4.0% olefins, and 23.5% aromatics (of which less
than 3% by volume is benzene so that the fuel contains less than 1% by volume of benzene).
Methyl tert-butyl ether is blended into the base gasoline in amount sufficient to
provide an oxygen content of 2.0% by weight in the fuel. Thereafter methylcyclopentadienyl
manganese tricarbonyl is blended into the resultant motor fuel in an amount equivalent
to 1/35 gram of manganese per gallon (0.008 g/liter).
EXAMPLE 8
[0024] Example 7 is repeated with the exceptions that (a) the initial gasoline blend has
a Reid vapor pressure of 7.9 psi (54.5 kPa) and is composed of 75.7% saturates, 4.8%
olefins, and 19.5% aromatics (of which aromatics, less than 3.5% by volume is benzene);
and (b) a mixture of methyl tert-butyl ether and ethyl tert-butyl ether is blended
into the fuel in an amount such that the content of the oxygenated fuel blend is equivalent
to 2.5% by weight of oxygen.
EXAMPLE 9
[0025] Example 7 is again repeated except that (a) the initial gasoline blend has a Reid
vapor pressure of 7.7 psi (53.1 kPa) and is composed of 78.6% saturates, 4.4% olefins
and 17.0% aromatics (the entire fuel blend again containing less than 1% by volume
of benzene); and (b) in lieu of methyl tert-butyl ether, tert-amyl methyl ether is
blended into the gasoline in an amount equivalent to an oxygen content in the fuel
of 2.7% by weight.
EXAMPLE 10
[0026] Blended with the respective fuels of Examples 7-9 at a concentration level of 100
pounds per thousand barrels, (285.3 g/m³) is a polyether amine deposit control additive
available commercially from Oronite Chemical Co. as OGA-480.
EXAMPLE 11
[0027] Blended with the respective fuels of Examples 7-9 at a concentration of 100 pounds
per thousand barrels (285.3 g/m³) is a polyalkenyl succinimide deposit control additive
available commercially from Ethyl Petroleum Additives, Ltd. as HITEC 4450 additive.
EXAMPLE 12
[0028] Blended with the respective fuels of Example 7-9 at a concentration level of 100
pounds per thousand barrels (285.3 g/m³) is a polyisobutenyl amine deposit control
additive available commercially from Oronite Chemical Co. as OGA-472.
[0029] As can be appreciated from the above examples, the fuels of this invention can, and
preferably do, contain additives in addition to the cyclopentadienyl manganese tricarbonyl
compound or compounds. Such other additives include antioxidants, deposit-control
additives (also known as induction system cleanliness additives or fuel detergents),
and oxygenated materials such as dialkyl ethers, all with the proviso that the volatility
of such materials does not cause the fuel to exceed the Reid vapor pressure limitations
required pursuant to this invention. Other additives that may be employed include
supplemental antiknock additives such as aromatic amine antiknocks such as N-methyl
aniline; iron antiknock compounds such as ferrocene, methylferrocene, and butadiene
iron tricarbonyl; and nickel antiknock compounds such as cyclopentadienyl nickel nitrosyl.
Corrosion inhibitors, metal deactivators, demulsifiers, and dyes comprise other types
of additives that can be employed.
[0030] Preferred oxygenated materials that can be, and preferably are, blended into the
fuels of this invention are ethers of suitable low volatility such as methyl tert-butyl
ether, ethyl tert-butyl ether, tert-amyl methyl ether, and 2,2-diethyl-1,3-propanediol.
Also useful are fuel-soluble esters and alcohols of suitably low volatility such as
tert-butyl acetate, 1-hexanol, 2-hexanol, 3-hexanol, and polyethoxyethanols. Usually
such oxygenated compounds are employed in amounts sufficient to provide up to 3 to
4 weight % oxygen in the fuel, provided such usage is consistent with existing or
proposed legislation. Other suitable oxygen-containing blending agents include p-cresol,
2,4-xylene, 3-methoxyphenol, 2-methylfuran, cyclopentanone, isovaleraldehyde, 2,4-pentanedione
and similar oxygen-containing substances.
[0031] Preferred antioxidants for the fuels of this invention are hindered phenolic antioxidants,
such as 2,6-di-tert-butyl-phenol, 2,4-dimethyl-6-tert-butylphenol, 4-methyl-2,6-di-tert-butylphenol,
4-ethyl-2,6-di-tert-butylphenol, 4-butyl-2,6-di-tert-butylphenol, and mixtures of
tertiary butylated phenols predominating in 2,6-di-tert-butylphenol. In some cases
aromatic amine antioxidants can prove useful either alone or in combination with a
phenolic antioxidant. Antioxidants are usually employed in amounts of up to 25 pounds
per thousand barrels (71.3 g/m³), the amount used in any given case being dependent
upon the stability (e.g., olefin content) of the gasoline.
