| (19) |
 |
|
(11) |
EP 0 483 139 B1 |
| (12) |
EUROPEAN PATENT SPECIFICATION |
| (45) |
Mention of the grant of the patent: |
|
13.09.1995 Bulletin 1995/37 |
| (22) |
Date of filing: 27.09.1989 |
|
| (86) |
International application number: |
|
PCT/AU8900/417 |
| (87) |
International publication number: |
|
WO 9003/648 (05.04.1990 Gazette 1990/08) |
|
| (54) |
HOT PRESSING OF PARTICULATE MATERIALS
HEISSVERPRESSEN VON TEILCHENMATERIAL
COMPRESSION A CHAUD DE MATERIAUX PARTICULAIRES
|
| (84) |
Designated Contracting States: |
|
AT BE CH DE FR GB IT LI LU NL SE |
| (30) |
Priority: |
27.09.1988 AU 641/88
|
| (43) |
Date of publication of application: |
|
06.05.1992 Bulletin 1992/19 |
| (73) |
Proprietor: AUSTRALIAN NUCLEAR SCIENCE AND
TECHNOLOGY ORGANISATION |
|
Lucas Heights
New South Wales 2234 (AU) |
|
| (72) |
Inventor: |
|
- RAMM, Eric, John
Lilli Pilli, NSW 2229 (AU)
|
| (74) |
Representative: MacGregor, Gordon et al |
|
ERIC POTTER CLARKSON
St. Mary's Court
St. Mary's Gate Nottingham, NG1 1LE Nottingham, NG1 1LE (GB) |
| (56) |
References cited: :
EP-A- 0 044 381 AU-A- 7 472 187 AU-B- 1 816 383 AU-B- 7 282 581
|
EP-A- 0 115 311 AU-A- 7 838 987 AU-B- 6 018 686
|
|
| |
|
|
|
|
| |
|
| Note: Within nine months from the publication of the mention of the grant of the European
patent, any person may give notice to the European Patent Office of opposition to
the European patent
granted. Notice of opposition shall be filed in a written reasoned statement. It shall
not be deemed to
have been filed until the opposition fee has been paid. (Art. 99(1) European Patent
Convention).
|
[0001] The present invention relates to the hot pressing of particulate materials and containers
for use in such processes.
[0002] It is desirable to form dense block of material from particulate starting materials
and processes have been proposed for use in the safe disposal of radioactive waste
wherein hot pressing of the particulate material in a container occurs. The hot pressing
may be in a uniaxial pressing process or in an isostatic process. Furthermore in the
ceramics field parts of machines can be machined from blocks of ceramic material produced
in a hot pressing process from particulate starting materials.
[0003] AU-B-72825/81 discloses a canister for use in processing radioactive waste material.
The canister has a thin cylindrical wall with a constant cross-section. The canister
is filled with radioactive waste in granule form, and then sealed before being heated
and axially compressed to sinter the waste.
[0004] Particularly for use in connection with the disposal of radioactive waste in a synthetic
rock matrix, it has been proposed, e.g. in EP-A-0115311, to pour the starting materials
into a generally cylindrical container having a bellows-like or convoluted side wall
before the bellows is closed and subjected to the hot pressing stage. The convoluted
side wall has a serpentine shape. Especially, as in EP-A-0115311, when a screen is
used to prevent the particulate starting material entering the convoluted region of
the side wall, upon compression, the container mainly achieves reduction in volume
by axial compression and portions of the wall fold and form a series of radially outwardly
extending flange-like formations.
DISCLOSURE OF THE INVENTION
[0005] The present invention is directed towards the provision of containers for hot pressing
of particulate materials in which a more advantageous final shape is achieved.
[0006] The pre-characterising part of claim 1 is based on EP-A-0115311, and the distinguishing
features of the present invention are set out in the characterising part of claim
1.
[0007] According to the present invention, there is provided a metal thin-walled container
having a first end closed by a first end wall and a second end adapted to be closed
by a lid after filling with particulate material, a side wall having outer portions
and a reduced diameter portion intermediate the first and second ends and a pair of
radially inwardly directed portions extending from the outer portions the reduced
diameter portion, the side wall being such that when the container has been filled,
closed and subjected hot isostatic pressing, the container undergoes significant axial
compression, the radially inwardly directed portions closely approach or contact one
another and the particulate material is compressed
characterised in that each outer portion is outwardly curved to provide a shallow convex structure and
the outer portions provide most of the axial extent of the side wall, whereby the
volume of the compressed particulate material closely approaches the volume of an
imaginary cylindrical envelope in which the compressed container can be accommodated.
