[0001] This invention relates to the hydroconversion of heavy hydrocarbon oils. More particularly
it relates to a hydrotreating catalyst system which permits operation to yield increased
conversion of 538°C (1000°F+) charge to lower boiling products.
[0002] As is well known to those skilled in the art, the petroleum refiner wishes to convert
high boiling fractions such as vacuum resid to lower boiling fractions which are more
readily handleable and/or marketable. Illustrative of the large body of prior art
patents directed to this problem are the following:
[0003] US-A-4,579,646 discloses a bottoms visbreaking hydroconversion process wherein hydrocarbon
charge is partially coked, and the coke is contacted within the charge stock with
an oil-soluble metal compound of a metal of Group IV-B, V-B, VII-B, or VIII to yield
a hydroconversion catalyst.
[0004] US-A-4,724,069 discloses hydrofining in the presence of a supported catalyst bearing
a VI-B, VII-B, or VIII metal on alumina, silica, or silica-alumina. There is introduced
with the charge oil, as additive, a naphthenate of Co or Fe.
[0005] US-A-4,567,156 discloses hydroconversion in the presence of a chromium catalyst prepared
by adding a water-soluble aliphatic polyhydroxy compound (such as glycerol) to an
aqueous solution of chromic acid, adding a hydrocarbon thereto, and heating the mixture
in the presence of hydrogen sulfide to yield a slurry.
[0006] US-A-4,564,441 discloses hydrofining in the presence of a decomposable compound of
a metal (Cu, Zn, III-B, IV-B, VI-B, VII-B, or VIII) mixed with a hydrocarbon-containing
feed stream; and the mixture is then contacted with a "suitable refractory inorganic
material" such as alumina.
[0007] US-A-4,557,823 discloses hydrofining in the presence of a decomposable compound of
a IV-B metal and a supported catalyst containing a metal of VI-B, VII-B, or VIII.
[0008] US-A-4,557,824 discloses demetallization in the presence of a decomposable compound
of a VI-B, VII-B, or VIII metal admitted with the charge and a heterogeneous catalyst
containing a phosphate of Zr, Co, or Fe.
[0009] US-A-4,551,230 discloses demetallization in the presence of a decomposable compound
of a IV-B, V-B, VI-B, VII-B, or VIII metal admitted with the charge and a heterogeneous
catalyst containing NiAs
x on alumina.
[0010] US-A-4,430,207 discloses demetallization in the presence of a decomposable compound
of a V-B, VI-B, VII-B, or VIII metal admitted with the charge and a heterogeneous
catalyst containing a phosphate of Zr or Cr.
[0011] US-A-4,389,301 discloses hydroprocessing in the presence of added dispersed hydrogenation
catalyst (typically ammonium molybdate) and added porous contact particles (typically
FCC catalyst fines, alumina, or naturally occurring clay).
[0012] US-A-4,352,729 discloses hydrotreating in the presence of a molybdenum blue solution
in polar organic solvent introduced with the hydrocarbon charge.
[0013] US-A-4,338,183 discloses liquefaction of coal in the presence of unsupported finely
divided metal catalyst.
[0014] US-A-4,298,454 discloses hydroconversion of a coal-oil mixture in the presence of
a thermally decomposable compound of a IV-B, V-B, VI-B VII-B, or VIII metal, preferably
Mo.
[0015] US-A-4,134,825 discloses hydroconversion of heavy hydrocarbons in the presence of
an oil-soluble compound of IV-B, V-B, VI-B, VII-B, or VIII metal added to charge,
the compound being converted to solid, non-colloidal form by heating in the presence
of hydrogen.
[0016] US-A-4,125,455 discloses hydrotreating in the presence of a fatty acid salt of a
VI-B metal, typically molybdenum octoate.
[0017] US-A 4,077,867 discloses hydroconversion of coal in the presence of oil-soluble compound
of V-B, VI-B, VII-B, or VIII metal plus hydrogen donor solvent.
[0018] US-A-4,067,799 discloses hydroconversion in the presence of a metal phthalocyanine
plus dispersed iron particles.
