[0001] This invention relates to color cathode ray picture tubes, and is addressed specifically
to an improved cataphoretic process for manufacturing color cathode ray tubes. The
process is applicable to the manufacture of conventional color picture tubes; that
is, tubes having a curved faceplate and a correlatively curved shadow mask, and in
the manufacture of color tubes having shadow masks of the tension foil type mounted
in association with. a flat or substantially flat faceplate. Color tubes of various
types can be screened by the process, including those used in home entertainment television
receivers. The cataphoretic process according to the invention is particularly valuable
in the manufacture of medium-resolution, high-resolution, and ultra-high resolution
tubes intended for color monitors. To meet the requirement for high resolution and
high definition in such tubes, the phosphor elements must be extremely small and well
defined. The problems inherent in screening such tubes is pointed up by the fact that
there are more than five million such elements deposited on the screen of an ultra-high.
resolution color tube. The depositing of so many elements is at the limit of capability
of conventional photoscreening processes. The cataphoretic process also offers an
economical benefit in that it is much less wasteful of the expensive phosphors used
in color screening.
[0002] The conventional process of depositing patterns of color phosphor elements on the
screening surface of a color picture tube faceplate utilizes the well-known photoscreening
process. A shadow mask, which in effect functions as a perforated optical stencil,
is used in conjunction with a light source to expose in successive steps, three discrete
light-sensitive photoresist patterns on the screening surface. The shadow mask is
typically "mated" to each faceplate; that is, the same mask is used in the production
of a specific tube throughout the production process, and is permanently installed
in the tube in final assembly. At least four engagements and four disengagements of
the mask, as well as six exposures, are required in the standard screening process.
In certain processes, a "master" may be used for exposing the photoresist patterns
in lieu of the mated shadow mask.
[0003] In a typical photoscreening process, the screening surface is first coated with a
fluidized light-sensitive material to fabricate a grille, and which hardens upon drying.
The shadow mask, mounted on a rigid frame, is temporarily installed in precise relationship
to the faceplate, and the light-sensitive material is exposed to light actinic to
the coating projected through the apertures of the mask from a light source located
at a position that corresponds to the beam-emission point of the associated electron
gun of the end-product tube. The faceplate is then separated from the shadow mask
and the coating is "developed," resulting in a hardened pattern of openings in the
grille. A slurry of dark surround material is coated on the faceplate and the hardened
resist is stripped, leaving a light-absorbing material surrounding the areas where
the phosphors are to be deposited. The red, green and blue light emitting phosphor
elements are then sequentially deposited in respective grille openings with. a separate
slurry of phosphor in a light-sensitive material for each color. The final product
is a faceplate having on its screening surface a pattern of groups of dots or lines
capable of emitting, upon excitation by electron beams, red, green or blue light.
[0004] In U.S. Patent No. 4,130,472, Kaplan discloses a process for making color television
screens by electrophoretic deposition. The process comprises the depositing of groups
of periodically repeating electrically conductive stripes of predetermined graduated
length from relatively long to relatively short on the screening surface. Both ends
of stripes of similar length. are electrically excited with a charge of first polarity
during immersion in an electrolytic bath that includes color-image-related compounds
charged to an opposite polarity. Both ends of stripes of successively shorter length
are serially excited in conjunction with a different bath and a different image-related
compound. By electrically contacting both ends of the stripes, the effect of a single
discontinuity in the electrically conductivity of any stripes is nullified.
[0005] A process for electrostatically screening a color cathode ray tube is disclosed by
Lange et al in U. S. Patent No. 3, 475,169. In this process, the screening surface
is provided with a photoconductive surface to establish thereon a uniform charge.
A latent charge image is then created in the photoconductor by exposing selected portions
to light actinic to the photoconductor. The exposure of the photoconductor takes place
through a shadow mask so that areas which are to represent phosophor elements of a
particular color are selectively discharged by the exposure. The latent image that
results is developed by the application of a toner that includes a phosphor. The toner-phosphor
responds to the electrical fields of the photoconductor and is deposited on the discharged
areas. This process is repeated three times to provide the three color phosphors necessary
for the cathode ray tube color image. A similar process is set forth in British Patent
Specification No. 1,242,999.
[0006] U.S. Patent No. 3,681,223 to Gupton discloses means whereby color phosphors are electrophoretically
deposited on a cathode ray tube screening surface to provide a dot screen. A plurality
of conductive dot patterns are deposited on the faceplate, one pattern for each color
to be deposited. Each pattern includes lands of material on which the dots are to
be deposited, with conductive paths interconnecting the lands. The conductive patterns
are deposited with a single masking operation using an interchangeable master. The
different color phosphors are then successively deposited on the dot patterns by electrophoresis,
one color being deposited on each discrete conductive pattern. The conductive paths
are said to be one mil wide. While the blue- and green-receiving patterns are indicated
as being relatively short, the conductive path for the red phosphor is relatively
long--estimated to be about 900 feet in a 25-inch color picture tube. The problem
of laying down a conductive path of such. length with an inter-dot width of only one
mil is considered to be insurmountable. A gap in the path at any point would halt
electrophoresis along the uncharged path; also, variations in voltage drop along the
narrow conductive stripe could result in uneven deposits of phosphor.
[0007] In Canadian Patent No. 964,713, Standaart discloses a process for the electrophoretic
deposition of color phosphors in a dot-screen pattern. A separate dot pattern with.
an inter-connecting conductive path is provided for each color. An electrical potential
is applied to an end of each path by means of a selective clamping device for the
deposition of each color. The means for applying the potential are not disclosed.
An interchangeable mask is used for the path deposition.
[0008] In a journal article, Sadowsky describes the preparation of luminescent screens,
including deposition by electophoresis, in which "the phosphor in liquid suspension
is attracted to an immersed electrode upon which it deposits." Sadowsky comments:
"...there is not much advantage to this method. It is uneconomical merely to apply
screens in this manner, since screens of as good a quality can more easily be deposited
by other means. The controls necessary on particle size, e.m.f., current, suspension,
composition, temperature, etc., and the need for a conductive substrate militates
against its use." ("The Preparation of Luminous Screens," Meier Sadowsky, Society
for Information Display, March 1949. Pages 119-120).
[0009] CH-A-509,616 discloses a method of making an electrically conductive surface by means
of cataphoretic process. It includes first deposition of an electrically conductive
photosensitive layer on a surface, which is subject to luminous rays through a film
of opaque and transparent pattern, and second deposition of an insulative coating
over the conductive layer. The process can be repeated several times as desired.
[0010] In general this invention aims to provide an improved process for the manufacture
of color cathode ray tubes using the cataphoretic process.
[0011] The present invention therefore provides a process for the manufacture of a color
cathode ray tube screen, wherein at least two separate patterns of phosphor elements
are deposited in sequence on the screening surface of the tube, with each pattern
of elements capable of emitting light of a different color when excited, the process
including the steps of initially depositing an electrically conductive coating over
said screening surface for use as an electrode during each deposition operation, and
secondly, depositing an electrically insulative barrier over said conductive coating
and selectively and sequentially removing portions of said barrier for controlling
patterned, sequenced cataphoretic access to said electrically conductive coating characterized
by preferably forming a first pattern and a second pattern of holes in said insulative
barrier corresponding to the sum of said first and second separate patterns of phosphor
elements, covering the first pattern of holes with an insulative material, and then
cataphoretically depositing said second pattern of phosphor elements in said second
pattern of holes, removing the insulative material in said first pattern of holes
and cataphoretically depositing said first pattern of phosphor elements therein.
