[0001] This invention relates to a means and method for preventing damage to galvanic anodes
and their electrical connections mounted on a pipeline to be laid in an underwater
location.
BACKGROUND OF THE INVENTION
[0002] When pipelines are laid under water, particularly offshore in sea water, they are
usually protected against galvanic corrosion by attaching galvanic anodes made of
materials such as zinc or aluminum. These anodes will preferentially corrode and thereby
protect the pipeline against corrosion. Such anodes usually consist of two or more
arcuate segments which encircle the pipe. Pipelines larger than about 30 cm (12 inches)
in diameter are commonly coated with a thick layer of concrete to weight the pipeline
down in the water. On these, the anodes are placed in gaps in the concrete, and do
not extend above the surface of the concrete. Smaller pipelines, however, will sink
of their own weight, so concrete coatings are not used. On these, the anodes have
a substantially larger diameter than the pipeline. The anode protector of this invention
is designed for this type of installation.
[0003] Offshore pipelines are commonly laid from a continuously moving vessel known as a
lay barge. On some lay barges the joints of pipe making up the pipeline are welded
together on the barge. On others, known as reel type lay barges, the joints of pipe
are welded together on shore and coiled up in a coil as much as 91,4 m (300 feet)
in diameter on the lay barge. The anodes are attached to the pipeline while it is
still on shore or after it is put on the lay barge. In either case, the pipeline is
continuously fed off the stern of the barge as the barge moves forward in the water.
The forward motion of the barge causes the pipeline to be pulled off the stern of
the barge by the weight of the pipe depending from the barge. To facilitate movement
of the pipeline on the deck of the steel barge, it is sometimes supported on two or
more sets of rollers which are mounted on the deck. Each set of rollers may consist
of two pairs of automobile wheels with rubber tires set to engage and support the
pipeline. The pipeline then moves down an elongate cradle, or "stinger", which extends
rearwardly and downwardly from the lay barge toward the bed of the body of water.
In some cases, the weight of pipe depending from the barge is great enough to pull
the pipeline off the barge too fast. In such cases a tensioning device is used to
restrain the pipeline movement. Such tensioning devices may consist of spring-loaded
tracks engaging the pipe, or sets of automobile tires, in either case with brakes
applied as necessary to hold the pipe back.
[0004] It will be appreciated that due to wind, wave and current action there is often some
lateral and vertical movement of the barge which makes it impossible to draw the pipeline
off the barge in a smooth straight line at all times. The erratic motions produced
under such circumstances often causes shock blows to the galvanic anodes as they pass
over the rollers and down the stinger. Such shock blows tend to damage and tear the
anodes loose from the pipeline. Whenever an anode is torn loose, it is necessary to
stop the barge movement, weld the anode back on, and then restart the barge, all at
great expense to the pipe laying operation.
[0005] In addition, the tensioning devices cannot pass over the anodes, so it is necessary
to either put the anodes on after the pipe passes through the tensioner, or use two
tensioning devices. If the latter option is chosen, every time an anode is reached
during the laying of the pipeline, it is necessary to attach a second tensioning device
on the other side of the anode, and then release the first tensioning device until
the anode passes through. This is also a time-consuming and expensive operation. However,
if it is not done, the axial load of the tensioner on the anode would tear it loose
from the pipe. The alternative of welding the anodes on after the pipe goes through
the tensioner is equally objectionable, because it slows down the laying of the pipe.
Summary of the Invention
[0006] It is an object of this invention to provide a means and method for protecting the
galvanic anodes on pipeline from being damaged during the laying of the pipeline.
[0007] Another object of the invention is to improve the corrosion protection of the pipeline
adjacent to galvanic anodes.
[0008] Still another object of the invention is to provide a means for improving the bond
between the anode and the pipe.
[0009] These and other objects of the invention are achieved according to the present invention
by providing a molded in place taper at each end of each anode. The taper is made
from a tough, fast setting polymer which will set up in a short time, often as little
as three to five minutes, so that the pipe laying operation is not delayed. In a preferred
embodiment the polymer is a fast setting polyurethane, having a low viscosity prior
to polymerization, which not only forms the molded taper, but fills the space between
the anode segments, and flows between the anode segments and the pipe. This material
adheres to the pipe as well as to the anode material, so that it provides an additional
corrosion barrier and bonds the anode segments to the pipe.
