(19) |
|
|
(11) |
EP 0 482 720 B1 |
(12) |
EUROPEAN PATENT SPECIFICATION |
(45) |
Mention of the grant of the patent: |
|
19.07.1995 Bulletin 1995/29 |
(22) |
Date of filing: 23.10.1991 |
|
(51) |
International Patent Classification (IPC)6: B28C 7/04 |
|
(54) |
Method and device for dosing, mixing and applying a specific mortar
Verfahren und Vorrichtung zum Dosieren, Mischen und Anbringen eines bestimmten Mörtels
Procédé et dispositif pour proportioner, mélanger et appliquer un mortier spécifique
|
(84) |
Designated Contracting States: |
|
AT BE CH DE DK ES FR GB IT LI LU NL SE |
(30) |
Priority: |
24.10.1990 NL 9002321
|
(43) |
Date of publication of application: |
|
29.04.1992 Bulletin 1992/18 |
(60) |
Divisional application: |
|
95200067.7 / 0657261 |
(73) |
Proprietor: B.V. Grint- en Zandexploitatiemaatschappij v/h Gebrs. Smals |
|
NL-6049 BX Herten (NL) |
|
(72) |
Inventor: |
|
- Kouwenhoven, Hendricus Antonius Petrus
NL-6626 BC Alphen (NL)
|
(74) |
Representative: Hoorweg, Petrus Nicolaas et al |
|
Arnold & Siedsma,
Advocaten en Octrooigemachtigden,
Sweelinckplein 1 2517 GK Den Haag 2517 GK Den Haag (NL) |
(56) |
References cited: :
BE-A- 566 739 FR-A- 1 193 639 US-A- 1 378 572 US-A- 3 002 575 US-A- 3 220 499 US-A- 3 746 313
|
BE-A- 628 847 GB-A- 2 091 906 US-A- 2 922 610 US-A- 3 058 622 US-A- 3 697 054
|
|
|
|
|
|
|
|
|
|
|
Remarks: |
|
Divisional application 95200067.7 filed on 23/10/91. |
|
Note: Within nine months from the publication of the mention of the grant of the European
patent, any person may give notice to the European Patent Office of opposition to
the European patent
granted. Notice of opposition shall be filed in a written reasoned statement. It shall
not be deemed to
have been filed until the opposition fee has been paid. (Art. 99(1) European Patent
Convention).
|
[0001] The invention relates to a method for dosing, mixing and applying a mortar suitable
for pointing, bricklaying and/or floors and consisting of at least a bonding agent
or binder such as a cement and a sand fraction in addition to water, in which method
use is made of at least one silo provided with compartments for each fraction, and
wherein the fractions are dosed volumetrically by a dosing unit having a chamber of
predetermined volume arranged for each fraction, the different volumes of fraction
are mixed with water to a batch suitable for applying of the mortar.
[0002] Such a method is disclosed in US-A-3.746.313.
[0003] The drawback to volumetric dosing is that during discharge from the silo into the
volumetric dosing chambers some fractions can take on a different specific weight
per batch. This occurs because of the comparatively small flexibility of the granules
in the fraction, whereby particularly in the case of cement much too little may end
up in the batch compared to the sand, which has an adverse effect on the quality of
the ultimately obtained mortar.
[0004] The invention has for its object to improve the above method by measuring the total
weight of the fractions present in the dosing chambers during dosing and using these
readings as control signal for discharging the fractions out of the dosing chambers.
[0005] Owing to these readings it is possible when there is too small a supply of a particular
fraction to block the discharge from the dosing chambers until the correct weight
is reached through intervention by additional means or personnel. In addition this
provision results in a fully automatic dosing operation in the applying of the mortar.
[0006] It can also occur in the known methods that the fractions can remain adhered in the
dosing chamber(s) so that the batch for discharging obtains unequal proportions. In
order to obviate this drawback the invention proposes to also measure the zero weight
of the metering chambers, only after reaching which the mixing of the fractions can
take place and the dosing unit be released for a new batch.