[0012] The improved process of the invention is applicable to most types of color cathode
ray tubes, including the conventional curved Screen-curved faceplate tube, as well
as to tubes having a tensed foil shadow mask and a flat faceplate.
[0013] Among the advantages of the invention is that it provides a more feasible and economical
process for depositing screening materials on the screening surface of cathode ray
tubes.
[0014] Further features and advantages of the present invention may best be understood by
reference to the following description of preferred embodiments of the invention taken
in conjunction with the accompanying drawings, in the several figures of which like
reference numerals identify like elements, and in which:
Figure 1 is a side view in perspective of a color cathode ray tube having a flat faceplate
and a tensed foil shadow mask, with cut-away sections that indicate the location and
relation of the screen to other major tube components;
Figure 2 is a cut-away view in elevation of a color cathode ray tube having the conventional
curved faceplate and curved screen;
Figure 3 is a detail plan view of the screen of a color cathode ray tube having a
"dot" screen;
Figure 4 is a view similar to Figure 3 except that the screen is a "line" screen shown
with associated shadow mask;
Figure 5 is another view similar to Figures 3 and 4 except the screen shown is the
type that may be used in a beam index tube;
Figure 6 is a view in elevation of a section of a flat faceplate with a dot screen,
and indicating the screening area following preliminary steps in the cataphoretic
process according to the invention (Note: the dot screen is used as an example in
the following description of the invention);
Figure 7 is a sectional side-elevational diagrammatical view of a "lighthouse" used
for exposing the screening area in the screening process according to the invention;
the photoscreening of a flat tension mask faceplate assembly is indicated by way of
example;
Figure 8 is a in elevation of a section of the faceplate shown by Figure 6, and indicating
the impinging of light beamlets on selected areas of the screening surface of a dot
screen during exposure of the screen to light actinic to photosensitive areas as accomplished
in the lighthouse depicted in Figure 7;
Figure 9 is a plan view of a section of a dot screen faceplate following the exposure
step indicated by Figure 8;
Figure 10 is a schematic view in elevation of a bath used in the cataphoretic screening
process according to the invention, and containing a section of the faceplate shown
by Figure 9 as immersed in the bath;
Figure 11 is a view in elevation of the section of faceplate shown by Figure 9, with
a wash-off spray operation indicated diagrammatically;
Figure 12 is a plan view of the section of the faceplate shown by Figure 9, showing
the results of previous steps in the cataphoretic process according to the invention;
Figure 13 is a view similar to Figure 8 showing the selective impinging of light beamlets
on the screening surface in another step in the process according to the invention;
Figure 14 is a view of a cataphoretic bath similar to the bath of Figure 10, but showing
a further step in the process according to the invention;
Figure 15 depicts another step in the selective impinging of light beamlets on the
screening surface; and
Figures 16 and 17 are views of cataphoretic baths similar to the bath of Figure 10,
and depicting further steps in the process according to the invention.
[0015] The process according to the invention can be used for the manufacture of various
types of color cathode ray tubes including tubes having a tension foil shadow mask
in conjunction with a flat faceplate, and tubes having the conventional curved screen-curved
mask tubes. The operating principles of the two types are essentially the same; that
is, an electron gun projects three beams through a color selection electrode to excite
groups of color phosphors emitting red, green or blue light when excited by the respective
electron beam.
[0016] A color cathode ray tube 20 having a tension foil shadow mask is shown by Figure
1. The front assembly 22 includes a faceplate 24, on the screening surface of which
is deposited a phosphor screen 28. A film of aluminum 30 is indicated as covering
the screen 28. A funnel 32 is shown as mating with the peripheral sealing area 34
of faceplate 24.
[0017] Front assembly 22 includes a shadow mask support structure 48 for mounting a metal
foil shadow mask 50 which is secured to support structure 48 in tension. The round
apertures shown in shadow mask 50 indicate that the tube is a dot-screen type. The
anterior-posterior axis of tube 20 is indicated by reference number 56. A magnetic
shield 58 is shown as being enclosed within funnel 32. High voltage for tube operation
is applied to a conductive coating 60 on the inner surface of funnel 32 by way of
an anode button 62 connected in turn to a high-voltage conductor 64.
[0018] The neck 66 of tube 20 is indicated as enclosing and in-line electron gun 68, indicated
as providing three discrete in-line electron beams 70, 72 and 74 for exciting respective
red-light-emitting, green-light-emitting, and blue-light-emitting phosphor elements
on screen 28. The electron gun may be one of the types disclosed in referent copending
applications Serial No. 808,137 and Serial No. 828,568. Yoke 76 receives scanning
signals and provides for the scanning of beams 70, 72 and 74 across screen 28. A contact
spring 78 provides an electrical path between the funnel coating 60 and the mask support
structure 48.
[0019] With reference now to Figure 2 there is shown schematically a conventional color
picture tube 80. Tube 80 is similar in form and function to the tube 20 described
in connection with Figure 1 in that it has an electron gun 82 that projects three
beams 84 that converge on the phosphor-bearing screen 86 of the faceplate 88 after
passing through a shadow mask 90 which, as has been noted, provides for color selection.
This configuration differs however in that the faceplate 88 is curved, as indicated,
and the shadow mask 90 is correlatively curved. Screen 86 may be of the dot screen
or line screen type. The improved cataphoretic process according to the invention
may be used to deposit image-related compounds on the screen 86 of this type of color
cathode ray tube, noted as having a curved faceplate.
[0020] Types of color picture cathode ray tube screens on which can be applied image-related
compounds according to the invention are depicted in Figures 3-5. It is noted that
the process according to the invention is not limited to the examples shown as other
applications will readily suggest themselves to those skilled in the art.
[0021] The improved cataphoretic process according to the invention provides for depositing
in sequence on the screening surface of a color cathode ray tube at least two separate
patterns of phosphor elements. Figure 3 represents a dot screen 92 shown as having
three such patterns by way of example, and comprising R, a red pattern, G, a green
pattern, and B, a blue pattern, with each pattern capable of emitting light of the
color designated. The three patterns --R, G, and B-- are distributed throughout the
screen. In a flat tension mask having a diagonal measure of 14.2 inches and a constant
aperture pitch of 0.2 millimeters, there are about 1,700,000 apertures. Since each
aperture passes three beamlets--one beamlet for each of the three patterns--there
are about 5,100,000 phosphor elements which can be deposited on the screening surface
by the cataphoretic process according to the invention. So each pattern--R, G, and
B--consists of 1,700,000 phosphor elements. The patterns are grouped in triads of
red, green and blue, as indicated by triad 94, delineated by the dash-line outline,
and the adjacent triad 96.
[0022] Dot-pattern screen 92 is depicted as including a light-absorptive, black surround
material 98 also known as the "grille"; the black surround is indicated symbolically
by the stippling. The associated shadow mask (not shown in this example) generally
has apertures of the same round shape, with one aperture for each triad of phosphor
elements.
[0023] Figure 4 is a depiction of a line-screen pattern 104, with the associated shadow
mask 106 shown to indicate the vertically rectangular configuration of the apertures
108. The three electron beams 110, 112 and 114 are depicted as passing through a typical
aperture 116 to selectively impinge upon respective blue-, red- and green-light-emitting
lines of phosphor 116, 118 and 120. An opaque, light-absorptive black-surround 122
is indicated as separating the lines of phosphor.