[0008] Although the container may have two or more axially spaced reduced diameter portions,
an important embodiment of the invention is one in which a single reduced diameter
portion is provided.
[0009] Preferably, the side wall has a smoothly curved profile provided at the axial ends
thereof. This feature is especially beneficial when the invention is applied with
hot isostatic pressing as radially inward compression takes place in this zone. However,
embodiments of the invention can also utilise hot uniaxial pressing and for this purpose,
preferably, a restraining ring is provided around the reduced diameter portion and
extending between the adjacent radially inwardly extending portions of the side wall.
[0010] The relative dimensions of the portions of the container may be varied according
to the scale of the embodiment used and the materials adopted. Generally it has been
found that especially beneficial embodiments of the invention are ones where the radially
inwardly directed portions extend radially a relatively large distance compared with
the spacing therebetween.
[0011] Preferably the radially inwardly extending portions extend radially to an extent
of about 10% to 25% of the diameter of the container. Also preferably the spacing
between adjacent radially inwardly extending portions is of the order of 5% of the
diameter of the container.
[0012] Further preferably the radial dimension of the radially inwardly directed portions
is in the range of 10% to 20% of the diameter of the container and the spacings between
the radially inwardly directed portions is about 5% of the diameter of the container.
[0013] Also preferably the spacing between adjacent radially inwardly directed portions
of the side wall is about 10% of the axial dimension of the generally cylindrical
portions of the side wall leading to the radially inwardly directed portions. Preferably
the side wall of the container has a smooth change of shape with a transition portion
extending substantially in a plane transverse to the axis of the container between
the reduced diameter portion and the adjacent portion of the container.
[0014] A further advantageous feature which preferably also is utilised is the provision
at one or preferably both of the ends of a configuration to permit axial displacement
of the transverse end wall during the process. Preferably this is achieved by the
side wall curving smoothly inwardly at the end of the container to terminate in an
axially directed skirt directed away from the body of the container, the skirt having
a diameter similar to the reduced diameter portion of the container and a flanged
end wall or lid being utilised within the skirt, its flange also being outwardly directed
and welded to the free end of the skirt, whereby the annular region at the end of
the container around the outside of the skirt is displaced axially during the hot
compression.
[0015] Prior to hot isostatic pressing it is necessary to evacuate the filled container
and for this purpose, preferably the end wall having the lid is provided with an evacuation
tube which is sealed e.g. by crimping when a vacuum is established.
[0016] Hot isostatic pressing of a particulate material can be performed by utilising a
container in any one of the forms described above.
[0017] Use of the present invention offers surprising and major advantages. For example
where the production of a synthetic rock matrix incorporating radioactive waste is
desired, the previous proposals have resulted in compressed bellows-like containers
in which of the order of 40% or more of the volume has not contained the densified
synthetic rock and accordingly the costs of providing storage are proportionately
higher due to wasted space. This is a very substantial penalty when storage in bores
extending severai kilometres into the earth's crust are being contemplated.
[0018] A further requirement is that the compressed container reliably achieves a predictable
shape in the process so as to facilitate subsequent handling and storage.
[0019] Although a significant amount of effort has gone into developing hot isostatic processes,
some of which use containers with bellows-like or convoluted side walls having a serpentine
shape, major problems and indeed serious damage to components of the isostatic press
occur when a fault such as a pin hole occurs in the container. It is very difficult
to monitor the compression of a container in a hot isostatic press. Under very high
gas pressures which must be used, if there is a pin hole in the container a high pressure
approaching that of the surrounding gas occurs in the container thereby preventing
compression and densification of the contents. A serious problem arises when the pressure
is removed for the purpose of retrieving the container from the press; if the pressure
is reduced rapidly, and this is usually desirable for economy of operation, the gas
pressure inside the container becomes much higher than the surrounding gas and a dramatic
axial elongation of the prior art type bellows containers occurs with resultant damage
to parts of the press against which impact occurs. However, with the container of
the present invention only a limited re-expansion is possible.