[0019] US-A-4,066,530 discloses hydroconversion in the presence of (i) an iron component
and (ii) a catalytically active other metal component prepared by dissolving an oil-soluble
metal compound in the oil and converting the metal compound in the oil to the corresponding
catalytically active metal component.
[0020] It is an object of this invention to provide a novel process for hydroconversion
particularly characterized by attainment of increased conversion. Other objects will
be apparent to those skilled in the art.
[0021] According to the present invention, there is provided a method of catalytically hydroconverting
a charge hydrocarbon oil containing from 50-98 weight percent of components boiling
above 538°C (1000°F) to convert from 30-90 weight percent thereof to components boiling
below 538°C (1000°F), which comprises passing said charge hydrocarbon oil containing
from 50-98 weight percent of components boiling above about 538°C (1000°F) into contact
with (i) a solid heterogenous catalyst containing, as a hydrotreating component, a
metal of Groups IV-B, V-B, VI-B, VII-B, or VIII on a support and (ii) as an oil-soluble
catalyst a compound of molybdenum and a compound of cobalt; maintaining said charge
hydrocarbon oil in said conversion zone at conversion conditions in the presence of
hydrogen and mercaptan until from 30-90 weight percent of said components boiling
above 538°C (1000°F) are converted to components boiling below 538°C (1000°F); and
recovering said converted oil.
[0022] The charge which may be treated by the process of this invention may include high
boiling hydrocarbons typically those having an initial boiling point (ibp) above about
343°C (650°F). This process is particularly useful to treat charge hydrocarbons containing
a substantial quantity of components boiling above about 538°C (1000°F) to convert
a substantial portion thereof to components boiling below 538°C (1000°F).
[0023] Typical of these streams are heavy crude oil, topped crude, vacuum resid, asphaltenes,
tars, coal liquids, visbreaker bottoms, etc. Illustrative of such charge streams may
be a vacuum resid obtained by blending vacuum resid fractions from Alaska North Slope
Crude (59v%), Arabian Medium Crude (5v%), Arabian Heavy Crude (27%), and Bonny Light
Crude (9v%) having the characteristics listed in Table I:
TABLE I
PROPERTY |
Charge |
API Gravity |
5.8 |
538°C (1000°F) + (W%) |
93.1 |
Composition (W%) |
|
C |
84.8 |
H |
10.09 |
N |
0.52 |
S |
3.64 |
Alcor Microcarbon Residue (McR) (%) |
19.86 |
n-C₇ insolubles (%) |
11.97 |
Metals content (wppm) |
|
Ni |
52 |
V |
131 |
Fe |
9 |
Cr |
0.7 |
Na |
5. |
[0024] It is a feature of these charge hydrocarbons that they contain undesirable components
typified by nitrogen (in amount up to 1w%, typically 0.2-0.8w%, say about 0.52w%),
sulfur (in amount up to 10w%, typically 2-6w%, say about 3.64w%), and metals including
Ni, V, Fe, Cr, Na, etc. in amounts up to 900 wppm, typically 40-400 wppm, say 198
wppm). The undesirable asphaltene content of the charge hydrocarbon may be as high
as 22w%, typically 8-16w%, say 11.97w% (analyzed as components insoluble in normal
heptane).
[0025] The API gravity of the charge may be as low as minus 5, typically minus 5 - plus
35, say about 5.8. The content of components boiling above about 538°C (1000°F) may
be as high as 100w%, typically 50-98+w%, say 93.1w%. The Alcor MCR Carbon content
may be as high as 30w%, typically 15-25w%, say 19.86w%.
[0026] In practice of the method of this invention, the charge hydrocarbon oil may be passed
to a hydroconversion operation wherein conversion occurs in liquid phase at conversion
conditions including 371°C-454°C (700°F-850°F), preferably about 399°C-432°C (750°F-810°F),
say 426°C (800°F), at hydrogen partial pressure of about 3.5-34.6 MPa (500-5000 psig),
preferably about 10.4-17.3 MPa (1500-2500 psig), say 13.9 MPa (2000 psig).