[0007] According to a further proposal of the invention it is recommended to set the fractions
in the dosing unit into vibration so that the desired maximum filling weight is achieved
with certainty and the emptying of the dosing chambers is likewise ensured.
[0008] According to a particularly simple control system according to the invention it is
recommended to supply the water quantity in accordance with a constant volume flow
on a time basis. Only the time has to be set herewith to obtain the correct quantity
of water.
[0009] An accurate water volume flow is ensured by a constant control of the intake pressure
of the water supply.
[0010] The invention further relates to a device for performing the method according to
the invention. The device is distinguished in that use is made of at least one silo
provided with compartments for each fraction, a dosing unit arranged beneath the silo
with a chamber of predetermined volume arranged for each fraction and an intake valve
arranged between silo and dosing unit and an outlet valve arranged beneath the dosing
unit, in addition to a control circuit for opening and closing the intake and outlet
valves in turn, wherein the invention proposes to provide the control circuit with
a measuring means for determining the maximum filling weight of the dosing unit and
the zero weight thereof, this such that the intake valve is closed when the maximum
filling weight is reached and the outlet valve is closed when the zero weight is reached.
[0011] According to a further development the dosing unit is provided with a shaking or
vibrating means, for example an eccentric masses motor.
[0012] Recommended for use as measuring means is a strain gauge rod arranged between the
silo wall and the wall of the dosing unit. The zero weight and the maximum weight
of the dosing unit can be determined herewith in simple manner and used as signal
for the control circuit.
[0013] In order to effect a constant water volume flow the invention proposes to use a time
controlled feed pump of determined capacity. In a further development the inlet of
this feed pump is connected to the outlet of a water tank with level control. Due
to this level control the pressure at the inlet of the feed pump is constant or virtually
constant so that a precisely adjustable quantity of water can be supplied to the mixing
device.
[0014] The control circuit is also provided with a signal generator at the spray nozzle
for applying the finished mortar so that a new batch can be supplied each time by
restarting the dosing cycle.
[0015] According to another embodiment the dosing unit consists of a housing slidable relative
to the outlet of the silo and provided with a number of dosing chambers and with a
valve closing the outlet opening of the silo, wherein beneath the slidable housing
is a fixed base plate having a passage opening moved relative to the outlet opening
of the silo for discharging the fractions into the dosing housing.
[0016] Mentioned and other features will be further elucidated in the figure description
hereinbelow of a number of embodiments. In the drawing:
Fig. 1 shows a schematic, standing side view of a device for performing the method
according to the invention,
fig. 2 shows a detail on enlarged scale of a part of the device, in particular the
dosing unit according to a second embodiment,
fig. 3 is a perspective top view of the underside of the silo with dosing unit according
to a second variant,
fig. 4 is a side view of the embodiment of fig. 3 which is provided here however with
a weight measuring means.
[0017] The device according to fig. 1 consists of a silo 1 which is divided into two compartments
by a partition 2. The smaller compartment 3 can for instance be used for storing cement,
while the compartment 4 may contain sand. It will be apparent that within the scope
of the invention more partitions 2 can be arranged in the silo 1 if more fractions
are required for the mortar, or that more than one silo can be used.