[0024] Figure 5 is a view similar to Figures 3 and 4 except that a typical screen of a beam
index tube is depicted. Stripes 122, 124 and 126 are indicated symbolically as emitting
green, red and blue light when excited by the horizontal traverse of a single electron
beam (not shown). The stripes are depicted as being separated by a black surround
material 128, as indicated by the stippling. An "index" stripe 130 may comprise, for
example, an emitter of ultraviolet radiation used to "index" the system; that is,
to locate the beam in relation to the phosphor stripes 122, 124 and 126 across which
it passes.
[0025] These and other screen patterns not shown but which function according to the same
general principles may be deposited by the cataphoretic process according to the invention.
[0026] In essence, the improved cataphoretic process according to the invention provides
for the deposition in sequence on the screening surface of the tube faceplate at least
two separate patterns of phosphor elements, with each pattern of elements capable
of emitting light of a different color when excited. In the following description
of the inventive process, first, second and third separate patterns of phosphor elements
are depicted which are capable of emitting such light when excited for exemplary purposes,
the separate patterns are indicated symbolically as being red-light-emitting, green-light-emitting,
and blue-light-emitting phosphor elements.
[0027] Essentially, the process according to the invention comprises first depositing an
electrically conductive coating over the screening surface to serve as an electrode
during each deposition operation, and secondly, depositing an electrically insulative
barrier over the conductive coating and selectively and sequentially removing portions
of the barrier for controlling patterned, sequenced cataphoretic access to the electrically
conductive coating.
[0028] With reference to Figure 6, there is shown a section of a cathode ray tube faceplate
132 having a screening surface 134 on which there is indicated as being deposited
an electrically conductive coating 136. Conductive coating 136 comprises metal or
other electrically conductive composition. It functions as an electrode during each
deposition operation. The conductive coating 136 may comprise a film of aluminum evaporated
on the screening surface. The thickness of the aluminum is preferably in the range
of 100 to 200 Angstrom units. In application, the screening surface 134 is first washed
to remove all trace of contaminants and dried, then the aluminum is deposited by an
evaporation process. The aluminum coating could as well be applied by a hot-stamping
method. The aluminum coating is opaque even in the form of a very thin film, and hence
must be removable so that the light emitted by the phosphors in the finished tube
will not be obstructed. The thickness of the metal must therefore by carefully controlled
so that the metal can be removed either by oxidation during the sealing of the tube
in final assembly, or by chemically leaching it out after the last application of
phosphor elements.
[0029] The conductive coating 136 could as well be transparent to visible light, and thus
not require a specific removal step. An electrically conductive material with suitable
transparency is indium tin oxide, which may also be applied by the evaporation process.
This compound however does not have to be removed as in the case of aluminum, as it
is transparent. Other types of materials which are electrically conductive and transparent,
and lend themselves to application in the form of very thin films, may as well be
used. Gold is an example.
[0030] With reference again to Figure 6, an electrically insulative barrier 138 deposited
over electrically conductive coating 136. Barrier 138 preferably comprises an electrically
resistive photoresist layer such as a photosensitive dichromated PVA (polyvinyl alcohol)
which may be applied in liquid form; e.g., by spin-application or by curtain coating.
Following the application, the coating is allowed to dry.
[0031] The photoresist comprising barrier 138 is then exposed through a mask to light actinic
to the photoresist layer to form a fixed latent image in the layer that represents
a sum pattern corresponding to the sum of aforedescribed first, second and third patterns
of phosphor elements. Exposure is accomplished by means of a "lighthouse," a schematic
example of which is shown by Figure 7. Lighthouse 140 is shown as having a base 142
within which is contained a source 144 of UV (ultraviolet) light actinic to the photoresist
generated by collimated light or a fine bare arc, typically an approximate point source
when used for screening with shadow masks having round apertures, or a line source
for masks having slit or slot apertures. The light source 144 is locatable in three
positions to simulate the deflection center of each of the electron beams used to
excite the phosphor elements deposited on the screening surface. This type of printing
is known as "first order printing"; it requires the use of a special correction lens
145 for dot screens, to correct for a displacement of the deflection centers.
[0032] The method of photoscreening may as well by an interchangeable mask system, in which,
by way of example, a separate "master" is used for printing each of the three colors
and the matrix. Each master has only the apertures for the respective color; for example,
the "red" master would only have apertures for printing the red phosphor deposits
on the screening surface. The master is placed in contact, or near-contact, with the
screening surface, and the mask is irradiated with a flood light rather than a point
source of light to print the areas that are to receive the red phosphor elements.
Very exact registration of the masks is a requisite for successful implementation
of this system. The benefit of the interchangeable mask manufacturing system is that
there is no need to permanently "pair" a mask with a specific faceplate--the screened
faceplates can be interchanged, each with all others, and the shadow masks can also
be interchanged, each with all the others, with consequent economies in manufacture
and enhanced tube performance.
[0033] Lighthouse 140 includes a table assembly 146 for receiving a cathode ray tube front
assembly 148. Front assembly 148 will be noted as including the flat faceplate 132
described in connection with Figure 6, with its deposits of an electrically conductive
coating 136 and electrically insulative barrier 138 comprising the photoresist layer
on its screening surface 134. A foil shadow mask 150 is depicted as being suspended
a predetermined distance from the screening surface 134 by a shadow mask support structure
152.
[0034] Following the depositing of the electrically conductive coating and the electrically
insulative barrier, the inventive process will be seen as comprising the forming of
a first pattern, a second pattern, and a third pattern of holes in the insulative
barrier corresponding to the sum of the first, second and third pattern of phosphor
elements to be deposited on the screening surface of the tube faceplate. The first
and third patterns of holes is in effect plugged with an insulative material, then
a second pattern of phosphor elements is cataphoretically deposited in the second
pattern of holes which are, in effect, not plugged. The first pattern of holes is
then, in effect, unplugged and the first pattern of phosphor elements are cataphoretically
deposited in the holes. The third pattern of holes is then, in effect, unplugged,
and the third pattern of phosphor elements are deposited in the holes.
[0035] Front assembly 148 must be assembled and disassembled at least four times in the
process of depositing the screening materials. Precision registration and re-registration
of the faceplate and the shadow mask in the screening process is indicated as being
provided by the support blocks 154A and 154B in conjunction with, by way of example,
ball-and-groove indexing means 156A and 156B. (There are actually three sets of such
ball-and-groove indexing means, only two of which are shown in this example.) Other
means for precision registration known to those skilled in the art may as well be
used. The light rays 158 from source 144 (sequentially located at the three deflection
centers), are depicted as irradiating the screening surface 134 after passing through
a neutral density filter 160 and the correction lens 145.
[0036] The effect of irradiating the screening surface 134 from the green, blue, and red
deflection centers is shown diagrammatically by Figure 8 (faceplate 132 is shown as
a fragment and in section in this and ensuing figures). Light rays 158, indicated
by the wavy lines, are depicted as passing through apertures 164A, 164B and 164C in
shadow mask 150 to form beamlets 166 which impinge upon the photosensitive electrically
insulative barrier 138. The effect of the ligh t is to "fix" the areas 167A, 167B
and 167C impinged upon, and form a fixed latent image in the photoresist representing
a sum pattern corresponding to the sum of the first, second and third patterns of
phosphor elements; that is, all areas on which the three colored-light-emitting phosphors
are to be deposited are formed as latent images.
[0037] The screening surface is then "developed"; that is, the unfixed photoresist layer
that surrounds each of the patterns is removed by spraying with water, for example.