[0027] It is a feature of the method of this invention that there is added to the charge
hydrocarbon oil (preferably prior to admission to hydroconversion) a catalytically
effective amount of an oil-miscible, preferably an oil-soluble catalyst compound of
a combination of a molybdenum salt and a cobalt salt.
[0028] The salts may be typified by
(i) metal salts of aliphatic carboxylic acids
molybdenum stearate
molybdenum palmitate
molybdenum myristate
molybdenum octoate
(ii) metal salts of naphthenic carboxylic acids
cobalt naphthenate
molybdenum naphthenate
(iii) metal salts of alicyclic carboxylic acids
molybdenum cyclohexane carboxylate
(iv) metal salts of aromatic carboxylic acids
cobalt benzoate
cobalt o-methyl benzoate
cobalt m-methyl benzoate
cobalt phthallate
molybdenum p-methy benzoate
(v) metal salts of sulfonic acids
molybdenum benzene sulfonate
cobalt p-toluene sulfonate
(vi) metal salts of sulfinic acids
molybdenum benzene sulfinate
(vii) metal salts of phosphoric acids
molybdenum phenyl phosphate
(viii) metal salts of mercaptans
cobalt hexyl mercaptide
(ix) metal salts of phenols
cobalt phenolate
(x) metal salts of polyhydroxy aromatic compounds
molybdenum resorcinate
(xi) organo metallic compounds
molybdenum hexacarbonyl
cyclopentadienyl molybdenum tricarbonyl
(xiii) metal salts of organic amines
cobalt salt of pyrrole
The preferred compounds may be cobalt naphthenate, molybdenum hexacarbonyl, molybdenum
naphthenate, and molybdenum octoate.
[0029] According to the invention, the combined use of molybdenum (e.g. as the naphthenate)
and cobalt (e.g. as the naphthenate) yields a positive synergistic promotional effect
on catalytic desulfurization and demetallization. Typically cobalt may be added in
amount of 0.2-2 moles, say 0.4 moles per mole of molybdenum.
[0030] The metal compounds to be employed are oil-miscible and preferably oil-soluble i.e.
they are soluble in the charge hydrocarbon oil in amount of at least 0.01g/100g typically
0.025-0.25g/100g, say about 0.1g/100g or alternatively they are readily dispersable
in the charge hydrocarbon oil in amount of at least those amounts. It is also a feature
of these metal compounds that, when activated as hereinafter set forth, the activated
compounds are also oil-miscible in the hydrocarbon oils with which they come into
contact during practice of the method of this invention.
[0031] Activation of the oil-miscible compounds of molybdenum and cobalt in accordance with
practice of the process of this invention may be effected either by pre-treatment
(prior to hydroconversion) or
in situ (during hydroconversion). It is preferred to effect activation in situ in the presence
of the hydrogenation catalyst to achieve a highly dispersed catalytic species.
[0032] Activation according to the preferred method may be carried out by adding 10-200
wppm, say 30 parts of metal compound to charge hydrocarbon at 15-149°C (60°F-300°F),
say 94°C (200°F). The mixture is activated by heating to 204°-446°C (400°F-835°F),
typically 260°-370°C (500°F-700°F), say 315°C (600°F) at partial pressure of hydrogen
of 3.5-34.5 MPa (500-5000 psig), typically 7.0-20.8 MPa (1000-3000 psig), say 13.9
MPa (2000 psig) and at partial pressure of a gaseous mercaptan of 0.1-3.5 MPa (5-500
psig), typically 0.15-2.2 MPa (10-300) psig, say 0.4 MPa (50 psig). Total pressure
may be 3.5-38.0 MPa (500-5500 psig), typically 7.0-22.8 MPa (1000-3300 psig), say
14.2 MPa (2050 psig). Commonly the gas may contain 40-99v%, typically 90-99v%, say
98v% hydrogen and 1-10v%, say 2v% mercaptan such as hydrogen sulfide. Time of activation
may be 1-12, typically 2-6, say 3 hrs.
[0033] In this embodiment, it will be noted that activation may occur at temperature which
is lower than the temperature of conversion.