[0020] In the case of production of blocks of ceramic material from particulate precursors,
it would be desirable to produce disc-like or cylindrical blocks which can then later
be machined into parts. However, if the pressing process took place in containers
with bellows-like wall structures as described in the prior art, a costly exercise
of machining away containers would occur. Use of the present invention, however, permits
a closely predictable disc-like shape to be achieved with relatively little loss of
material and only a small amount of machining is needed to transform the compressed
material into a disc-like ceramic block. Such a disc-like ceramic block would be achieved
by sawing through the final container at the region of the or each reduced diameter
portion and machining off the thin metal sheath.
BRIEF DESCRIPTION OF THE DRAWINGS
[0021] By way of example only, the present invention will be further illustrated with reference
to the accompanying drawings, of which:-
Fig. 1 schematically illustrates a filled container embodying the present invention
and before compression;
Fig. 2 is a schematic representation of the container of Fig. 1 after compression,
but neither Fig. 1 nor 2 are drawn to scale or exactly to scale with one another;
and Fig. 3 is a schematic cross-section through a second embodiment of container.
BEST MODES FOR CARRYING OUT THE INVENTION
[0022] Referring first to Fig. 1, the container 10 has a generally cylindrical side wall
11, a base wall 12 and a top cap or lid 13 from which an evacuation tube 14 extends.
The side wall 11 has two barrel-shaped portions 15 and 16 which have a shallow convex
structure in sectional view and a reduced diameter intermediate portion 17 connected
to the major barrel-shaped portions by transition wall portions 18 which extend approximately
at right angles to the axis of the container.
[0023] At each of the axial ends of the container, the side wall 11 has a radially inwardly
directed shoulder 19 leading to an axially extending skirt 20 which is outwardly directed
and which is secured by a weld 21 to a corresponding skirt 22 of the base wall 12
and lid 13 as the case may be.
[0024] Before the cap 13 is installed, the container is filled with particulate material
23 such as ceramic powder or a mixture of radioactive waste and synthetic rock precursor.
As shown in Fig. 1 the evacuation tube 14 leads to a ceramic fibre filter 24 retained
within the cap 13 by a perforated screen 25.
[0025] This feature is very important where egress of solid powder material with the gas
upon evacuation is to be avoided at all costs such as in the case of treating radioactive
material.
[0026] After compression, the tube 14 is crimped or sealed at 26 as shown in Fig. 2. As
shown in Fig. 2 after hot isostatic pressing a substantial reduction in axial length
occurs and there is also reduction in diameter. The transitional wall portions 18
closely approach or even touch one another and the base wall 12 and end cap 13 are
axially displaced inwardly as deformation of the shoulder 19 occurs.
[0027] When the invention is applied to the formation of ceramic materials it will be apparent
from Fig. 2 that two ceramic discs can be produced without complicated and expensive
machining operations and with little loss of ceramic material.
[0028] For some applications the container can be made of mild steel although for other
applications more expensive and higher performing alloys may be needed such as selected
grades of stainless steel.
[0029] Referring now to Fig. 3 an alternative embodiment is described which is especially
suitable for hot uniaxial pressing. The same reference numerals have been used in
Fig. 3 to refer to elements corresponding to those of Figs. 1 and 2.
[0030] Container 10 has a generally cylindrical side wall 11, a base wall 12 and a top 27
which includes a reinforced opening 28. Side wall 11 has four barrell-shaped portions
29, 30, 31 and 32 separated by reduced diameter intermediate portions 17. Portions
17 are connected to the barrell-shaped portions by transitional wall portions 18 which
extend approximately at right angles to the axis of the container.
[0031] Metal rings 33 are located around the container in the recesses defined by reduced
diameter portions 17 and radially extending portions 18. These rings are useful when
the container is to undergo hot uniaxial pressing, during which the restraining rings
33 prevent deflections occurring in the bellows and the resulting convolutions which
are a cause of wasted space.
1. A metal thin-walled container having a first end closed by a first end wall (12) and
a second end adapted to be closed by a lid (13) after filling with particulate material
(23), a side wall (11) having outer portions (15,16) and a reduced diameter portion
(17) intermediate the first and second ends and a pair of radially inwardly directed
portions (18) extending from the outer portions to the reduced diameter portion (17),
the side wall (11) being such that when the container has been filled, closed and
subjected hot isostatic pressing, the container (10) undergoes significant axial compression,
the radially inwardly directed portions (18) closely approach or contact one another
and the particulate material is compressed characterised in that each outer portion (15,16) is outwardly curved to provide a shallow convex structure
and the outer portions provide most of the axial extent of the side wall (11), whereby
the volume of the compressed particulate material closely approaches the volume of
an imaginary cylindrical envelope in which the compressed container can be accommodated.