The hardened, or "fixed," patterns are not affected by the water spray. The result
is depicted in Figure 9 wherein there remains on the electrically conductive coating
136 of faceplate 132 a fixed-resist-covered sum pattern of discrete, electrically
insulative photoresist elements 168 surrounded by bared areas 170 of the electrically
conductive coating 136.
[0038] The means for photoprinting the screen is described in the foregoing as being accomplished
using a shadow mask as a stencil, and sequentially locating the actinic light source
at the three deflection centers of the "red, green and blue" guns. In this system,
it is necessary to pair the masks and faceplates, and maintain the parity throughout
the manufacturing and assembly processes. As noted heretofore, screening can as well
be accomplished by an interchangeable mask system, as has been described.
[0039] With reference now to Figure 10, there is represented schematically a cataphoretic
bath 172 for the depositing of the screening materials according to the invention.
The faceplate 132 is indicated diagrammatically as being immersed in vertical orientation
in cataphoretic bath 172. Bath 172 contains an electrolytic fluid 174 which may include,
by way of example, a light-absorptive, black-surround material which is preferably
non-conductive. This material may comprise manganese carbonate by way of example,
which when deposited by cataphoresis is light in color, but turns black and opaque
as it oxidizes during the bake-out of the tube in final assembly. Other suitable black-surround
materials include cobalt oxide black, and iron oxides with cobalt oxides.
[0040] An electrical potential is depicted as being applied between the electrically conductive
coating 136 and an anode 179, with the potential depicted schematically as being applied
by a battery 176. The negative electrode 178 of battery 176 is indicated as being
electrically connected to the conductive coating 136. The positive electrode 177 is
indicated as being electrically connected to the anode electrode 179 which may comprise,
by way of example, a sheet of stainless steel preferably having approximately the
same area as the in-process faceplate. The difference in potential may be for example
about 100 volts, and the duration of the cataphoretic process about one minute. The
difference in potential results in the cataphoretic deposition on the bared areas
170 of the electrically conductive coating 136, a coating of electrically insulative,
interstitial material. This deposition is indicated by the build-up 180 of electrically
insulative material in hitherto bared areas 170, depicted diagrammatically by the
stippling. As noted, the electrically insulative photoresist elements prevent cataphoretic
deposition on areas covered.
[0041] With reference now to Figure 11, faceplate 132 is indicated as having been removed
from the cataphoretic bath 172 and subjected to a spray wash 182. The composition
of the wash depends upon the type of photoresist; for example, the wash may be hydrogen
peroxide in a 10 percent concentration. The wash results in a removal of the fixed
photoresist sum pattern of discrete photoresist elements to bare areas of the conductive
coating corresponding to the sum pattern. These areas are surrounded by the interstitial,
electrically insulative material 186 represented by the stippling. In brief, the photoresist
elements 168 (see Figure 10), noted as comprising PVA, are washed off the electrically
conductive coating 136, leaving a bare metal conductor. To bare the areas, a water
wash is applied; the washing operation is indicated diagrammatically by the spray
apparatus 182; however, it is noted that a wash gentler than a spray is recommended
in all washing operations, such as a very low-velocity curtain wash.
[0042] The result is shown by Figure 12, wherein the screening surface 134 of faceplate
132 is depicted as having bare areas 184G (representing the first pattern), 184B (representing
the second pattern) and 184R (representing the third pattern); the suffixes G, B and
R indicate the color emission of the phosphors that will subsequently be deposited
thereon (NOTE: paterns 184G, 184B and 184R, although not in the form of a triad, comprise,
for purposes of example, a typical group of phosphors representing all groups that
will eventually be deposited on the screening surface; that is, a first, second and
third pattern of holes, or bare areas, corresponding to the separate patterns of phosphor
elements to be applied. The bare areas will be observed as being surrounded by interstitial
material 186, as indicated by the stippling.
[0043] Following each cataphoretic bath, the cataphoretic deposits are rinsed with a suitable
wash such as isopropyl alcohol or methanol; this step is necessary to remove loose
particles in the bath which may have adhered to the screening surface. The coatings
are then dried before subsequent processing. If the coatings require additional binder
to withstand further processing steps, suitable binder may be applied in the form
of an overcoat, or the binder may be incorporated in the respective baths.
[0044] Another layer of insulative photoresist is applied to the screening surface to form
an electrically insulative barrier. With reference to Figure 13, there is shown an
electrically insulative barrier 188 depicted as overlaying the interstitial material
186, noted as being indicated by the stippling, and the previously bared areas 184R,
184B and 184G. This barrier may comprise PVA-AD. The photoresist layer 188 is then
exposed through mask 150 to light actinic to the photoresist. The light beamlet 166A
originates from the blue deflection center, and secondly, light beamlet 166G originates
at the green deflection center; it will be noted that no light is irradiating area
184R, so the red deflection center is inactive. As a result, the photoresist is fixed
in areas 184G and 184B. Since no light originates from the red deflection center,
the photoresist layer 188 over area 184R remains unfixed.
[0045] The unfixed photoresist over area 184R is then removed to bare electrically conductive
areas in a pattern corresponding to the first pattern represented by area 184R. As
a result, a second and third pattern of fixed photoresist elements is formed, represented
by 184G and 184B. To bare area 184R, a water wash is applied as noted heretofore,
a very low-velocity curtain wash is recommended.
[0046] While using the conductive coating 136 again as an electrode, a first phosphor, which
is red-light-emitting by way of example, is cataphoretically deposited on the bared
areas of the electrically conductive coating 136. This step is depicted in Figure
14 wherein there is represented schematically a cataphoretic bath 192 into which faceplate
132 is inserted, and which contains an electrolytic fluid 194 which includes in suspension
a red-light-emitting phosphor compound. An electrical potential is indicated as being
applied between the electrically conductive coating 136 and electrolytic fluid 194,
with the potential depicted schematically as being applied by a battery 196 in which
the negative electrode 197 is shown as being connected to the electrically conductive
coating 136. The difference in potential may be for example about 200 volts, and the
duration of the cataphoretic process about one minute, by way of example. The difference
in potential results in the cataphoretic deposition on the bared area 184R of the
electrically conductive coating 136, of a coating of phosphor 198, indicated diagrammatically
as being a red-light-emitting phosphor. Phosphor 198 is deposited to a predetermined
thickness which forms, after drying, a substantial electrical barrier that prevents
further cataphoresis. The thickness of the phosphor is preferably in the range of
10-20 microns. During the deposition process, the phosphor builds up rapidly at first;
the build-up then becomes progressively slower with increasing thickness. At the end
of the deposition period, the phosphor is sufficiently thick and thus electrically
resistive enough to prevent subsequent deposition of phosphor.
[0047] The electrically insulating barrier in areas 184B and 184G, noted as comprising PVA-AD
in a fixed state, is then removed to bare electrical conductive areas 184B and 184G
by stripping with a 10 percent solution of hydrogen peroxide. Another layer of electrically
insulative photoresist is then applied to form an electrically insulative barrier
comprising a photosensitive photoresist. This condition is shown by Figure 15, in
which an electrically resistive barrier 200 is depicted as overlying the entire screening
area, including phosphor element 198.
[0048] The photoresist layer is then exposed to light actinic to the photoresist to form
a fixed latent image in area 184B. The light rays emanate from the blue deflection
center to form, upon passing through shadow mask 150, light beamlet 202. It will be
noted that area 184G is not being irradiated. The unfixed photoresist is then removed
to bare the electrically conductive layer 136 in area 184G, which is to receive a
deposition of green-light-emitting phosphor. It will be noted that the unfixed photoresist
is removed from all areas except area 184B, including the areas of the interstitial
material 186 and including phosphor element 198. Removal of the unfixed photoresist
is accomplished by a gentle flow of water.