[0034] The mercaptans which may be employed may include hydrogen sulfide, aliphatic mercaptans,
typified by methyl mercaptan, lauryl mercaptan, aromatic mercaptans; dimethyl disulfide,
carbon disulfide.
[0035] These mercaptans apparently decompose during the activation process. It is not clear
why this treatment activates the metal compound. It may be possible that the activity
is generated as a result of metal sulfides formed during the treatment.
[0036] When the sulfur content of the charge hydrocarbon is above about 2w%, it may not
be necessary to add a mercaptan during activation i.e. hydrodesulfurization of the
charge may provide enough mercaptan to properly activate (i.e. sulfide) the oil-miscible
decomposable catalyst.
[0037] In an alternative activation procedure, the oil-miscible metal compound may be activated
in the presence of an oil which is compatible with the charge oil i.e. a separate
portion of the charge oil or a different oil which is compatible with the charge oil.
In this alternative the oil-miscible metal compound may be added to the oil in amount
which is substantially greater (e.g. 2-20 times) than is the case when the compound
is activated in the presence of the charge stream. After activation (at the same conditions
as prevail when activation is carried out in the charge stream), the compatible oil
containing the now activated metal may be admitted to the charge stream in amount
sufficient to provide therein activated oil-miscible metal compound in desired amount.
[0038] In still another embodiment, activation may be carried out by subjecting the charge
hydrocarbon oil containing the oil-miscible metal compound to hydroconversion conditions
including temperature of 370°-462°C (700°F-850°F), preferably about 399°-432°C (750°F-810°F),
say 427°C (800°F) at hydrogen partial pressure of about 3.5-34.5 MPa (500-5000 psig)
preferably about 10.4-13.9 MPa (1500-2000 psig), say 13.9 MPa (2000 psig) - in the
presence of a mercaptan but in the absence of heterogeneous hydroconversion catalyst.
[0039] In the preferred embodiment, activation may be carried out during hydroconversion
i.e. in the presence of the heterogeneous, hydroconversion catalyst, hydrogen, and
mercaptan.
[0040] Hydroconversion is carried out in the presence of solid heterogeneous catalyst containing,
as a hydrogenating component, a metal of Group IV-B, V-B, VI-B, VII-B, or VIII on
a support which may typically contain carbon or an oxide of aluminum, silicon, titanium,
magnesium, or zirconium. Preferably the catalyst may contain a metal of Group VI-B
and VIII - typically nickel and molybdenum.
[0041] When the metal is a Group IV-B metal, it may be titanium (Ti), zirconium (Zr), or
hafnium (Hf).
[0042] When the metal is a Group V-B metal, it may be vanadium (V), niobium (Nb), or tantalum
(Ta).
[0043] When the metal is a Group VI-B metal, it maybe chromium (Cr), molybdenum (Mo), or
tungsten (W).
[0044] When the metal is a Group VII-B metal, it maybe manganese (Mn) or rheniun (Re).
[0045] When the metal is a Group VIII metal, it may be a non-noble metal such as iron (Fe),
cobalt (Co), or nickel (Ni) or a noble metal such as ruthenium (Ru), rhodium (Rh),
palladium (Pd), osmium (Os), iridium (Ir), or platinum (Pt).
[0046] The solid heterogeneous catalyst may also contain, as a promoter, a metal of Groups
I-A, I-B, II-A, II-B, or V-A.
[0047] When the promoter is a metal of Group I-A, it may preferably be sodium (Na) or potassium
(K).
[0048] When the promoter is a metal of Group IB, it may preferably be copper (Cu).
[0049] When the promoter is a metal of Group II-A, it may be beryllium (Be), magnesium (Mg),
calcium (Ca), strontium (Sr), barium (Ba), or radium (Ra).
[0050] When the promoter is a metal of Group II-B, it may be zinc (Zn), cadmium (Cd), or
mercury (Hg).
[0051] When the promoter is a metal of Group V-A, it may preferably be arsenic (As), antimony
(Sb), or bismuth (Bi).