2. A container as claimed in claim 1, wherein the radially inwardly directed portions
(18) extend radially to an extent of about 10% to 25% of the diameter of the container
(10).
3. A container as claimed in claim 1 or 2 and wherein the spacing between adjacent radially
inwardly directed portions (18) is of the order of 5% of the diameter of the container
(10).
4. A container as claimed in any preceding claim and wherein the spacing between adjacent
radially inwardly directed portions (18) of the side wall (11) is about 10% of the
axial dimension of the outer portions (15,16).
5. A container as claimed in any preceding claim including a single reduced diameter
portion (17) midway between the first and second ends.
6. A container as in any one of claims 1 to 4, wherein the side wall has at least one
additional reduced diameter portion (17) and an additional outer portion with a pair
of radially inwardly directed portions (18) extending from the outer portions to the
additional reduced diameter portion (17).
7. A container as claimed in any preceding claim including a metal ring (33) extending
around the container between adjacent inwardly directed portions (18) of the side
wall (11), so that a metal ring (33) surrounds the or each reduced diameter portion
(17) whereby the container may be subjected to hot uniaxial pressing and the or each
ring (33) restrains outward deformation of the container (10).
8. A container as claimed in any preceding claim, and wherein each of the outer portions
(15, 16) has a smoothly curved profile at its axial ends, the profile turning radially
inwardly (19).
9. A container as claimed in any preceding claim and wherein at each of the first and
second ends, the side wall (11) curves smoothly radially inwardly (19) and terminates
in an axially directed skirt (20) directed away from the body of the container, the
skirt having a diameter approximately the same as the reduced diameter portion and
a flanged end wall (12,13) being provided to be accommodated within the skirt and
to be welded (21) thereto after filling tne container (10), thereby providing an annular
region (19) around the skirt to facilitate some axial displacement of the main part
of the end wall (12,13) during hot compression of the container (10).
10. A container as claimed in any preceding claim and wherein an evacuation tube (14)
is provided at one end of the container (10) whereby after filling and closure, the
container (10) may be evacuated and the tube (14) crimped to form a seal (26) whereby
hot isostatic pressing may be effected.
11. A method of forming a dense ceramic material comprising filling a container with particulate
ceramic precursor material, the container being as claimed in any one of claims 1
to 6 or 8 to 10, evacuating the container and subjecting it to hot isostatic pressing.
12. A method of forming a dense ceramic material comprising taking a container as claimed
in any one of claims 1 to 10 and subjecting it to hot uniaxial pressing.
1. Dünnwandiger Metallbehälter mit einem ersten durch eine erste Abschlusswand (12) abgeschlossenen
Ende und mit einem zweiten Ende, das, nachdem ein Teilchenmaterial (23) eingefüllt
worden ist, mit einem Deckel (13) verschliessbar ist, mit einer Seitenwand (11), welche
Aussenbereiche (15,16), einen Bereich (17) mit reduziertem Durchmesser, der zwischen
dem ersten und zweiten Ende liegt, und ein Paar von radial nach innen gerichtete Bereiche
(18) aufweist, wobei sich die nach innen gerichteten Bereiche (18) von den Aussenbereichen
(15,16) zu dem reduzierten Bereich (17) erstrecken, wobei die Seitenwand (11) so geformt
ist, dass, wenn der Behälter gefüllt, geschlossen und isostatischem Heissverpressen
ausgesetzt ist, der Behälter (10) bedeutender axialer Kompression ausgesetzt ist und
die radial nach innen gerichteten Bereiche (18) sich gegenseitig annähern oder sich
berühren und das Teilchenmaterial zusammengepresst wird,
dadurch gekennzeichnet, dass
jeder Aussenbereich (15,16) in Form einer leichten konvexen Struktur nach aussen gebogen
ist und dass die Aussenbereiche den grössten Teil der axialen Ausdehnung der Seitenwand
(11) gewährleisten, so dass sich das Volumen des zusammengepressten Teilchenmateriales
dem Volumen einer imaginären zylinderförmigen Hülle nähert, in die der zusammengepresste
Behälter untergebracht werden kann.