[0032] Another type of additives preferably utilized in the fuels of this invention are
ashless detergents such as polyether amines, polyalkenyl amines, alkenylsuccinimides,
polyether amide amines, and the like. Such materials can be used at treat levels of
50 to 500 pounds per thousand barrels (142.6-1426.4 g/m³), and more usually in the
range of 100 to 200 pounds per thousand barrels (285.3-570.6 g/m³).
[0033] The cyclopentadienyl manganese tricarbonyl compounds as well as the other supplemental
additives or blending agents can be blended with the base fuels according to well
known procedures utilizing conventional mixing equipment. This invention is directed
to all such fuel compositions meeting the primary requisites of this invention.
1. An unleaded gasoline fuel composition having a Reid vapor pressure (ASTM test method
D-323) of 8.5 psi (58.6 kPa) or less containing no more than 25% by volume of aromatic
hydrocarbon components and up to 1/32 gram of manganese per gallon (0.008 g/liter)
as at least one fuel-soluble cyclopentadienyl manganese tricarbonyl compound.
2. A composition as claimed in claim 1 wherein the Reid vapor pressure of the gasoline
is 8.0 psi (55.2 kPa) or less.
3. A composition as claimed in claim 1 or claim 2 wherein said at least one fuel soluble
cyclopentadienyl manganese tricarbonyl compound consists essentially of methylcyclopentadienyl
manganese tricarbonyl.
4. A composition as claimed in claim 1, 2 or 3 wherein the base gasoline contains less
than 1% by volume of benzene.
5. A composition as claimed in any one of the preceding claims wherein the base gasoline
contains at least 50% by volume of saturated hydrocarbon components.
6. A composition as claimed in any of the preceding claims wherein the fuel composition
additionally contains up to about 4% by weight of oxygen as at least one oxygenated
fuel blending component.
7. An unleaded gasoline fuel composition as claimed in claim 1 which comprises a gasoline
fuel having a maximum sulfur content of 300 ppm, a maximum bromine number of 20, a
maximum aromatic content of 20% by volume, a maximum content of benzene of 1% by volume,
and a minimum content of contained oxygen in the form of at least one monoether or
polyether of 1% by weight.
8. A composition as claimed in claim 6 or claim 7 wherein said oxygenated fuel blending
component or the said monoether is methyl tert-butyl ether or methyl tert-amyl ether.
9. A composition as claimed in any one of the preceding claims wherein the fuel composition
additionally contains at least one ashless detergent.
10. A composition as claimed in claim 9 wherein the said detergent is selected from polyether
amines, polyalkenyl amines, alkenyl succinimides, and polyetheramide amines, and is
present in an amount in the range of 50 to 500 pounds per thousand barrels (142.6-1426.4
g/m³).
11. A composition as claimed in any one of the preceding claims wherein the fuel composition
additionally contains at least one antioxidant.
12. A composition as claimed in claim 11 wherein the antioxidant is a hindered phenolic
antioxidant.
13. Process for the production of gasoline which comprises forming a base unleaded gasoline
having a Reid vapor pressure (ASTM test method D-323) of 8.5 psi (58.6 kPa) or less
containing less than 25% by volume of aromatic hydrocarbons and providing therein
up to 1/32 gram of manganese per gallon (0.008 g/liter) as at least one fuel-soluble
cyclopentadienyl manganese tricarbonyl compound.
14. A process as claimed in claim 13 wherein the Reid vapor pressure of the gasoline is
8.0 psi (55.2 kPa) or less.
15. A process as claimed in claim 13 or claim 14 which further comprises including in
the gasoline up to about 4% by weight of oxygen as at least one oxygenated fuel blending
component.
16. A process as claimed in claim 15 wherein the oxygenated fuel blending component is
in the form of at least one monoether or polyether.
17. A process as claimed in any one of claims 13-16 which further comprises including
in the gasoline at least one deposit control additive also known as induction system
cleanliness additives or fuel detergents.
18. A process as claimed in claim 17 wherein the deposit control additive is selected
from polyether amines, polyalkenyl amines, alkenyl succinimides, and polyetheramide
amines.