[0052] The hydrogenating metal may be loaded onto the solid heterogeneous catalyst by immersing
the catalyst support in solution (e.g. ammonium heptamolybdate) for 2-24 hours, say
24 hours, followed by drying at 15.5°-149°C (60°F-300°F), say 93°C (200°F) for 1-24
hours, say 8 hours and calcining for 1-24 hours, say 3 hours at 399°-594°C (750°F-1100°F),
say 499°C (930°F).
[0053] The promoter metal may preferably be loaded onto the solid heterogeneous catalyst
by immersing the catalyst support (preferably bearing the calcined hydrogenating metal
- although they may be added simultaneously or in any order) in solution (e.g. bismuth
nitrate) for 2-24 hours, say 24 hours, followed by drying at 15.5°-149°C (60°F-300°F),
say 93°C (200°F) for 1-24 hours, say 3 hours, and calcining at 299-594°C (570°F-1100°F),
say 399°C (750°F) for 1-12 hours, say 3 hours.
[0054] The solid heterogenous catalyst employed in the method of this invention may be characterized
by a Total Pore Volume of 0.2-1.2 cc/g, say 0.77 cc/g; a Surface Area of 50-500 m²/g,
say 280 m²/g; and a Pore Size Distribution as follows:
Pore Diameter Å |
Volume cc/g |
30-100 |
0.15-0.8, say 0.42 |
100-1000 |
0.10-0.50, say 0.19 |
1000-10,000 |
0.01-0.40, say 0.16 |
[0055] In another embodiment, it may have a pore size distribution as follows:
Pore Diameter Å |
Pore Volume cc/g |
Typical |
>250 |
0.12-0.35 |
0.28 |
>500 |
0.11-0.29 |
0.21 |
>1500 |
0.08-0.26 |
0.19 |
>4000 |
0.04-0.18 |
0.11 |
[0056] The solid heterogeneous catalyst typically may contain 4-30w%, say 9.5w% Mo, 0-6w%,
say 3.1w% Ni and 0-6w%, say 3.1w% of promoter metal e.g. bismuth. LHSV in the hydroconversion
reactors may be 1-2, say 0.7. Preferably the heterogeneous catalyst may be employed
in the form of extrudates of diameter of 0.7-6.5mm, say 1mm and of length of 0.2-25mm,
say 5mm.
[0057] Hydroconversion may be carried out in a fixed bed, a moving bed, a fluidized bed,
or preferably an ebullated bed.
[0058] It is a feature of the process of this invention that hydroconversion may be carried
out in one or more beds. It is found that the active form of the catalyst is formed
in or accumulates in the first of several reactors; and accordingly increases in conversion
and heteroatom removal activities appear to occur in the first of several reactors.
[0059] Effluent from hydroconversion is typically characterized by an increase in the content
of liquids boiling below 538°C (1000°F). Commonly the w% conversion of the 538°C (1000°F)
+ boiling material is 30%-90%, say 67% which is typically 5%-25%, say 12% better than
is attained by the prior art techniques.
[0060] It is a feature of this invention that it permits attainment of improved removal
of sulfur (HDS Conversion), of nitrogen (HDN Conversion), and of metals (HDNi and
HDV Conversion). Typically HDS Conversion may be 30-90%, say 65% which is 1%-10%,
say 4% higher than the control runs. Typically HDN Conversion may be 20%-60%, say
45% which is 1%-10%, say 4% higher than control runs. Typically HDNi plus HDV Conversion
may be 70%-99%, say 90% which is 5%-20%, say 13% higher than control runs.
[0061] Practice of the method of this invention will be apparent to those skilled in the
art from the following wherein, as elsewhere in this specification unless otherwise
stated, all parts are parts by weight. An asterisk designates a control example.
EXAMPLE
[0062] In this Example which represents the best mode presently known of carrying out the
method of this invention charge hydrocarbon is a blend of vacuum resid derived from
Alaskan North Slope (59v%), Arabian Medium (5v%), Arabian Heavy (27v%), and Bonny
Light (9v%).