2. Behälter nach Anspruch 1, wobei sich die radial nach innen gerichteten Bereiche (18)
bis ungefähr 10% bis 25% des Durchmessers des Behälters (10) radial nach innen erstrecken.
3. Behälter nach einem der Ansprüche 1 oder 2, wobei der Abstand zwischen benachbarten
radial nach innen gerichteten Bereichen (18) annähernd 5% des Durchmessers des Behälters
(10) beträgt.
4. Behälter nach einem der vorhergehenden Ansprüche, wobei der Abstand zwischen benachbarten
radial nach innen gerichteten Bereichen (18) der Seitenwand (11) annähernd 10% der
axialen Abmessung der Aussenbereiche (15,16) beträgt.
5. Behälter nach einem der vorhergehenden Ansprüche, umfassend einen einzigen Bereich
(17) mit reduziertem Durchmesser.
6. Behälter nach einem der Ansprüche 1 bis 4, wobei die Seitenwand mindestens einen zusätzlichen
Bereich (17) mit reduziertem Durchmesser und einen zusätzlichen Aussenbereich mit
einem Paar radial nach innen gerichteten Bereichen (18) aufweist, wobei sich diese
nach innen gerichteten Bereiche (18) von den Aussenbereichen (15,16) zu dem zusätzlichen
reduzierten Bereich (17) erstrecken.
7. Behälter nach einem der vorhergehenden Ansprüche, umfassend einen Metallring (33),
der den Behälter zwischen benachbarten radial nach innen gerichteten Bereichen (18)
der Seitenwand (11) umgibt, so dass ein Metallring (33) den oder jeden Bereich (17)
mit reduziertem Durchmesser umgibt, wodurch der Behälter uniaxialem Heissverpressen
ausgesetzt werden kann und der oder jeder Ring (33) äussere Deformationen des Behälters
(10) verhindert.
8. Behälter nach einem der vorhergehenden Ansprüche, wobei jede der Aussenbereiche (15,16)
an seinem axialen Ende ein sanft gebogenes Profil aufweist, wobei die Profile radial
nach innen gerichtet sind (19).
9. Behälter nach einem der vorhergehenden Ansprüche, wobei die Seitenwand (11) an jedem
der ersten und zweiten Enden sanft radial nach innen gebogen ist (19) und in einem
axial gerichteten Rand (20) endet, der vom Körper des Behälters weggerichtet ist und
der annähernd denselben Durchmesser aufweist wie der Bereich mit reduziertem Durchmesser
und wobei eine geflanschte Abschlusswand (12,13) vorhanden ist, die innerhalb des
Randes (20) angeordnet ist und mit diesem verschweisst (21) wird, nachdem der Behälter
(10) gefüllt worden ist, wobei ein ringförmiger Bereich (19) um den Rand vorhanden
ist, um während dem Heissverpressen des Behälters (10) axiale Verschiebungen des Hauptteils
der Abschlusswand (12,13) zu erleichtern.
10. Behälter nach einem der vorhergehenden Ansprüche, wobei an einem Ende des Behälters
(10) ein Entlüftungskanal (14) vorhanden ist, so dass der Behälter (10) nach dem Füllen
und Verschliessen evakuierbar ist und der Kanal (14) mittels isostatisches Heissverpressen
zu einer Abdichtung verformbar ist.
11. Verfahren zur Herstellung eines dichten keramischen Materiales, wobei ein Behälter
nach einem der Ansprüche 1 bis 6 oder 8 bis 10 mit keramischem Teilchenmaterial gefüllt
wird und der Behälter evakuiert und isostatischem Heissverpressen ausgesetzt wird.
12. Verfahren zur Herstellung eines dichten keramischen Materiales, wobei ein Behälter
nach einem der Ansprüche 1 bis 10 uniaxialem Heissverpressen ausgesetzt wird.