[0018] Arranged under the silo 1 is a dosing unit 5, wherein an in-feed valve 6 is slidable
between the dosing unit 5 and silo 1 and an outlet valve 7 is slidable beneath the
dosing unit 5 such that the passage between silo 1 and dosing unit 5 is respectively
released and closed and on the other side the outlet opening of the dosing unit 5
is released and closed by the valve 7. Control of the valves is carried out by a central
control unit 8 which is further elucidated below. Connecting onto the underside of
the dosing unit is a mixing device 9 which can be of random type but consists here
of a trough-like housing 10 in which a shaft 11 is rotatably received. The shaft 11
is set into rotation by a motor 12, wherein the shaft 11 is provided with stirring
and transporting members 13. At the ends remote from the motor 12 the trough-like
housing 10 is embodied with an outlet opening 14 which connects onto a funnel-shaped
inlet opening 15 of a transporting pump 16. The latter has an outlet 17 onto which
is connected a flexible hose 18 which leads to the spray nozzle 19 of randomly adapted
form. The spray nozzle 19 consists here of a pistol-grip 20 with dosing pipe 21 suitable
for applying pointing mortar in the joint V of a brick wall M. This embodiment of
the spray nozzle 19 is purely random and can be substituted by nozzles for feeding
floor mortar onto a pre-cast underfloor or for supplying bricklaying mortar when arranging
bricks for a wall.
[0019] Finally, it is noted that a water tank 25 is arranged which is connected to a water
main 26, whereof a mains pressure conduit 27 leads to a level control 28. The drain
opening 29 of the tank 25 is connected to a pump 30, the outlet of which leads via
tube 31 to the funnel 15 of the mortar pump 16.
[0020] According to the invention diverse motors and valves are actuated by a central control
unit 8. The central control unit 8 is embodied for this purpose with a measuring means
40, for instance in the form of a rack bar, see fig. 2, which is arranged between
the wall of the silo 1 and the wall of dosing unit 5. The rack bar can be of random
form and to increase accuracy can be embodied with one or more strain gauges 41 which
are freely available commercially. A determined maximum weight and a zero weight of
the dosing unit 5 can be determined with the strain gauges 41, wherein the total dosing
unit 5 can be suspended from three or more rack bars 40, which bars are distributed
uniformly over the periphery thereof, or from one bar 40, wherein the upper flange
42 of the dosing unit is suspended pivotally at 43 on the lower flange 44 of the silo.
[0021] The valves 6 and 7 are operated for instance by respective control cylinders 45 and
46 of pneumatic or hydraulic type which are actuated by the central control unit 8.
Finally, a control signal can be generated with the spray nozzle 19 via line 35 to
the central control unit 8.
[0022] The control unit 8 is connected via line 36 to the motor 12 and the motor 30 via
the time switch 37.
[0023] Motor 16 is energized by means of the handgrip of the spray nozzle 19.
[0024] Dosing according to the invention takes place as follows: Assuming that the central
control unit 8 has received a signal from the spray nozzle 19 that the dosing cycle
can begin, valve 6 is opened by means of the control cylinder 45. From the compartments
of silo 1 a quantity of cement and sand fraction passes into the dosing chambers of
dosing unit 5, whereafter, when a maximum weight has been reached which is detected
via the rack bar 40, the valve 6 is returned to the closing position via the control
cylinder 45. The outlet valve 7 can then be opened via cylinder 46 whereby the content
of the dosing unit 5 passes into the mixing unit 9, after the motor 12 has already
been started beforehand by the central control unit 8. Due to the transporting and
mixing action of the members 13 an intensive mixing of the fractions takes place which
exit via the outlet opening into the funnel 15. The time clock 37 provides for a delayed
starting of the pump 30 which, using the same time clock 37, is only set into operation
for a predetermined time. A fixed volume of water is specified for this time, which
volume is not influenced by the inlet pressure of the pump 30, since this is held
constant in view of the small difference in liquid level in the tank 25. After draining
a quantity water for a batch of mortar the water is immediately topped up owing to
the level control 28.
[0025] A level detecting means 50 in the funnel 15 finally provides for zero setting of
the central control unit 8 so that the total cycle can begin once again following
the signal from the spray nozzle 19.
[0026] It is noted that the pump motor 16 is controlled by the spray nozzle 19 independently
of the central control unit 8.
[0027] The central control unit 8 can also be provided with a protection during the zero
measuring of the dosing unit 5 such that, after reaching the zero weight, the valve
7 is returned to the closed position. Thus ensured is that the dosing unit 5 is completely
emptied.