[0063] The solid heterogeneous catalyst is commercially available hydrotreating catalyst
(sold by Criterion Catalyst Company as HDS-1443B catalyt) containing 2.83w% nickel
and 8.75w% molybdenum on alumina. This catalyst is 0.8 mm (1/32") diameter extrudates
∼ 5mm long of Surface Area 285.2 m²/g and Total Pore Volume of 0.78 cc/g. Pore Size
Distribution is: 0.28 cc/g >250A; 0.21 cc/g >500A; 0.19 cc/g >1500A; 0.11 cc/g >4000A.
[0064] In this Example, there is added to the hydro carbon charge, molybdenum naphthenate
in amount to provide 60 ppm molybdenum metal and cobalt napthenate to provide 13 ppm
cobalt metal. The catalyst is activated in situ during hydroconversion at 418°C (785°F)
and partial pressure of hydrogen of 13.9 MPa (2000 psig). Hydrogen Feed is 1061 Nm³/m³
(6300 SCFB). Charge LHSV is 0.4-1 hr⁻¹.
[0065] Results are set forth in the following Table which shows conversion of 538°C (1000°F),
HDS Conversion, HDV Conversion, HDNi Conversion, and Cyclohexane Insolubles - all
expressed in w%.
[0066] Comparative tests were made using no molybdenum or cobalt promoter, and using molybdenum
promoter alone.
|
Example |
|
A* |
B* |
C |
Mo Conc (ppm) |
0 |
60 |
60 |
Co CconC (ppm) |
0 |
0 |
13 |
538°C+ (1000°F+) Conv. |
44.7 |
51.4 |
51.2 |
HDS |
61.0 |
66.2 |
67.9 |
HDV |
73.9 |
80.2 |
84.2 |
HDNi |
52.3 |
58.6 |
62.7 |
Cyclohexane Insol. |
2.9 |
2.2 |
2.1 |
[0067] From the above Table, the following conclusion may be drawn:
(1) Addition of a small amount of cobalt with the molybdenum has a synergistic impact
on hetero atom removal (HDS, HDV, HDNi).
(2) The addition of cobalt and molybdenum shows a further decrease in coke content
compared to use of molybdenum alone.
[0068] Although this invention has been illustrated by reference to specific embodiments,
it will be apparent to those skilled in the art that various charges and modifications
may be made which clearly fall within the scope of the appended claims.
1. Ein Verfahren zur katalytischen Hydroumwandlung eines Chargen-Kohlenwasserstofföls,
das 50-98 Gewichtsprozent Komponenten enthält, die oberhalb von 538°C (1000°F) sieden,
um von 30-90 Gewichtsprozent davon in Komponenten umzuwandeln, die unterhalb von 538°C
(1000°F) sieden, welches umfaßt, daß
besagtes Chargen-Kohlenwasserstofföl, das von 50-98 Gewichtsprozent Komponenten enthält,
die oberhalb von etwa 538°C (1000°F) sieden, in Kontakt mit (i) einem festen heterogenen
Katalysator, der, als eine Hydrobehandlungskomponente, ein Metall der Gruppen IV-B,
V-B, VI-B, VII-B oder VIII auf einem Träger enthält, und (ii), als einem öllöslichen
Katalysator, einer Molybdänverbindung und eine Cobaltverbindung geleitet wird;
besagtes Chargen-Kohlenwasserstofföl in besagter Umwandlungszone bei Umwandlungsbedingungen
in der Gegenwart von Wasserstoff und Mercaptan gehalten wird, bis von 30-90 Gewichtsprozent
besagter Komponenten, die oberhalb von 538°C (1000°F) sieden, in Komponenten umgewandelt
sind, die unterhalb von 538°C (1000°F) sieden; und
besagtes umgewandeltes Öl gewonnen wird.
2. Ein Verfahren nach Anspruch 1, wobei besagter öllöslicher Katalysator Molybdännaphthenat
und Cobaltnaphthenat enthält.
3. Ein Verfahren nach Anspruch 1 oder Anspruch 2, wobei besagter öllöslicher Katalysator
im Chargen-Kohlenwasserstoff in einer Menge von wenigstens 0,01 Gramm pro 100 g Chargen-Kohlenwasserstoff
löslich ist.