[0049] With reference to Figure 16, the cataphoretic process is repeated, again using the
conductive coating 136 as an electrode. It will be observed that, as a result of the
previous step, only area 184B is covered with an electrically resistive barrier, barrier
185. A cataphoretic bath 204 is depicted into which faceplate 132 is immersed. At
this time, a green-light-emitting phosphor is deposited as the electrolytic fluid
206 contained in bath 204 comprises a suspension of green-light-emitting phosphor
particles. As before, and as indicated schematically by battery 208, an electrical
potential is provided between the electrolytic fluid 206 and the conductive coating
136. As a result, a green-light-emitting phosphor element 210, indicated symbolicaly,
is indicated as being deposited in area 184G. The difference in potential may be for
example about 200 volts, and the duration of the cataphoretic process about 1.0 minutes,
by way of example. The difference in potential results in the cataphoretic depositing
on the bared area 184G of the electrically conductive coating 136, a coating of phosphor
210. As with the red-light-emitting phosphor 198 previously deposited, green-light
emitting phosphor element 210 is deposited to a predetermined thickness which forms
a substantial barrier to further cataphoresis. As has been noted, the thickness of
the phosphor is preferably in the range of 10-20 microns.
[0050] The final depositing of phosphor elements is the deposition of the blue-light-emitting
elements. No further photoscreening is required as the electrically resistive barrier
185 overlying area 184B need only be removed to bare the underlying electrically conductive
coating 136. As before, the means of removal is a gentle wash with a 10 percent solution
of hydrogen peroxide. The final cataphoretic step is depicted in Figure 17, in which
a cataphoretic bath 212 contains an electrolytic fluid 214 that comprises a suspension
of blue-light-emitting phosphor particles. The difference in electrical potential
induced by the circuit of battery 216 cataphoretically causes deposition of a blue-light-emitting
phosphor deposit 218 in areas 184B. As noted, the red-light-emitting phosphor element
198 and green-light-emitting phosphor element 210 form a substantial electrical barrier
to further cataphoresis in the respective areas 184R and 184G.
[0051] If the underlying conductive coating is a film of aluminum, noted as being not transparent,
the coating may be removed by chemically stripping it away to prevent obstruction
of the light emitted by the phosphors thereon deposited. Experiments have shown that
the adherence of the phosphor elements to the glass of the face-plate is not affected
by the removal of the underlying conductive coating.
[0052] Following the cataphoretic deposition process according to the invention, the screening
surface may be aluminized by any of the well-known processes.
[0053] In the cataphoretic process according to the invention, the use of standard, material-type
phosphors is acceptable. The median diameter of the particles of the phosphors that
emit red, green and blue light is about six microns. The phosphor concentration in
the baths is about two grams per 100 milliliters. The bath medium recommended is 75
percent isopropyl alcohol (Reagent grade, 0.2% water), and 25% methyl carbitol. The
electrolyte concentration is 0.04 grams lanthanum nitrate plus 0.02 grams aluminum
nitrate plus 0.2 milliliters of deionized water per 100 milliliters of suspension.
The density of the phosphors when deposited is typically about 2.5 milligrams per
square centimeter.
[0054] With regard to the composition of the grille, manganese carbonate may be used, by
way of example, with the particles having a median diameter of one to two microns.
Concentration of the grille bath is 1 gram per 100 milliliters by way of example,
and the liquid medium is the same as for the phosphors. The electrolyte component
is 0.03 grams lanthanum nitrate plus 0.015 grams of aluminum nitrate plus 0.15 milliliters
of deionized water per 100 milliliters of suspension.
[0055] The voltage for cataphoresis is preferably in the range of 100 to 200. The current
for grille coating at 100 volts is about 0.3 x 10⁻³ amperes per square centimeter,
and for the phosphors, 2 or 3 x 10⁻³ amperes per square c entimeter. The specific
resistance of the baths is in the range of 1.7 x 10⁵ ohms per centimeter to 1.0 x
10⁵ ohms per centimeter. The anode electrode may for example be stainless steel of
about the same dimensions as the faceplate to be screened. The anode electrode is
suspended in the bath evenly spaced from the faceplate being processed by about 2.5
inch. It is to be noted that these and other values cited in this disclosure are not
limiting, but are supplied for exemplary purposes only.
1. A process for the manufacture of a color cathode ray tube screen, wherein at least
two separate patterns of phosphor elements (168) are deposited in sequence on the
screening surface (134) of the tube (80), with each pattern of elements capable of
emitting light of a different color when excited, the process including the steps
of initially depositing an electrically conductive coating (136) over said screening
surface (134) for use as an electrode during each deposition operation, and secondly,
depositing an electrically insulative barrier (138) over said conductive coating (136)
and selectively and sequentially removing portions of said barrier for controlling
patterned, sequenced cataphoretic access to said electrically conductive coating characterized
by preferably forming a first pattern (184G) and a second pattern (184B) of holes
in said insulative barrier (138) corresponding to the sum of said first and second
separate patterns (184G, 184B) of phosphor elements, covering the first pattern of
holes (184G) with an insulative material, and then cataphoretically depositing said
second pattern (184B) of phosphor elements in said second pattern of holes, removing
the insulative material in said first pattern (184G) of holes and cataphoretically
depositing said first pattern (184G) of phosphor elements therein.
2. The process according to claim 1, characterized in that said common conductive coating
(136) is opaque but removable, or is transparent to visible light.
3. The process according to claim 1 or 2, characterized in that said insulative layer
(138) includes a light-absorptive black-surround material.
4. The process of claim 1, characterized in that first and second separate patterns (184G,
184B) of phosphor elements deposited on said screening surface (134) are interspaced
by a light-absorptive, black surround material and the electrically conductive coating
(136) deposited over said screening surface (134) comprises an aluminum film, said
process including the step of removing said aluminum film after completion of the
cataphoretic deposition process.
5. The process of claim 1 or 4, characterized in that the cataphoretic process includes
depositing on the screening surface (134) of the tube faceplate of a third separate
pattern (184R) of phosphor elements capable of emitting light of a different color
when excited from that of the first and second pattern of phosphor elements including
the step of forming a third pattern of holes in said insulative barrier (138) which
together with the first and second patterns (184G, 184B) corresponds to the sum of
said first, second and third separate patterns of phosphor elements, covering the
first and third pattern (184G, 184R) of holes with an insulative material and then
cataphoretically depositing said second pattern (184B) of phosphor elements in said
second pattern of holes, removing the insulative material in said first pattern of
holes and then cataphoretically depositing said first pattern (184G) of phosphor elements
in said holes, and removing the insulative material in said third pattern of holes
and cataphoretically depositing said third pattern (184R) of phosphor elements in
said holes.
6. The process of claim 1 or 2, characterized in that access to the conducting coating
(136) is accomplished by causing to be formed in said barrier (138) in sequence and
mutually exclusive in time at least two patterns of coating-baring openings corresponding
to said patterns (184G, 184B) of phosphor elements, each pattern formation being followed
by a cataphoretic deposition of one of said patterns of phosphor elements on the bared
areas of said conductive coating using said conductive coating as an electrode.