Brief Description of the Drawings
[0010]
Figure 1 is a plan view of the stern end of a lay barge showing a pipeline being laid
from the barge;
Figure 2 is a vertical sectional view of a portion of the pipeline shown in Figure
1;
Figure 3 is a sectional view of a portion of the pipeline showing a galvanic anode
and one embodiment of the tapered protector of this invention;
Figure 4 is a vertical sectional view taken at line 4-4 of Figure 3; and
Figure 5 is a vertical sectional view showing one embodiment of the method for applying
the tapered anode protector of this invention.
[0011] As shown in Figure 1 of the drawing, the pipeline 10 is being laid from the barge
12. A stinger 14 extends outwardly and downwardly from the stern 16 of the barge,
with the pipeline resting on the rollers which comprise cross members 18 of the stinger
and moving down these cross members as the barge moves forwardly in the water. On
the deck of the barge the pipeline is supported by two sets of rollers 20. A galvanic
anode 22 is mounted on the pipeline with an anode protector 24 on each end of the
anode.
[0012] As shown in Figure 3, the anode 22 consists of two arcuate anode segments 26 which
are held together around the pipe 10 by means of steel straps 28 with ends 30 protruding
into the two gaps between the edges of the anode segments. A "pigtail" 32 consists
of an electrically conducting wire which is welded to the strap ends 30 at 34 and
welded to the pipeline at 36. The anode segments are made of a material which is higher
on the electromotive scale than iron, and commonly are made of zinc or aluminum. In
the drawing, the segments are tapered at 38 at each end, each taper ending in a wall
40 which is perpendicular to the pipeline. Some anode segments, however, are not tapered,
but are squared off at the ends.
[0013] According to this invention, a tapered protector 42 encircles the pipeline and encloses
each end of the anode. The outer surface of each protector is tapered in a straight
line from its intersection with the pipeline to a point on the taper 38 of each anode
segment, enclosing the surface 40 and at least a portion of the taper 38 of the anode.
The protector thereby provides a continuous tapered surface from the pipeline to the
outer circumference of the anode segments.
[0014] In the embodiment shown in the drawing, the protector is formed from a cast in place
fast setting elastomeric polyurethane. Preferably the protector also includes reinforcement
adjacent the pipe surface, and it may also include reinforcement adjacent the outer
surface of the protector. Such reinforcement may, for example, comprise a glass fiber
mat or other reinforcing material which will reduce the possibility of cracking or
fracture of the protector when it is hit by a hard blow. In the drawing the outer
reinforcement is shown at 44 and the inner reinforcement adjacent the surface of the
pipe is shown at 46.
[0015] The protector of this invention is made of a fast setting elastomeric polymer which
will set up in a few minutes so that the pipe can be handled without fear of damage
to the anode protector. Preferred polymers are rapid setting solid polyurethanes,
as for example those prepared by the reaction of the polyhydroxyl containing compounds
and the organic polyisocyanates described in U.S. Patents 3,983,064, 4,154,716 and
4,246,363. Other suitable polymers include the rapid setting polyureas, for example
those prepared by the reaction of amine terminated polyethers and the organic polyisocyanates
described in U. S. Patent No. 4,474,900.
[0016] The compositions of this invention preferably also include a liquid modifier, such
as those described in the aforesaid patents. In addition, the compositions preferably
include a liquid organic carbonate, and a sufficient amount of one or more catalysts
to insure that the composition will set up in not more than about five minutes.
[0017] The reactants to produce these polymers have a low viscosity, not greater than about
100 centipoises, before polymerization, so that when they are fed into a mold to form
the anode protectors around an anode, they will easily completely wet filler and reinforcing
materials, and they will flow into very small clearances between the anode segments
and the pipe, so that when the polymer sets up, it provides corrosion protection to
the pipe and also increases the bond of the anode segments to the pipe.
[0018] In preparing the preferred polyurethanes, preferably an amine initiated polyol is
used and more preferably a polyol is selected which has a hydroxyl number in the range
of about 600 to about 900 and a minimum functionality of 4. One such material which
can be obtained from Dow Chemical Company at Freeport, Texas is sold under the trademark
Voranol 800 and is the product of reacting ethylene diamine with 3 parts of propylene
oxide and one part of ethylene oxide.