[0028] Proposed in fig. 2 is to embody the dosing unit 5 with a vibrating or eccentric mass
motor 51, which is preferably arranged on the side of the cement dosing chamber. Thus
is ensured that the dosing unit 5 is set into vibration and a correct quantity of
cement can be carried out of the silo into the dosing unit in order to reach the desired
weight in volumetric measured cement fraction.
[0029] Fig. 4 shows an embodiment wherein the dosing unit consists of a dosing housing 55
provided with three dosing chambers 56. The latter connect onto the compartment silo
1 which is provided here with two partitions P'. Because the partitions are arranged
at a determined position in the dosing housing 55, the content of the dosing chamber
56 in the dosing housing 55 will differ depending on the desired volumetric mixing
of the fractions for the mortar. The dosing housing 55 is closed on the underside
by a fixed base plate 57 which leads to a passage opening 58 of a downward oriented
funnel 59. The funnel 59 connects for instance onto a mixing device 9 from fig. 1.
[0030] The dosing housing 55 is also provided with a closing plate 60 fixed thereto, the
breadth of which corresponds with the breadth of the outlet opening of the silo 1
and the length of which corresponds with the length of travel of the dosing housing
55 when this can slide reciprocally in the direction of arrow P1 from the position
drawn in fig. 3 to the position above the passage opening 58. The sliding of the housing
55 can be carried out in random manner and is depicted here as a gear rack and gear
wheel drive, wherein the gear rack 61 is fixed to the valve 60 and the gear wheel
62 is driven by a reversible motor 63.
[0031] Fig. 4 shows an embodiment which corresponds substantially with that of fig. 3, with
the understanding that in the base plate 57 is arranged a measuring device 64 which
can generate a signal to the central control unit 8 such that only when a determined
filling weight is reached in the dosing housing 55 is the displacing of the housing
55 started by the starting signal for the motor 63 from the central control unit 8.
Mixing and applying will otherwise take place in the manner as described with reference
to fig. 1.
[0032] The invention is not limited to the above described embodiments.
1. Method for dosing, mixing and applying a mortar suitable for pointing, bricklaying
and/or floors and consisting of at least a bonding agent or binder such as a cement
and a sand fraction in addition to water, in which method use is made of at least
one silo (1) provided with compartments (3, 4) for each fraction, and wherein the
fractions are dosed volumetrically by a dosing unit having a chamber of predetermined
volume arranged for each fraction, the different volumes of fraction are mixed with
water to a batch suitable for applying of the mortar, characterized in that during dosing of the fractions the total weight of the fractions present in the dosing
chambers (5) is measured and the readings are used as control signal for discharging
the fractions out of the dosing chambers.
2. Method as claimed in claim 1, characterized in that after emptying of the metering chambers the zero weight of the dosing chambers is
also measured, which reading is used as control signal for starting the following
dosing step.
3. Method as claimed in claim 1 or 2, characterized in that the fractions are set into vibration during dosing.
4. Method as claimed in any of the foregoing claims, characterized in that the quantity of water for a batch is supplied in the form of a constant volume flow
which is controlled on a time basis.
5. Method as claimed in claim 4, characterized in that the pressure of the volume flow of water is held constant.
6. Device for performing the method as claimed in any of the foregoing claims, which
device is provided with at least one silo (1) having compartments (3, 4) for each
fraction, a dosing unit (5) arranged beneath the silo (1) having a chamber of predetermined
volume arranged for each fraction, and an in-feed valve (6) arranged between silo
and dosing unit (5) and an outlet valve (7) arranged beneath the dosing unit (5) in
addition to a control circuit (8) for opening and closing the in-feed and outlet valves
in turn, characterized in that the control circuit (8) is provided with a measuring means (40) for determining the
maximum filling weight of the dosing unit, this such that the in-feed valve (6) is
set into closed position by the control circuit (8) when the maximum filling weight
is reached.