19. A process as claimed in any one of claims 13-18 which further comprises including
in the gasoline up to about 25 pounds per thousand barrels (71.3 g/m³) of one or a
mixture of hindered phenolic antioxidants.
20. The use of up to 1/32 gram of manganese per gallon (0.008 g/liter) as at least one
fuel-soluble cyclopentadienyl manganese tricarbonyl compound in an unleaded gasoline
fuel composition having a Reid vapor pressure (ASTM test method D-323) of 8.5 psi
(58.6 kPa) or less and containing no more than 25 percent by volume aromatic hydrocarbon
components for the purpose of reducing carbon dioxide and nitrogen oxides (NOx) emissions during engine operation.
21. The use in accordance with claim 9 of manganese as methylcyclopentadienyl manganese
tricarbonyl in an unleaded gasoline fuel composition having a maximum Reid vapor pressure
(ASTM test method D-323) of 8.5 psi (58.6 kPa), having a maximum sulphur content of
300 ppm, a maximum bromine number of 20, a maximum aromatic content of 20% by volume,
a maximum content of benzene of 1% by volume, and a minimum content of contained oxygen
in the form of at least one monoether or polyether of 1% by weight.
22. A use as claimed in claim 20 or claim 21 wherein the Reid vapor pressure of the unleaded
gasoline fuel is 8.0 psi (55.2 kPa) or less.
23. A use as claimed in any one of claims 20-22 wherein the unleaded gasoline fuel further
contains up to about 4% by weight of oxygen as at least one oxygenated fuel blending
component.
24. A use as claimed in claim 23 wherein the oxygenated fuel blending component is in
the form of at least one monoether or polyether.
25. A use as claimed in any one of claims 20-24 wherein the unleaded gasoline fuel further
contains at least one deposit control additive also known as induction system cleanliness
additives or fuel detergents.
26. A use as claimed in claim 25 wherein the deposit control additive is selected from
polyether amines, polyalkenyl amines, alkenyl succinimides, and polyetheramide amines.
27. A use as claimed in any one of claims 20-26 wherein the unleaded gasoline fuel further
contains up to about 25 pounds per thousand barrels (71.3 g/m³) of one or a mixture
of hindered phenolic antioxidants.
1. Unverbleite Ottokraftstorfzusammensetzung mit einem Reid-Dampfdruck (ASTM-Testverfahren
D-323) von 8,5 psi (58,6 kPa) oder weniger mit einem Gehalt an höchstens 25 Vol-%
aromatischer Kohlenwasserstoffkomponenten und maximal 1/32 Gramm Mangan pro Gallone
(0,008 g/l) in Form von mindestens einer kraftstofflöslichen Tricarbonyl-(cyclopentadienyl)-manganverbindung.
2. Zusammensetzung gemäß Anspruch 1, in welcher der Reid-Dampfdruck des Benzins 8,0 psi
(55,2 kPa) oder weniger beträgt.
3. Zusammensetzung gemäß Anspruch 1 oder 2, in der mindestens eine kraftstofflösliche
Tricarbonyl-(cyclopentadienyl)-manganverbindung im wesentlichen aus Tricarbonyl-(methylcyclopentadienyl)-mangan
besteht.
4. Zusammensetzung gemäß den Ansprüchen 1, 2 oder 3, worin das Basisbenzin weniger als
1 Vol-% Benzol enthält.
5. Zusammensetzung gemäß einem der vorstehenden Ansprüche, in welcher das Basisbenzin
mindestens 50 Vol.-% gesättigter Kohlenwasserstoffbestandteile enthält.
6. Zusammensetzung gemäß einem der vorstehenden Ansprüche, in welcher die Kraftstoffzusammensetzung
zusätzlich noch bis zu etwa 4 Gew.-% Sauerstoff in Form mindestens einer oxygenierten
Kraftstoffzumischkomponente enthält.
7. Unverbleite Ottokraftstoffzusammensetzung gemäß Anspruch 1, welche einen Ottokraftstoff
mit einem maximalen Schwefelgehalt an 300 ppm, einer maximalen Bromzahl von 20, einem
maximalen Aromatengehalt an 20 Vol.-%, einem maximalen Benzolgehalt an 1 Vol.-% sowie
einen minimalen Sauerstoffgehalt in Form mindestens eines Monoethers oder Polyethers
in einer Menge von 1 Gew.-% umfaßt.
8. Zusammensetzung gemäß Anspruch 6 oder 7, in welcher die oxygenierte Kraftstoffzumischkomponente
oder der Monoether in Form von Methyl-tert-butylether oder Methyl-tert-amylether vorliegt.