[0019] For the rapid setting polyureas, it is preferable to use an amine terminated polyether
which has an equivalent weight in the range of 50 to 100 and a minimum functionality
of 3.0. One such material which can be obtained from Texaco Chemical Co. is sold under
the trademark JEFFAMINE T-403 and is fully described in U. S. Patent No. 4,474,900.
[0020] The polymeric isocyanate used is preferably one which has a high vapor pressure for
safety purposes. Dow Chemical Company sells a suitable material under the trademark
PAPI 27 which is a crude polymeric isocyanate containing some methylene bis phenyl
isocyanate and 50-60% polyethylene polyphenyl isocyanate.
[0021] The liquid modifier used is preferably a heavy aromatic solvent naphtha consisting
primarily of C9 to C11 aromatic hydrocarbons. Such a product is available from Shell
Chemical Company under the designation SC150 Solvent.
[0022] The liquid organic carbonate used may be one of those described in Patent No. 4,154,716.
Propylene carbonate has been found to give good results. The organic carbonates are
known as plasticizers, and in the composition of this invention they reduce the propensity
of the composition to shrink as it cures, and therefore reduces the tendency of the
product to crack under stresses produced during curing. Other plasticizers which have
been tried do not produce this advantageous result.
[0023] The reactants for preparing the composition of the invention are preferably prepared
as two components. Component A consists of the polymeric isocyanate combined with
the liquid modifier and a liquid organic carbonate. Component B consists of the polyhydroxyl
compound or polyether combined with the liquid modifier and a small percentage of
the liquid organic carbonate, together with an amount of catalyst sufficient to insure
that the composition will set up in no more than about five minutes.
[0024] The catalyst used for polyurethanes may be any of the well known catalysts for polyurethane.
A number of such catalysts are described in Patent No. 4,246,363. The preferred catalysts
for the polyurethane composition of this invention are approximately 0.1% to about
0.5% of a 1-2 mixture of triethylene diamine and dipropylene glycol together with
about 0.01% to about 0.04% of an alkyl tin mercaptide such as that sold by Witco Chemical
Company as their UL-22 catalyst.
[0025] The ingredients of Components A and B are mixed separately and held at essentially
ambient temperature until ready for use, although they should be protected from extreme
cold or extreme heat, because temperature affects the speed of reaction. In use, the
two components are mixed, preferably in a blending valve, as they are pumped into
the mold where the product of the invention is to be made.
Example 1:
[0026] Component A is prepared by mixing 27 kg (60 pounds) of a polyisocyanate sold under
the trademark PAPI 27 by Dow Chemical Company, 13.6 kg (30 pounds) of Shell Chemical
Company's SC-150 Solvent, and 4.5 kg (10 pounds) of propylene carbonate. Component
B is prepared by mixing 14 kg (31 pounds) of Dow Chemical Company's Voranol 800, 29
kg (64 pounds) of the SC-150 Solvent, 2.3 kg (5 pounds) of propylene carbonate, 36
g (0.08 pounds) of a catalyst consisting of 1/3 triethylenediamine and 2/3 dipropylene
glycol, and 0.9 g (0.002 pounds) of an alkyl tin mercaptide sold by Witco Chemical
Company under the designation UL-22 catalyst. The two components are kept separate
from each other until they are to be used, and are kept at atmospheric temperature.
When the product is to be molded, separate pumps are used to pump the components into
a mixing valve, where they are mixed together and then fed into a mold made of polyethylene
sheet, until the mold is filled. After a wait of five minutes, the mold is removed,
leaving a solid tapered protector which is highly resistant to injury from sharp blows.
The protector is also securely adhered to the pipe and to the anode.
Example 2:
[0027] In preparing a polyurea according to this invention Component A is preparing by mixing
29 kg (64 pounds) of the PAPI 27 polyisocyanate, 11.8 kg (26 pounds) of SCI50 solvent,
and 4.5 kg (10 pounds) of propylene carbonate. Component B is prepared by mixing 14
kg (31 pounds) of JEFFAMINE T-403, 29 kg (64 pounds) of the SC150 solvent, 2.3 kg
(5 pounds) of propylene carbonate, 36 g (0.08 pound) of catalyst consisting of 1/3
triethylenediamine and 2/3 dipropylene glycol, and 0.9 g (0.002 pound) of Witco's
UL-22 catalyst. The components are handled the same way as in Example 1, producing
a fast-setting polyurea. Five minutes after pouring into the mold, the mold is removed,
resulting in a solid tapered protector which is highly resistant to injury by sharp
blows.