7. The process of claim 6, characterized in that the cataphoretic process includes the
deposit on the screening surface (132) of the tube faceplate of a third separate pattern
(184R) of substantially round phosphor elements capable of emitting light of a different
color when excited from that of the first and second patterns of phosphor elements
and wherein access to the conductive coating is accomplished by causing to be formed
in said barrier (138) in sequence and mutually exclusive in time first, second and
third patterns of coating-baring openings corresponding to said first, second and
third patterns (184G, 184B, 184R) of phosphor elements, each pattern formation being
followed by a cataphoretic deposition of one of said patterns of phosphor elements
on the bared areas of said conductive coating using said conductive coating as an
electrode.
8. The process of claim 7, characterized in that the electrically conductive coating
(136) initially deposited over said screening surface (132) comprises an aluminum
film on which the electrically insulative shielding barrier includes a light-absorptive,
black surround material, said process including the step of removing said aluminum
coating following completion of the cataphoretic deposition on the conductive coating.
9. A process for the manufacture of a color cathode ray tube, wherein at least first
and second separate patterns (184G, 184B) of phosphor elements are deposited on the
screening surface of the tube faceplate, said patterns capable of emitting light of
different colors respectively, and an interstitial pattern occupying interstices between
said first and second patterns, the process including depositing on said screening
surface (132) an electrically conductive coating (136), for use as an electrode during
each deposition operation, and deppsiting an insulative barrier over said conductive
coating (136) and selectively removing portions of said barrier for controlling cataphoretic
access to the conductive coating, characterized by applying a first layer of electrically
insulative photoresist over said electrically conductive coating (136) to form an
electrically insulative barrier, exposing said photoresist layer through a mask to
light actinic to said photoresist to form fixed latent image in said photoresist layer
representing a sum pattern corresponding to the sum of said first and second patterns,
removing unfixed areas of said photoresist layer, leaving a fixed-resist-covered sum
pattern of discrete, electrically insulative photoresist elements (168) surrounded
by bared areas (170) of the electrically conductive coating (136), while using said
conductive coating (136) as an electrode, cataphoretically depositing on the bared
areas of said electrically conductive coating (136) a layer of electrically insulative,
interstitial material, removing the fixed photoresist sum pattern of discrete photoresist
elements to bare areas of the conductive coating corresponding to said sum pattern
surrounded by said interstitial, electrically insulative material, applying another
layer of electrically insulative photoresist to form an electrically insulative barrier,
exposing said photoresist layer to light actinic to said photoresist through a mask
having a pattern of openings corresponding to said first pattern (184G), said mask
blocking light corresponding to said second pattern to form a fixed latent image in
said photoresist layer of said first pattern, removing unfixed photoresist to bare
electrically conductive areas in a pattern corresponding to said second pattern (184B),
thereby forming a first pattern of fixed photoresist elements, while using the conductive
coating (136) again as an electrode, cataphoretically depositing a first phosphor
on the bared areas of said electrically conductive coating to a predetermined thickness
at which is formed a substantial electrical barrier to further cataphoresis of the
first phosphor, removing the first pattern of fixed photoresist elements, using the
conductive coating (136) again as an electrode, cataphoretically depositing a second
phosphor on the bared areas of the conductive coating in a pattern corresponding to
said first pattern.
10. The process of claim 9, characterized in that said conductive coating is a film of
aluminum.
11. The process of claim 10, characterized in that said film of aluminum is removed following
completion of said cataphoretic process.
1. Verfahren zur Herstellung eines farbigen Kathodenstrahlröhrenschirms, bei dem mindestens
zwei getrennte Muster aus Leuchtstoffelementen (168) in Folge auf die Schirmoberfläche
(134) der Röhre (80) aufgebracht sind, wobei jedes Muster aus Elementen in der Lage
ist, bei seiner Erregung Licht unterschiedlicher Farbe auszusenden, und wobei das
Verfahren die folgenden Schritte umfaßt: zunächst wird ein elektrisch leitender Überzug
(136) auf die Schirmoberfläche (134) aufgebracht, der während jedes Aufbringvorgangs
als Elektrode dient, und zweitens wird eine elektrische isolierende Sperrschicht (138)
über dem leitenden Überzug (136) aufgebracht, und wahlweise und nacheinander werden
Teile der Sperrschicht entfernt, um den in Form eines Musters und nacheinander durchgeführten
kataphoretischen Zugang zu dem elektrisch leitenden Überzug zu steuern, dadurch gekennzeichnet,
daß vorzugsweise ein erstes Muster (184G) und ein zweites Muster (184B) aus Löchern
in der isolierenden Sperrschicht (138) entsprechend der Summe der ersten und zweiten
getrennten Muster (184G, 184B) aus Leuchtstoffelementen ausgebildet wird, daß das
erste Muster aus Löchern (184G) mit einem Isoliermaterial bedeckt wird und dann das
zweite Muster (184B) aus Leuchtstoffelementen kataphoretisch in dem zweiten Muster
aus Löchern aufgebracht wird, daß das Isoliermaterial in dem ersten Muster (184B)
aus Löchern entfernt wird, und daß das erste Muster (184) aus Leuchtstoffelementen
darin kataphoretisch aufgebracht wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der gemeinsame leitende Überzug
(136) undurchlässig, aber abnehmbar ist, oder für sichtbares Licht durchlässig ist.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Isolierschicht (138)
ein lichtabsorbierendes schwarzes Einfassungsmaterial umfaßt.
4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß zwischen dem ersten und dem
zweiten getrennten Muster (184G, 184B) aus Leuchtstoffelementen, das auf die Schirmoberfläche
(134) aufgebracht ist, ein lichtabsorbierendes schwarzes Einfassungsmaterial angeordnet
ist, und daß der elektrisch leitende Überzug (136), der auf die Schirmoberfläche (134)
aufgebracht ist, eine Aluminiumfolie umfaßt, wobei das Verfahren den Schritt umfaßt,
daß nach Beendigung des kataphoretischen Aufbringens die Aluminiumfolie entfernt wird.
5. Verfahren nach Anspruch 1 oder 4, dadurch gekennzeichnet, daß bei dem kataphoretischen
Verfahren auf die Schirmoberfläche (134) der Frontplatte der Röhre ein drittes getrenntes
Muster (184R) aus Leuchtstoffelementen aufgebracht wird, das in der Lage ist, bei
Erregung Licht einer anderen Farbe auszusenden als das erste und zweite Muster aus
Leuchtstoffelementen, wobei ein drittes Muster aus Löchern in der isolierenden Sperrschicht
(138) ausgebildet wird, das zusammen mit dem ersten und zweiten Muster (184G, 184B)
der Summe des ersten, zweiten und dritten Musters aus Leuchtstoffelementen entspricht,
daß das erste und dritte Muster (184G, 184R) aus Löchern mit einem Isoliermaterial
bedeckt wird, und daß dann das zweite Muster (184B) aus Leuchtstoffelementen in dem
zweiten Muster aus Löchern kataphoretisch aufgebracht wird, daß das Isoliermaterial
in dem ersten Muster aus Löchern entfernt wird und dann das erste Muster (184G) aus
Leuchtstoffelementen in den Löchern kataphoretisch aufgebracht wird, und daß das Isoliermaterial
in dem dritten Muster aus Löchern entfernt und das dritte Muster (184R) aus Leuchtstoffelementen
in den Löchern kataphoretisch aufgebracht wird.
6. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Zugang zu dem leitenden
Überzug (136) dadurch erreicht wird, daß in der Sperrschicht (138) nacheinander und
sich zeitlich gegenseitig ausschließend mindestens zwei Muster aus den Überzug freilegenden
Öffnungen ausgebildet werden, die den Mustern (184G, 184B) aus Leuchtstoffelementen
entsprechen, wobei im Anschluß an die Ausbildung eines jeden Musters eines der Muster
aus Leuchtstoffelementen kataphoretisch auf die freiliegenden Bereiche des leitenden
Überzugs aufgebracht wird, wobei der leitende Überzug als Elektrode verwendet wird.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß bei dem kataphoretischen Verfahren
auf die Schirmoberfläche (132) der Frontplatte der Röhre ein drittes getrenntes Muster
(184R) aus im wesentlichen runden Leuchtstoffelementen aufgebracht wird, das in der
Lage ist, bei Erregung Licht einer anderen Farbe auszusenden als das erste und zweite
Muster aus Leuchtstoffelementen, und daß der Zugang zu dem leitenden Überzug dadurch
erfolgt, daß in der Sperrschicht (138) nacheinander und sich gegenseitig zeitlich
ausschließend ein erstes, zweites und drittes Muster aus den Überzug freilegenden
Öffnungen ausgebildet wird, das dem ersten, zweiten, und dritten Muster (184G, 184B,
184R) aus Leuchtstoffelementen entspricht, wobei im Anschluß an die Ausbildung eines
jeden Musters eines der Muster aus Leuchtstoffelementen kataphoretisch auf die freiliegenden
Bereiche des leitenden Überzugs aufgebracht wird, wobei der leitende Überzug als Elektrode
verwendet wird.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß der elektrisch leitende Überzug
(136), der zu Beginn auf die Schirmoberfläche (132) aufgebracht wird, eine Aluminiumfolie
umfaßt, auf der die elektrisch isolierende Sperrschicht ein lichtabsorbierendes schwarzes
Einfassungsmaterial umfaßt, wobei bei dem Verfahren der Aluminiumüberzug nach Beendigung
des kataphoretischen Aufbringens des leitenden Überzugs entfernt wird.
9. Verfahren zur Herstellung einer farbigen Kathodenstrahlröhre, bei dem mindestens ein
erstes und ein zweites getrenntes Muster (184G, 184B) aus Leuchtstoffelementen auf
die Schirmoberfläche der Frontplatte der Röhre aufgebracht wird, wobei die Muster
in der Lage sind, jeweils Licht unterschiedlicher Farbe auszusenden, und wobei in
den Zwischenräumen zwischen dem ersten und dem zweiten Muster ein Zwischenraummuster
angeordnet ist, und wobei das Verfahren die folgenden Schritte umfaßt: Aufbringen
eines elektrisch leitenden Überzugs (136) auf die Schirmoberfläche (132), der während
jedes Aufbringvorgangs als Elektrode dient, und Aufbringen einer isolierenden Sperrschicht
über dem leitenden Überzug (136) und wahlweise Entfernen von Teilen der Sperrschicht,
um den kataphoretischen Zugang zu dem leitenden Überzug zu steuern, dadurch gekennzeichnet,
daß eine erste Schicht aus elektrisch isolierendem Fotolack über dem elektrisch leitenden
Überzug (136) aufgebracht wird, um eine elektrisch isolierende Sperrschicht herzustellen,
daß die Fotolackschicht durch eine Maske hindurch mit Licht belichtet wird, daß gegenüber
dem Fotolack aktinisch ist, um in der Fotolackschicht ein festes Latentbild auszubilden,
das ein Summenmuster darstellt, welches der Summe aus dem ersten und dem zweiten Muster
entspricht, daß die unfixierten Bereiche der Fotolackschicht entfernt werden, so daß
ein mit Fotolack überzogenes Summenmuster aus einzelnen, elektrisch isolierenden Fotolackelementen
(168) entsteht, die von freiliegenden Bereichen (170) des elektrisch leitenden Überzugs
(136) umgeben sind, wobei der leitende Überzug (136) als Elektrode verwendet wird,
daß auf die freiliegenden Bereiche des elektrisch leitenden Überzugs (136) eine Schicht
aus elektrisch isolierendem Zwischenraummaterial kataphoretisch aufgebracht wird,
daß das Summenmuster aus einzelnen Photolackelementen auf den freiliegenden Bereichen
des leitenden Überzugs, welches dem Summenmuster entspricht, das von dem elektrisch
isolierenden Zwischenraummaterial umgeben wird, entfernt wird, daß eine weitere Schicht
aus elektrisch isolierendem Fotolack aufgebracht wird, um eine elektrisch isolierende
Sperrschicht zu bilden, daß die Fotolackschicht durch eine Maske mit einem Muster
aus Öffnungen, welches dem ersten Muster (184G) entspricht, mit Licht belichtet wird,
das gegenüber dem Fotolack aktinisch ist, wobei die Maske dem zweiten Muster entsprechendes
Licht abschirmt, so daß in der Fotolackschicht des ersten Musters ein festes Latentbild
entsteht, daß der unfixierte Fotolack auf den freiliegenden elektrisch leitenden Bereichen
in einem dem zweiten Muster (184B) entsprechenden Muster entfernt wird, so daß ein
erstes Muster aus fixierten Fotolackelemten entsteht, wobei der leitende Überzug (136)
wieder als Elektrode verwendet wird, daß ein erster Leuchtstoff auf die freiliegenden
Bereiche des elektrisch leitenden Überzugs in einer vorbestimmten Dicke kataphoretisch
aufgetragen wird, wobei in dieser Dicke eine starke elektrische Sperre gegen eine
weitere Kataphorese des ersten Leuchtstoffes ausgebildet wird, daß das erste Muster
aus fixierten Fotolackelementen entfernt wird, wobei der leitende Überzug (136) wieder
als Elektrode verwendet wird, und daß ein zweiter Leuchtstoff kataphoretisch auf die
freiliegenden Bereiche des leitenden Überzugs in einem dem ersten Muster entsprechenden
Muster aufgetragen wird.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß der leitende Überzug eine Aluminiumfolie
ist.
11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, daß die Aluminiumfolie nach Beendigung
des kataphoretischen Verfahrens entfernt wird.
1. Procédé pour la fabrication d'un écran de tube cathodique couleur, dans lequel au
moins deux motifs distincts d'éléments de luminophore (168) sont déposés successivement
sur la surface portant l'écran (134) du tube (80), chaque motif d'éléments étant apte
à émettre une lumière d'une couleur différente lorsqu'il est excité, le procédé comprenant
les étapes consistant à déposer initialement un revêtement électriquement conducteur
(136) sur ladite surface portant l'écran, (134), pour utilisation comme électrode
pendant chaque opération de dépôt et, deuxièmement, déposer une barrière électriquement
isolante (138) sur ledit revêtement conducteur (136) et sélectivement et séquentiellement
éliminer des parties de ladite barrière pour commander l'accès cataphorétique sélectif
successif audit revêtement électriquement conducteur, caractérisé en ce qu'il comprend
les étapes consistant à former, de préférence, un premier motif (184G) et un deuxième
motif (184B) de trous dans ladite barrière isolante (138) correspondant à la somme
desdits premier et deuxième motifs distincts (184G, 184B) d'éléments de luminophore,
recouvrir le premier motif de trous (184G) avec une matière isolante, et ensuite déposer
cataphorétiquement ledit deuxième motif (184B) d'éléments de luminophore dans ledit
deuxième motif de trous, éliminer la matière isolante dans ledit premier motif de
trous (184G) et déposer cataphorétiquement ledit premier motif (184G) d'éléments de
luminophore dans celui-ci.