4. Ein Verfahren nach einem der Ansprüche 1 bis 3, wobei besagter öllöslicher Katalysator
vor der Zuführung zu besagter Umwandlungszone aktiviert wird.
5. Ein Verfahren nach Anspruch 4, wobei die Aktivierung durch Erhitzen auf 204-446°C
(400°F-835°F) bei 3,5-34,5 MPa (500-5.000 psig) Wasserstoffpartialdruck in der Gegenwart
von Mercaptan oder in der Gegenwart eines Öls, das mit besagtem Chargenöl mischbar
ist, bewirkt wird.
6. Ein Verfahren nach einem der Ansprüche 1 bis 5, wobei besagter öllöslicher Katalysator
während besagter Umwandlung aktiviert wird.
7. Ein Verfahren nach einem der Ansprüche 1 bis 6, wobei besagter heterogener Katalysator
(i), als Hydrierungskomponente, ein Metall der Gruppen IV-B, V-B, VI-B, VII-B oder
VIII und (ii), als einen Beschleuniger, ein Metall der Gruppe I-A, I-B, II-A, II-B
oder V-A enthält.
8. Ein Verfahren nach Anspruch 7, wobei besagter heterogener Katalysator Nickel und Molybdän
auf Aluminiumoxid enthält.
1. Procédé d'hydroconversion catalytique d'une huile d'hydrocarbure de charge contenant
de 50 à 98 % en poids de constituants bouillant au-dessus de 538 °C (1000 °F) pour
transformer de 30 à 90 % en poids de celle-ci en constituants bouillant au-dessous
de 538 °C (1000 °F), qui comprend
le fait d'amener cette huile d'hydrocarbure de charge contenant de 50 à 98 % en
poids de constituants bouillant au-dessus d'environ 538 °C (1000 °F) en contact avec
(i) un catalyseur hétérogène solide, contenant, comme constituant d'hydrotraitement,
un métal des groupes IV-B, V-B, VI-B, VII-B, ou VIII sur un support et (ii) comme
catalyseur oléosoluble, un composé du molybdène et un composé du cobalt ;
le fait de maintenir cette huile d'hydrocarbure de charge dans cette zone de conversion,
dans des conditions de conversion, en présence d'hydrogène et d'un mercaptan jusqu'à
ce que de 30 à 90 % en poids de ces constituants bouillant au-dessus de 538 °C (1000
°F) soient transformés en constituants bouillant au-dessous de 538 °C (1000 °F) ;
et
le fait de récupérer cette huile transformée.
2. Procédé selon la revendication 1, dans lequel le catalyseur oléosoluble contient du
naphténate de molybdène et du naphténate de cobalt.
3. Procédé selon les revendications 1 ou 2, dans lequel ce catalyseur oléosoluble est
soluble dans l'hydrocarbure de charge dans une quantité d'au moins 0,01 g pour 100
g d'hydrocarbure de charge.
4. Procédé selon l'une quelconque des revendications 1 à 3, dans lequel ce catalyseur
oléosoluble est activé avant l'admission dans cette zone de conversion.
5. Procédé selon la revendication 4, dans lequel l'activation est effectuée par chauffage
à 204-446 °C (400 °F-835 °F) sous 3,5-34,5 MPa (500-5 000 psig) de pression partielle
d'hydrogène en présence de mercaptan ou en présence d'une huile qui est miscible à
cette huile de charge.
6. Procédé selon l'une quelconque des revendications 1 à 5, dans lequel ce catalyseur
oléosoluble est activé au cours de cette conversion.
7. Procédé selon l'une quelconque des revendications 1 à 8, dans lequel ce catalyseur
hétérogène contient (i) comme constituant d'hydrogénation, un métal des groupes IV-B,
V-B, VI-B, VII-B ou VIII et (ii) comme promoteur, un métal des groupes I-A, I-B, II-A,
II-B ou V-A.
8. Procédé selon la revendication 7, dans lequel ce catalyseur hétérogène contient du
nickel et du molybdène ou de l'alumine.