[0028] Figure 5 shows a suitable mold structure and a schematic drawing of a mixing valve
for providing the mixture of components to the mold. The value 50 includes an inlet
52 for one of the components, an inlet 54 for the other component, an air inlet 56
and an outlet 58. The valve is suspended with the outlet 58 above one of the gaps
between two adjacent anode segments 22. The tapered protector is formed by a piece
of sheet material 60 which is wrapped around the pipe and the end of the anode and
held in place by means of an adhesive tape or straps 62 and 64. An adhesive tape such
as duct tape works well for this purpose. If desired, a sheet of reinforcing material,
such as a mat of glass fiber, may be wrapped around the pipe adjacent the end of the
anode before the mold sheet 60 is installed. A further sheet of reinforcing material
may be applied around the interior surface of the mold. The mold sheet may be made
of polyethylene, polypropylene, or any of the other suitable demoldable materials,
such as those described in Patent No. 3,983,064. Alternatively, the mold may be made
of two pieces of sheet steel which are hinged together and clamped around the pipe.
The steel mold will require a release agent, such as wax or oil, to prevent it from
sticking to the molded protector. Preferably, a sheet of corrugated paperboard is
used as a release membrane. The paperboard is fitted within the steel mold so that
the polyurethane composition is prevented from contacting the mold. The paperboard
is biodegradable, so may be left on the completed anode protector.
[0029] A piece of adhesive tape 66 may be placed across the lower gap between the anode
segments 22 and strips of reinforcing material may be placed on the pipe and on the
tape 66. Such reinforcing material may also be placed on the pipe in the upper gap
between the anodes.
[0030] When the molds are in place, the two components A and B are then pumped through the
conduits 52 and 54 and are mixed within the valve 50 and the mixture deposited in
the upper gap. This mixture has a very low viscosity, usually not greater than about
100 centipoises, so that it flows readily into the space confined within the mold
sheets 60 and the tape 66 and easily permeates the reinforcing material. When the
mold has been filled to the top of the upper gap, flow is stopped and a piece of reinforcing
material, if desired, is placed on top of the liquid material to close the top of
the upper gap. The valve may then be cleaned out by blowing air through the conduit
56 in order to prevent the material from solidifying within the valve and the conduits.
A check valve 59 prevents the liquid components from entering the air inlet conduit
56.
[0031] After the mold is filled, the composition will set in a very short time, preferably
not over about 5 minutes, and the mold sheets can then be removed. The product is
a smooth tapered impact resistant protector for the ends of the anode segments. Because
the polyurethane has a high adhesive strength on the steel pipe as well as the anode,
the protector helps to prevent the anode from being damaged or knocked loose from
the pipe, or from sliding along the pipe. Its ability to prevent such damage is enhanced
by allowing the polyurethane to flow into the space between the anode segments and
the pipe so that it acts as a glue to hold the anode segments to the pipe. In addition,
the smooth taper insures that the anode can ride down the stinger without hanging
up on the cross members. When tensioners are required, they can ride over the anodes,
so only one tensioner is required, and the anodes can be attached before the pipeline
passes through the tensioner.
[0032] This invention is not limited to the embodiments shown and described, but instead
extends to all variations which are included within the scope of the following claims.
1. A protector for a segmented anode encircling a pipeline, said anode having opposed
ends which are tapered toward the pipeline, comprising
a molded in place elastomeric polymeric structure at each end of the anode, said
structure having the external shape of the frustrum of a cone with the base of the
cone encircling the tapered end of the anode, and the frustrum terminating at the
diameter of the pipeline.
2. A protector as defined by claim 1, and including reinforcing material within said
structure adjacent the inner circumference of said structure.
3. A protector as defined by claim 2, and including reinforcing material within said
structure adjacent the outer circumference of said structure.
4. A protector as defined by either of claims 2 and 3 in which the reinforcing material
is a fibrous mat.