9. Zusammensetzung gemäß einem der vorstehenden Ansprüche, worin die Kraftstoffzusammensetzung
zusätzlich noch mindestens ein aschefreies Detergens enthält.
10. Zusammensetzung gemäß Anspruch 9, in welcher das Detergens aus Polyetheraminen, Polyalkenylaminen,
Alkenylsuccinimiden und Polyetheramidaminen ausgewählt ist, und in einer Menge im
Bereich von 50 bis 500 Pfund pro 1000 Barrel (142,6 bis 1426,4 g/m³) vorhanden ist.
11. Zusammensetzung gemäß einem der vorstehenden Ansprüche, in welcher die Kraftstoffzusammensetzung
zusätzlich noch mindestens ein Antioxidans enthält.
12. Zusammensetzung gemäß Anspruch 11, in welcher das Antioxidans als (sterisch) gehindertes
phenolisches, Antioxidans vorliegt.
13. Verfahren zur Herstellung von Benzin, welches die Bildung eines unverbleibten Basisbenzins
mit einem Reid-Dampfdruck (ASTM-Testverfahren D-323) von 8,5 psi (58,6 kPa) oder weniger
bei einem Gehalt von weniger als 25 Vol.-% aromatischer Kohlenwasserstoffe umfaßt,
wobei darin maximal 1/32 Gramm Mangan pro Gallone (0,008 g/l) in Form mindestens einer
kraftstofflöslichen Tricarbonyl-(cyclopentadienyl)-manganverbindung vorgesehen ist.
14. Verfahren gemäß Anspruch 13, bei dem der Reid-Dampfdruck von Benzin 8,0 psi (55,2
kPa) oder weniger beträgt.
15. Verfahren gemäß Anspruch 13 oder 14, welches zusätzlich noch die Aufnahme von ungefähr
4 Gew.-% Sauerstoff in Form mindestens einer oxygenierten Kraftstoffzumischkomponente
in das Benzin umfaßt.
16. Verfahren gemäß Anspruch 15, bei dem die oxygenierte Kraftstoffmischkomponente in
Form von mindestens eines Monoethers oder Polyethers vorliegt.
17. Verfahren gemäß einem der Ansprüche 13 bis 16, welches zusätzlich noch die Aufnahme
mindestens eines Anti-Ablagerungsadditivs ("deposit control" additive) in das Benzin
umfaßt, wobei ersteres auch als Ansaugsystem-Reinigungsadditiv ("induction system
cleanliness" additives) oder Kraftstoffdetergens bekannt ist.
18. Verfahren gemäß Anspruch 17, bei dem das Anti-Ablagerungsadditiv aus Polyetheraminen,
Polyalkenylaminen, Alkenylsuccinimiden und Polyetheramidaminen ausgewählt ist.
19. Verfahren gemäß einem der Ansprüche 13 bis 18, welches zusätzlich noch die Aufnahme
von etwa 25 Pfund pro 1000 Barrel (71,3 g/m³) eines oder einer Mischung an (sterisch)
gehinderten, phenolischen Antioxidantien in das Benzin umfaßt.
20. Verwendung von maximal 1/32 Gramm Mangan pro Gallone (0,008 g/l) in Form mindestens
einer kraftstofflöslichen Tricarbonyl-(cyclopentadienyl)-manganverbindung in einer
unverbleiten Ottokraftstoffzusammensetzung mit einem Reid-Dampfdruck (ASTM-Testverfahren
D-323) von 8,5 psi (58,6 kPa) oder weniger, welche nicht mehr als 25 Vol.-% aromatischer
Kohlenwasserstoffkomponenten zwecks Reduzierung von Kohlendioxid- und Stickoxid-(NOx)-Emissionen während des Motorbetriebs enthält.
21. Verwendung von Mangan gemäß Anspruch 9 in Form des Tricarbonyl-(cyclopentadienyl)-mangans
in einer unverbleiten Ottokraftstoffzusammensetzung mit einem maximalen Reid-Dampfdruck
(ASTM-Testverfahren D-323) von 8,5 psi (58,6 kPa), einem maximalen Schwefelgehalt
an 300 ppm, einer maximalen Bromzahl von 20, einem maximalen Aromatengehalt an 20
Vol.-%, einem maximalen Benzolgehalt an 1 Vol.-% sowie einem minimalen Sauerstoffgehalt
an 1 Gew.-% in Form mindestens eines Mono- oder Polyethers.