1. Conteneur à paroi métallique mince ayant une première extrémité fermée par une première
paroi d'extrémité (12) et une seconde extrémité adaptée à être fermée par un couvercle
(13) après remplissage par un matériau particulaire (23), une paroi latérale (11)
ayant des parties extérieures (15,16) et une partie de diamètre réduit (17) intermédiaire
entre les première et seconde extrémités, et une paire de parties (18) orientées radialement
vers l'intérieur, s'étendant depuis les parties extérieures vers la partie (17) de
diamètre réduit, la paroi latérale (11) étant telle que quand le conteneur a été rempli,
obturé et exposé à un pressage à chaud isostatique, le conteneur (10) subit une compression
axiale significative, les parties (18) orientées radialement vers l'intérieur se rapprochent
de très près ou viennent en contact l'une de l'autre, et le matériau particulaire
est comprimé, caractérisé en ce que chaque partie extérieure (15, 16) est incurvée
extérieurement pour constituer une structure convexe peu marquée et les parties extérieures
constituent le principal de l'étendue axiale de la paroi latérale (11), d'où il résulte
que le volume du matériau particulaire comprimé approche de près le volume d'une enveloppe
cylindrique imaginaire dans laquelle le conteneur comprimé peut être reçu.
2. Conteneur selon la revendication 1, dans lequel les parties (18) orientées radialement
vers l'intérieur s'étendent radialement sur une étendue d'environ 10 à 25% du diamètre
du conteneur (10).
3. Conteneur selon la revendication 1 ou la revendication 2, dans lequel l'écart entre
les parties adjacentes (18) orientées radialement vers l'intérieur est de l'ordre
de 5% du diamètre du conteneur (10).
4. Conteneur selon l'une des revendications précédentes, dans lequel l'écart entre les
parties adjacentes (18) orientées radialement vers l'intérieur de la paroi latérale
(11) est environ 10% de la dimension axiale des parties extérieures (15, 16).
5. Conteneur selon l'une des revendications précédentes, comportant une seule partie
(17) de diamètre réduit à mi-distance entre la première et la seconde extrémité.
6. Conteneur selon l'une quelconque des revendications 1 à 4, dans lequel la paroi latérale
a au moins une partie (17) de diamètre réduit additionnelle et une partie extérieure
additionnelle avec une paire de partie (18) orientées radialement vers l'intérieur
s'étendant depuis les parties extérieures jusqu'à la partie (17) additionnelle de
diamètre réduit.
7. Conteneur selon l'une quelconque des revendications précédentes, comportant un anneau
métallique (33) s'étendant autour du conteneur entre les parties (18) adjacentes orientées
vers l'intérieur de la paroi latérale (11), de sorte qu'un anneau métallique (33)
entoure chaque partie (17) de diamètre réduit, d'où il résulte que le conteneur peut
être soumis à un pressage à chaud uniaxial et le, ou chaque, anneau (33) limite la
déformation du conteneur (10) vers l'extérieur.
8. Conteneur selon l'une quelconque des revendications précédentes, dans lequel chacune
des parties extérieures (15, 16) a un profil légèrement incurvé à ses extrémités axiales,
le profil tournant radialement vers l'intérieur (19).
9. Conteneur selon l'une quelconque des revendications précédentes, dans lequel à chacune
des première et seconde extrémités, la paroi latérale (11) s'incurve légèrement radialement
vers l'intérieur (19) et se termine par une jupe (20) dirigée axialement, orientée
en s'écartant du corps du conteneur, la jupe ayant un diamètre approximativement le
même que la partie de diamètre réduit et une paroi d'extrémité (12, 13) à bride étant
prévue pour être logée dans la jupe et y être soudée (21) après remplissage du conteneur
(10) réalisant ainsi une région annulaire (19) autour de la jupe pour faciliter certains
déplacements axiaux de la partie principale de la paroi d'extrémité (12, 13) pendant
la compression à chaud du conteneur (10).
10. Conteneur selon l'une quelconque des revendications précédentes, dans lequel un tube
d'évacuation (14) est prévu à une extrémité du conteneur (10), d'où il résulte qu'après
remplissage et obturation, on peut faire le vide dans le conteneur (10) et le tube
(14) serti pour former un joint (26), d'où il résulte que l'on peut appliquer une
pression isostatique à chaud.
11. Procédé pour former un matériau céramique dense comportant le remplissage d'un conteneur
avec un matériau particulaire précurseur de céramique, le conteneur étant comme revendiqué
dans l'une quelconque des revendications 1 à 6 ou 8 à 10, faire le vide dans le conteneur
et l'exposer à une pression isostatique à chaud.
12. Procédé pour former un matériau céramique dense comportant l'étape de prendre un conteneur
comme revendiqué dans l'une quelconque des revendications 7 à 10 et de l'exposer à
une compression uniaxiale à chaud.