5. A protector as defined by claim 1 in which the material of the protector fills the
spaces between the segments of the anode.
6. A protector as defined by claim 1 in which the polymeric material is a polyurethane
composition which sets up in no more than about five minutes.
7. A protector as defined by claim 1 in which the polymeric material is a polyurea composition
which sets up in no more than about five minutes.
8. A method for forming a protector for a segmented anode encircling a pipeline with
gaps between the anode segments which comprises
placing a mold having a frustro-conical shape on each end of the anode with the
base of the frustrum around the end of each tapered end of the anode and the frustrum
terminating at the outside surface of the pipeline,
clamping the proximal end of each mold around the anode and clamping the distal
end of each mold around the pipeline to form a cavity between the mold and the pipeline
at each end of the anode,
enclosing all but one of the gaps to form cavities between the anode segments,
positioning the unclosed gap so that it faces upward,
injecting a mixture of unreacted liquid components of a rapid setting elastomeric
polymer into the unclosed gap until all the cavities and the unclosed gap are filled,
allowing the components to react until the polymer sets up, and
removing the molds.
9. A method as defined by claim 8 and including placing a mat of fibrous material around
the pipeline adjacent each end of the anode before the frustro-conical mold is installed.
10. A method as defined by claim 8 and including placing a mat of fibrous material around
the inside of the mold before the mold is installed.
11. A method as defined by claim 8 wherein the polymeric material is a polyurethane composition
which sets up in no more than about five minutes.
12. A method as defined by claim 8 wherein the polymeric material is the reaction product
of
A. an amine initiated polyol having an OH equivalent weight of from about 50 to about
250,
B. an organic polyisocyanate,
C. a liquid modifier having a boiling point above about 150°C,
D. at least one polyurethane catalyst, and
E. an organic carbonate liquid modifier.
13. A method as defined by claim 8 wherein the polymeric material is the reaction product
of
A. an amine terminated polyether which has an equivalent weight in the range of about
50 to about 100,
B. an organic polyisocyanate,
C. a liquid modifier having a boiling point above about 150°C,
D. at least one polyurea catalyst, and
E. an organic carbonate liquid modifier.
14. A method as defined by claim 8 wherein the polymeric material is the reaction product
of approximately equal parts by volume of
A. a mixture of a liquid organic polyisocyanate, and an aromatic petroleum distillate
having a flash point of at least 93°C (200°F) and a liquid organic carbonate, the
weight of distillate being from about 30% to about 70%, the weight of organic carbonate
being from about 10% to about 30%, both based on the weight of polyisocyanate,
B. a mixture of an amine initiated polyol having an OH equivalent weight of from about
50 to about 250, an aromatic petroleum distillate having a flash point of at least
93°C (200°F), a liquid organic carbonate and at least one polyurethane catalyst, the
weight of distillate being from about 150% to about 300%, the weight of organic carbonate
being from about 10% to about 30%, all based on the weight of the polyol, and the
amount of catalyst being selected so as to achieve a set time of not more than about
five minutes.
1. Schutz für eine eine Pipeline umgreifende segmentierte Anode mit entgegengesetzten
Enden, die sich in Richtung auf die Pipeline verjüngen, wobei der Schutz versehen
ist mit
einer an jedem Ende der Anode an der betreffenden Stelle geformten elastomeren Polymeranordnung,
welche die Außenform eines Kegelstumpfes hat, wobei die Grundfläche des Kegels das
verjüngte Ende der Anode umgreift und der Stumpf am Durchmesser der Pipeline endet.
2. Schutz nach Anspruch 1 mit innerhalb der Anordnung benachbart dem Innenumfang der
Anordnung vorgesehenem Verstärkungsmaterial.
3. Schutz nach Anspruch 2 mit innerhalb der Anordnung benachbart dem Außenumfang der
Anordnung vorgesehenem Verstärkungsmaterial.
4. Schutz nach einem der Ansprüche 2 und 3, bei dem das Verstärkungsmaterial eine Fasermatte
ist.
5. Schutz nach Anspruch 1, bei dem der Werkstoff des Schutzes die Zwischenräume zwischen
den Segmenten der Anode ausfüllt.
6. Schutz nach Anspruch 1, bei dem das polymere Material eine Polyurethanzusammensetzung
ist, die in nicht mehr als etwa fünf Minuten erhärtet.