22. Verwendung gemäß Anspruch 20 oder 21, bei welcher der Reid-Dampfdruck des unverbleiten
Ottokraftstoffs 8,0 psi (55,2 kPa) oder weniger beträgt.
23. Verwendung gemäß einem der Ansprüche 20 bis 22, bei welcher der unverbleite Ottokraftstoff
zusätzlich noch bis zu etwa 4 Gew.-% Sauerstoff in Form mindestens einer oxygenierten
Kraftstoffzumischkomponente enthält.
24. Verwendung gemäß Anspruch 23, bei weicher die oxygenierte Kraftstoffmischkomponente
in Form mindestens eines Mono- oder Polyethers vorliegt.
25. Verwendung gemäß einem der Ansprüche 20 bis 24, bei welcher der unverbleite Ottokraftstoff
zusätzlich noch mindestens ein Anti-Ablagerungsadditiv enthält, welches auch unter
der Bezeichnung Ansaugsystem-Reinigungsadditiv ("induction system cleanliness" additives")
oder Kraftstoffdetergens bekannt ist.
26. Verwendung gemäß Anspruch 25, bei welcher das Anti-Ablagerungsadditiv aus Polyetheraminen,
Polyalkenylaminen, Alkenylsuccinimiden sowie Polyetheramidaminen ausgewählt ist.
27. Verwendung gemäß einem der Ansprüche 20 bis 26, bei welcher der unverbleite Ottokraftstoff
zusätzlich noch bis zu etwa 25 Pfund pro 1000 Barrel (71,3 g/m³) eines oder einer
Mischung aus (sterisch) gehinderten, phenolischen Antioxidantien enthält.
1. Composition d'essence sans plomb ayant une pression de vapeur Reid (méthode d'essai
ASTM D323) égale ou inférieure à 8,5 psi (58,6 kPa), ne contenant pas plus de 25 %
en volume d'hydrocarbures aromatiques et contenant jusqu'à 1/32 gramme de manganèse
par gallon (0,008 g/litre) sous forme d'au moins un composé de cyclopentadiényl-manganèse-tricarbonyle
soluble dans le carburant.
2. Composition suivant la revendication 1, dans laquelle la pression de vapeur Reid de
l'essence est égale ou inférieure à 8,0 psi (55,2 kPa).
3. Composition suivant la revendication 1 ou la revendication 2, dans laquelle le composé
de cyclopentadiényl-manganèse-tricarbonyle d'au moins un type, soluble dans le carburant,
consiste essentiellement en méthylcyclopentadiényl-manganèse-tricarbonyle.
4. Composition suivant la revendication 1, 2 ou 3, dans laquelle l'essence de base contient
moins de 1 % en volume de benzène.
5. Composition suivant l'une quelconque des revendications précédentes, dans laquelle
l'essence de base contient au moins 50 % en volume d'hydrocarbures saturés.
6. Composition suivant l'une quelconque des revendications précédentes, qui contient
en outre jusqu'à environ 4 % en poids d'oxygène sous forme d'au moins un constituant
oxygéné de mélange au carburant.
7. Composition d'essence sans plomb suivant la revendication 1, qui comprend un carburant
consistant en une essence ayant une teneur maximale en soufre de 300 ppm, un indice
maximal de brome égal à 20, une teneur maximale en composés aromatiques de 20 % en
volume, une teneur maximale en benzène de 1 % en volume et une teneur minimale en
oxygène incorporé sous forme d'au moins un monoéther ou polyéther égale à 1 % en poids.
8. Composition suivant la revendication 6 ou la revendication 7, dans laquelle le constituant
oxygéné de mélange au carburant ou le monoéther est l'éther de méthyle et de tertio-butyle
ou bien l'éther de méthyle et de tertio-amyle.
9. Composition suivant l'une quelconque des revendications précédentes, qui contient
en outre au moins un détergent sans cendre.
10. Composition suivant la revendication 9, dans laquelle le détergent est choisi entre
des polyéther-amines des polyalcényl-amines, des alcénylsuccinimides et des polyétheramide-amines,
et est présent en une quantité de 50 à 500 lb pour mille barils (142,6 à 1426,4 g/m³).
11. Composition suivant l'une quelconque des revendications précédentes, qui contient
en outre au moins un antioxydant.
12. Composition suivant la revendication 11, dans laquelle l'antioxydant est un antioxydant
phénolique à encombrement stérique.