7. Device as claimed in claim 6, characterized in that the outlet valve (7) is set into a closed position by the control circuit (8) when
the zero weight of the dosing unit (5) determined by the measuring means (40) is reached.
8. Device as claimed in claim 6 or 7, characterized in that the dosing unit is provided with a shaking or vibrating means (51), for example an
eccentric-mass-motor.
9. Device as claimed in any of the claims 6-8, characterized in that as measuring means at least a strain gauge rod (40), if necessary provided with one
strain gauge (41), is arranged between the silo wall (1) and the wall of the dosing
unit (5).
10. Device as claimed in any of the foregoing claims 6-9, characterized in that the control circuit (8) is provided with a signal generator at the spray nozzle (19)
for applying the finished mortar for re-starting the dosing cycle for manufacturing
a new batch.
11. Device as claimed in any of the foregoing claims 6-10, characterized in that a time controlled feed pump (30) of determined capacity is arranged for supplying
the water quantity for a batch.
12. Device as claimed in claim 10, characterized in that the inlet of the feed pump (30) is connected to the outlet of a water tank (25) with
level control (28).
13. Device as claimed in any of claims 6 to 12, characterized in that the dosing unit consists of a housing (55) slidable relative to the outlet of the
silo (1) and provided with a number of dosing chambers (56) and with a valve (60)
closing the outlet opening of a silo (1), wherein beneath the slidable housing (55)
is arranged a fixed base plate (57) having a passage opening (58) being off-set with
respect to the outlet opening of the silo for discharging the fractions out of the
dosing housing (55).
1. Verfahren zum Dosieren, Mischen und Aufbringen eines Mörtels, der zum Verfugen, Mauern
und/oder für Fußböden geeignet ist und aus mindestens einem Bindemittel wie Zement
und einem Sandzuschlag zusätzlich zu Wasser besteht, wobei das Verfahren Gebrauch
macht von mindestens einem Silo (1), das mit Abteilen (3, 4) für jeden Bestandteil
versehen ist, und wobei die Bestandteile volumetrisch dosiert werden durch eine Dosiereinheit
mit einer für jeden Bestandteil vorgesehenen Kammer von vorgegebenem Volumen, wobei
die unterschiedlichen Volumina der Bestandteile mit Wasser zu einer Charge gemischt
werden, die für die Aufbringung des Mörtels geeignet ist,
dadurch gekennzeichnet, daß während des Dosierens der Bestandteile das Gesamtgewicht der in den Dosierkammern
(5) vorhandenen Bestandteile gemessen wird und die Meßwerte als Steuersignal für das
Entleeren der Bestandteile aus den Dosierkammern verwendet werden.
2. Verfahren nach Anspruch 1,
dadurch gekennzeichnet, daß nach dem Entleeren der Meßkammern das Nullgewicht der Dosierkammern ebenfalls
gemessen wird und der Meßwert als Steuersignal für den Beginn des folgenden Dosierschrittes
verwendet wird.
3. Verfahren nach Anspruch 1 oder 2,
dadurch gekennzeichnet, daß die Bestandteile während des Dosierens in Vibration versetzt werden.
4. Verfahren nach einem der vorangehenden Ansprüche,
dadurch gekennzeichnet, daß die Wassermenge für jede Charge in Form eines konstanten Volumenstroms zugesetzt
wird, der auf einer Zeitbasis gesteuert wird.
5. Verfahren nach Anspruch 4,
dadurch gekennzeichnet, daß der Druck des Volumenstroms von Wasser konstant gehalten wird.