2. Procédé selon la revendication 1, caractérisé en ce que ledit revêtement conducteur
commun (136) est opaque mais éliminable, ou est transparent à la lumière visible.
3. Procédé selon la revendication 1 ou 2, caractérisé en ce que ladite barrière isolante
(130) comprend une matière d'entourage noire absorbant la lumière.
4. Procédé selon la revendication 1, caractérisé en ce que les premier et deuxième motifs
distincts (184G, 184B) d'éléments de luminophore déposés sur ladite surface portant
l'écran (134) sont séparées par une matière d'entourage noire absorbant la lumière,
et le revêtement électriquement conducteur (136) déposé sur ladite surface portant
l'écran, (134), est constitué par un film d'aluminium, ledit procédé comportant l'étape
consistant à éliminer ledit film d'aluminium après achèvement du procédé de dépôt
cataphorétique.
5. Procédé selon la revendication 1 ou 4, caractérisé en ce que le procédé cataphorétique
comporte l'étape consistant à déposer sur la surface portant l'écran, (134), de la
dalle du tube un troisième motif distinct (184R) d'éléments de luminophore apte à
émettre une lumière d'une couleur différente, lorsqu'il est excité, de celle des éléments
de luminophore des premier et deuxième motifs, y compris l'étape consistant à former
un troisième motif de trous dans ladite barrière isolante (138) qui, avec les premier
et deuxième motifs (184G, 184B), correspond à la somme desdits premier, deuxième et
troisième motifs distincts d'éléments de luminophore, recouvrir les premier et troisième
motifs (184G, 184R) de trous avec une matière isolante et, ensuite, déposer cataphorétiquement
ledit deuxième motif (184B) d'éléments de luminophore dans ledit deuxième motif de
trous, éliminer la matière isolante dans ledit premier motif de trous et, ensuite,
déposer cataphorétiquement ledit premier motif (184G) d'éléments de luminophore dans
lesdits trous, et éliminer la matière isolante dans ledit troisième motif de trous
et déposer cataphorétiquement ledit troisième motif (184R) d'éléments de luminophore
dans lesdits trous.
6. Procédé selon la revendication 1 ou 2, caractérisé en ce que l'accès au revêtement
conducteur (136) est obtenu en amenant à être formés dans ladite barrière isolante
(138) successivement et mutuellement exclusifs dans le temps deux motifs d'ouvertures
sans revêtement correspondant auxdits motifs (184G, 184B) d'éléments de luminophore,
chaque formation d'un motif étant suivie d'un dépôt cataphorétique d'un desdits motifs
d'éléments de luminophore sur les surfaces dénudées dudit revêtement conducteur en
utilisant ledit revêtement conducteur comme électrode.
7. Procédé selon la revendication 6, caractérisé en ce que le procédé cataphorétique
comprend le dépôt, sur la surface portant l'écran, (132), de la dalle du tube, d'un
troisième motif distinct (148R) d'éléments de luminophore sensiblement ronds apte
à émettre de la lumière d'une couleur différente, lorsqu'ils sont excités, de celle
des premier et deuxième motifs d'éléments de luminophore, et dans lequel l'accès au
revêtement conducteur est réalisé en amenant à être formés dans ladite barrière isolante
(138), successivement et mutuellement exclusifs dans le temps, des deuxième et troisième
motifs d'ouvertures dépourvues de revêtement correspondant auxdits premier, deuxième
et troisième motifs (184G, 184B, 184R) d'éléments de luminophore, chaque formation
d'un motif étant suivie du dépôt cataphorétique d'un desdits motifs d'éléments de
luminophore sur les parties dénudées dudit revêtement conducteur en utilisant ledit
revêtement conducteur comme électrode.
8. Procédé selon la revendication 7, caractérisé en ce que le revêtement électriquement
conducteur (136) déposé initialement sur ladite surface portant l'écran, (132), est
constitué par un film d'aluminium sur lequel la barrière électriquement isolante comprend
une matière d'entourage noire absorbant la lumière , ledit procédé comprenant l'étape
consistant à éliminer ledit revêtement d'aluminium après achèvement du dépôt cataphorétique
sur le revêtement conducteur.
9. Procédé pour la fabrication d'un tube cathodique couleur, dans lequel au moins des
premier et deuxième motifs distincts (184G, 184B) d'éléments de luminophore sont déposés
sur la surface portant l'écran de la dalle du tube, lesdits motifs étant aptes à émettre
une lumière de différentes couleurs, respectivement, et un motif intersticiel occupant
les interstices entre lesdits premier et deuxième motifs, le procédé comprenant les
étapes consistant à déposer sur ladite surface portant l'écran, (132), un revêtement
électriquement conducteur (136) pour utilisation comme électrode pendant chaque opération
de dépôt, déposer une barrière isolante sur ledit revêtement conducteur (136), éliminer
sélectivement des parties de ladite barrière pour commander l'accès cataphorétique
au revêtement conducteur, caractérisé par les étapes consistant à appliquer une première
couche de photorésist électriquement isolant sur ledit revêtement électriquement conducteur
(136) pour former une barrière électriquement isolante, exposer ladite couche de photorésist
à travers un masque à une lumière actinique pour ledit photorésist pour former une
image latente fixe dans ladite couche de photorésist représentant un motif somme correspondant
à la somme desdits premier et deuxième motifs, éliminer les parties non fixes de ladite
couche de photorésist, laisser un motif somme recouvert de photorésist fixe d'éléments
discrets de photorésist électriquement isolant (168) entouré par des zones nues (170)
du revêtement électriquement conducteur (136) tout en utilisant ledit revêtement conducteur
(136) comme électrode, déposer cataphorétiquement sur les surfaces dénudées dudit
revêtement électriquement conducteur (136) une couche de matière interstitielle électriquement
isolante, éliminer le motif somme de photorésist fixe d'éléments discrets de photorésist
des zones nues du revêtement conducteur correspondant audit motif somme entouré par
ladite matière interstitielle électriquement isolante, appliquer une autre couche
de photorésist électriquement isolant pour former une barrière électriquement isolante,
exposer ladite couche de photorésist à une lumière actinique pour ledit photorésist
à travers un masque ayant un motif d'ouvertures correspondant audit premier motif
(184G), ledit masque occultant la lumière correspondant audit deuxième motif pour
former une image latente fixe dans ladite couche de photorésist dudit premier motif,
éliminer le photorésist pour mettre à nu des zones conductrices dans un motif correspondant
audit deuxième motif (184B), en formant ainsi un premier motif d'éléments fixes de
photorésist tout en utilisant de nouveau la couche conductrice (136) comme électrode,
déposer cataphorétiquement un premier luminophore sur les zones dénudées dudit revêtement
électriquement conducteur jusqu'à une épaisseur prédéterminée à laquelle est formée
une barrière électrique d'épaisseur substantielle à une cataphorèse supplémentaire
du premier luminophore, éliminer le premier motif d'éléments fixes de photorésist
en utilisant de nouveau le revêtement conducteur (136) comme électrode, déposer cataphorétiquement
un deuxième luminophore sur les parties dénudées du revêtement conducteur dans un
motif correspondant audit premier motif.
10. Procédé selon la revendication 9, caractérisé en ce que ledit revêtement conducteur
est un film d'aluminium.
11. Procédé selon la revendication 10, caractérisé en ce que ledit film d'aluminium est
éliminé après achèvement dudit procédé cataphorétique.