13. Procédé de production d'essence, qui comprend la formation d'une essence sans plomb
de base ayant une pression de vapeur Reid (méthode d'essai ATSM D-323) égale ou inférieure
à 8,5 psi (58,6 kPa) contenant moins de 25 % en volume d'hydrocarbures aromatiques
et renfermant jusqu'à 1/32 g de manganèse par gallon (0,008 g/litre) sous forme d'au
moins un composé de cyclopentadiényl-manganèse-tricarbonyle soluble dans le carburant.
14. Procédé suivant la revendication 13, dans lequel la pression de vapeur Reid de l'essence
est égale ou inférieure à 8,0 psi (55,2 kPa).
15. Procédé suivant la revendication 13 ou la revendication 14, qui comprend en outre
l'incorporation à l'essence d'une quantité allant jusqu'à environ 4 % en poids d'oxygène
sous forme d'au moins un constituant oxygéné de mélange au carburant.
16. Procédé suivant la revendication 15, dans lequel le constituant oxygéné de mélange
au carburant est sous forme d'au moins un monoéther ou polyéther.
17. Procédé suivant l'une quelconque des revendications 13 à 16, qui comprend en outre
l'incorporation à l'essence d'au moins un additif limitant les dépôts, connu également
sous le nom d'additif de nettoyage des dispositifs d'admission ou de détergent du
carburant.
18. Procédé suivant la revendication 17, dans lequel l'additif limitant les dépôts est
choisi entre des polyéther-amines, des polyalcényl-amines, des alcénylsuccinimides
et des polyétheramide-amines.
19. Procédé suivant l'une quelconque des revendications 13 à 18, qui comprend en outre
l'incorporation à l'essence d'une quantité allant jusqu'à environ 25 lb pour mille
barils (71,3 g/m³) d'un antioxydant phénolique à encombrement stérique ou d'un mélange
de tels antioxydants.
20. Utilisation d'une quantité allant jusqu'à 1/32 g de manganèse par gallon (0,008 g/litre)
sous forme d'au moins un composé de cyclopentadiényl-manganèse-tricarbonyle, soluble
dans le carburant, dans une composition d'essence sans plomb ayant une pression de
vapeur Reid (méthode d'essai ASTM D-323) égale ou inférieure à 8,5 psi (58,6 kPa)
et ne contenant pas plus de 25 pour cent en volume d'hydrocarbures aromatiques à des
fins de réduction des émissions d'anhydride carbonique et d'oxydes d'azote (NOx) au cours du fonctionnement des moteurs.
21. Utilisation suivant la revendication 9 de manganèse sous forme de méthylcyclopentadiényl-manganèse-tricarbonyle
dans une composition d'essence sans plomb ayant une pression de vapeur Reid maximale
(méthode d'essai ASTM D-323) de 8,5 psi (58,6 kPa), une teneur maximale en soufre
de 300 ppm, un indice de brome maximal égal à 20, une teneur maximale en composés
aromatiques de 20 % en volume, une teneur maximale en benzène de 1 % en volume et
une teneur minimale en oxygène incorporé sous forme d'au moins un monoéther ou polyéther
égale à 1 % en poids.
22. Utilisation suivant la revendication 20 ou la revendication 21, dans laquelle la pression
de vapeur Reid de l'essence sans plomb est égale ou inférieure à 8,0 psi (55,2 kPa).
23. Utilisation suivant l'une quelconque des revendications 20 à 22, dans laquelle l'essence
sans plomb contient en outre jusqu'à environ 4 % en poids d'oxygène sous forme d'au
moins un constituant oxygéné de mélange au carburant.
24. Utilisation suivant la revendication 23, dans laquelle le constituant oxygéné de mélange
au carburant est sous forme d'au moins un monoéther ou polyéther.
25. Utilisation suivant l'une quelconque des revendications 20 à 24, dans laquelle l'essence
sans plomb contient en outre au moins un additif limitant les dépôts, connu également
sous le nom d'additif de nettoyage des dispositifs d'admission ou de détergent du
carburant.
26. Utilisation suivant la revendication 25, dans laquelle l'additif limitant les dépôts
est choisi entre des polyéther-amines, des polyalcényl-amines, des alcénylsuccinimides
et des polyétheramide-amines.
27. Utilisation suivant l'une quelconque des revendications 20 à 26, dans laquelle l'essence
sans plomb contient en outre jusqu'à environ 25 lb pour mille barils (71,3 g/m³) d'un
antioxydant phénolique à encombrement stérique ou bien d'un mélange de tels antioxydants.