6. Vorrichtung zum Durchführen des Verfahrens nach einem der vorangehenden Ansprüche,
mit mindestens einem Silo (1) mit Abteilen (3, 4) für jeden Bestandteil, einer unter
dem Silo (1) angeordneten Dosiereinheit (5) mit einer für jeden Bestandteil vorgesehenen
Kammer von vorgegebenem Volumen und einem zwischen dem Silo und der Dosiereinheit
(5) angeordneten Zuführventil (6) sowie einem unterhalb der Dosiereinheit (5) angeordneten
Auslaßventil (7) samt einer Steuerschaltung (8) zum abwechselnden Öffnen und Schließen
des Zuführventils und Auslaßventils,
dadurch gekennzeichnet, daß die Steuerschaltung (8) mit Meßmitteln (40) zum Bestimmen des maximalen Füllgewichts
der Dosiereinheit versehen ist, derart, daß das Zuführventil (6) durch die Steuereinheit
(8) in den geschlossenen Zustand gebracht wird, wenn das maximale Füllgewicht erreicht
ist.
7. Vorrichtung nach Anspruch 6,
dadurch gekennzeichnet, daß das Auslaßventil (7) durch die Steuerschaltung (8) in eine geschlossene Stellung
gebracht wird, wenn das von den Meßmitteln (40) bestimmte Nullgewicht der Dosiereinheit
(5) erreicht ist.
8. Vorrichtung nach Anspruch 6 oder 7,
dadurch gekennzeichnet, daß die Dosiereinheit mit einer Schüttel- oder Vibrationseinrichtung (51), z.B. einem
Exzentermassenmotor, versehen ist.
9. Vorrichtung nach einem der Ansprüche 6 bis 8,
dadurch gekennzeichnet, daß als Meßmittel mindestens ein Dehnungsmeßstab (40), falls erforderlich mit einem
Dehnungsmeßstreifen (41), zwischen der Silowand (1) und der Wand der Dosiereinheit
(5) angeordnet ist.
10. Vorrichtung nach einem der vorangehenden Ansprüche 6 bis 9,
dadurch gekennzeichnet, daß die Steuerschaltung (8) mit einem Signalgenerator an der Sprühdüse (19) zum Aufbringen
des fertigen Mörtels versehen ist für das erneute Starten des Dosierzyklus zur Herstellung
einer neuen Charge.
11. Vorrichtung nach einem der vorangehenden Ansprüche 6 bis 10,
dadurch gekennzeichnet, daß eine zeitgesteuerte Zuführpumpe (30) von vorgegebener Förderleistung zum Zuführen
der Wassermenge für jede Charge vorgesehen ist.
12. Vorrichtung nach Anspruch 10,
dadurch gekennzeichnet, daß der Einlaß der Zuführpumpe (30) mit dem Auslaß eines Wassertanks (25) mit Füllstandsteuerung
(28) verbunden ist.
13. Vorrichtung nach einem der Ansprüche 6 bis 12,
dadurch gekennzeichnet, daß die Dosiereinheit aus einem Gehäuse (55) besteht, das relativ zum Auslaß des
Silos (11) verschiebbar ist und mit einer Anzahl von Dosierkammern (56) sowie mit
einem Ventil (60) zum Verschließen der Auslaßöffnung des Silos (1) versehen ist, wobei
unterhalb des verschiebbaren Gehäuses (55) eine feststehende Basisplatte (57) angeordnet
ist mit einer Durchlaßöffnung (58), die relativ zu der Auslaßöffnung des Silos für
das Ausbringen der Bestandteile aus dem Dosiergehäuse (55) versetzt ist.
1. Procédé de dosage, mélange et application d'un mortier adapté pour le jointoiement,
l'agencement de briques et/ou de dalles et constitué d'au moins un agent de liaison
ou liant tel que du ciment et d'une fraction de sable, ajoutés à de l'eau, procédé
dans lequel on utilise au moins un silo (1) muni de compartiments (3, 4) pour chaque
fraction, et dans lequel les fractions sont dosées volumétriquement par un ensemble
de dosage ayant une chambre de volume prédéterminé agencée pour chaque fraction, les
différents volumes de fraction sont mélangés à l'eau selon un lot adapté pour appliquer
le mortier, caractérisé en ce que pendant le dosage des fractions, le poids total
des fractions présentes dans les chambres de dosage (5) est mesuré et les lectures
sont utilisées en tant que signaux de commande pour décharger les fractions à l'intérieur
des chambres de dosage.
2. Procédé selon la revendication 1, caractérisé en ce qu'après vidage des chambres de
dosage, le poids zéro des chambres de dosage est aussi mesuré, laquelle lecture est
utilisée en tant que signal de commande pour démarrer l'étape de dosage suivante.
3. Procédé selon la revendication 1 ou 2, caractérisé en ce que les fractions sont établies
sous vibration pendant le dosage.
4. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que
la quantité d'eau destinée à un lot est alimentée sous la forme d'un écoulement volumique
constant qui est commandé sur la base du temps.
5. Procédé selon la revendication 4, caractérisé en ce que la pression de l'écoulement
volumique d'eau est maintenue constante.
6. Dispositif pour mettre en oeuvre le procédé selon l'une quelconque des revendications
précédentes, lequel dispositif est muni d'au moins un silo (1) ayant des compartiments
(3, 4) pour chaque fraction, un ensemble de dosage (5) agencé en dessous du silo (1)
en ayant une chambre de volume prédéterminé agencée pour chaque fraction, et une vanne
d'introduction (6) agencée entre le silo et l'ensemble de dosage (5) et une vanne
de sortie (7) agencée en dessous de l'ensemble de dosage (5) en plus d'un circuit
de commande (8) destiné à ouvrir et fermer à leur tour les vannes d'introduction et
de sortie, caractérisé en ce que le circuit de commande (8) comporte des moyens de
mesure (40) destinés à déterminer le poids de remplissage maximum de l'ensemble de
dosage, celui-ci étant tel que la vanne d'introduction (6) est établie dans la position
fermée par le circuit de commande (8) lorsque le poids de remplissage maximum est
atteint.
7. Dispositif selon la revendication 6, caractérisé en ce que la vanne de sortie (7)
est établie dans la position fermée par le circuit de commande (8) lorsque le poids
zéro de l'ensemble de dosage (5), déterminé par les moyens de mesure (40), est atteint.
8. Dispositif selon la revendication 6 ou 7, caractérisé en ce que l'ensemble de dosage
est muni de moyens de mise en tremblements ou de mise en vibrations (51), par exemple
un moteur à masse excentrée.
9. Dispositif selon l'une quelconque des revendications 6 à 8, caractérisé en ce qu'en
tant que moyens de mesure, au moins une tige (40) de jauge de contrainte, si nécessaire
munie d'une jauge de contrainte (41), est agencée entre la paroi du silo (1) et la
paroi de l'ensemble de dosage (5).
10. Dispositif selon l'une quelconque des revendications 6 à 9, caractérisé en ce que
le circuit de commande (8) est muni d'un générateur de signaux situé au niveau de
la buse de pulvérisation (19) destinée à appliquer le mortier fini, pour redémarrer
le cycle de dosage pour fabriquer un nouveau lot.
11. Dispositif selon l'une quelconque des revendications 6 à 10 caractérisé en ce qu'une
pompe d'alimentation (30) commandée en fonction du temps, ayant une capacité déterminée,
est agencée pour alimenter la quantité d'eau d'un lot.
12. Dispositif selon la revendication 10, caractérisé en ce que l'entrée de la pompe d'alimentation
(30) est reliée à la sortie d'un réservoir d'eau (25) ayant une commande de niveau
(28).
13. Dispositif selon l'une quelconque des revendication 6 à 12, caractérisé en ce que
l'ensemble de dosage est constitué d'un boîtier (55) pouvant coulisser par rapport
à la sortie du silo (1) et muni de plusieurs chambres de dosage (56) et d'une vanne
(60) fermant l'ouverture de sortie d'un silo (1), dans lequel en dessous du boîtier
pouvant coulisser (55) est agencée une plaque de base fixée (57) ayant une ouverture
(58) de passage décalée par rapport à l'ouverture de sortie du silo pour décharger
les fractions à l'extérieur du boîtier de dosage (55).