7. Schutz nach Anspruch 1, bei dem das polymere Material eine Polyharnstoffzusammensetzung
ist, die in nicht mehr als etwa fünf Minuten erhärtet.
8. Verfahren zur Bildung eines Schutzes für eine eine Pipeline umgreifende segmentierte
Anode, wobei zwischen den Anodensegmenten Zwischenräume vorhanden sind, bei dem
eine Form von kegelstumpfförmiger Gestalt auf jedes Ende der Anode aufgesetzt wird,
wobei die Grundfläche des Kegelstumpfes jeweils das verjüngte Ende der Anode umgreift
und der Stumpf an der Außenfläche der Pipeline endet,
das proximale Ende jeder Form um die Anode herum festgeklemmt wird und das distale
Ende jeder Form um die Pipeline herum festgeklemmt wird, um zwischen der Form und
der Pipeline an jedem Ende der Anode einen Hohlraum zu bilden,
bis auf einen alle Zwischenräume umschlossen werden, um zwischen den Anodensegmenten
Hohlräume zu bilden,
der nichtverschlossene Zwischenraum so positioniert wird, daß er nach oben weist,
ein Gemisch aus nichtumgesetzten flüssigen Komponenten eines rasch erhärtenden elastomeren
Polymers in den nichtverschlossenen Zwischenraum injiziert wird, bis alle Hohlräume
und der nichtverschlossene Zwischenraum ausgefüllt sind,
den Komponenten Gelegenheit zur Umsetzung gegeben wird, bis das Polymer erhärtet ist
und
die Formen abgenommen werden.
9. Verfahren nach Anspruch 8, bei dem eine Matte aus Fasermaterial um die Pipeline herum
benachbart jedem Ende der Anode angeordnet wird, bevor die kegelstumpfförmige Form
installiert wird.
10. Verfahren nach Anspruch 8, bei dem eine Matte aus Fasermaterial um die Innenseite
der Form herum angeordnet wird, bevor die Form installiert wird.
11. Verfahren nach Anspruch 8, bei dem das polymere Material eine Polyurethanzusammensetzung
ist, die in nicht mehr als etwa fünf Minuten erhärtet.
12. Verfahren nach Anspruch 8, bei dem das polymere Material das Reaktionsprodukt der
folgenden Stoffe ist:
A. einem amin-initiierten Polyol mit einem OH-Äquivalentgewicht von etwa 50 bis etwa
250,
B. einem organischen Polyisocyanat,
C. einem flüssigen Modifikationsmittel mit einem Siedepunkt über etwa 150 °C,
D. mindestens einem Polyurethankatalysator, und
E. einem organischen Karbonat-Flüssigmodifikationsmittel.
13. Verfahren nach Anspruch 8, bei dem das polymere Material das Reaktionsprodukt der
folgenden Stoffe ist:
A. einem mit Amin abgeschlossenen Polyether, der ein Äquivalentgewicht im Bereich
von etwa 50 bis etwa 100 hat,
B. einem organischen Polyisocyanat,
C. einem flüssigen Modifikationsmittel mit einem Siedepunkt von über etwa 150°C,
D. mindestens einem Polyharnstoffkatalysator, und
E. einem organischen Karbonat-Flüssigmodifikationsmittel.
14. Verfahren nach Anspruch 8, bei dem das polymere Material das Reaktionsprodukt von
näherungsweise gleichen Volumenteilen der folgenden Stoffe ist:
A. einem Gemisch aus flüssigem organischem Polyisocyanat und einem aromatischen Erdöldestillat
mit einem Flammpunkt von mindestens 93 °C (200 °F) und einem flüssigen organischen
Karbonat, wobei, jeweils basierend auf dem Gewicht des Polyisocyanats, das Gewicht
des Destillats zwischen etwa 30 % und etwa 70 % beträgt und das Gewicht des organischen
Karbonats etwa 10 % bis etwa 30 % beträgt,
B. einem Gemisch aus einem amin-initiierten Polyol mit einem OH-Äquivalentgewicht
von etwa 50 bis etwa 250, einem aromatischen Erdöldestillat mit einem Flammpunkt von
mindestens 93 °C (200 °F), einem flüssigen organischen Karbonat und mindestens einem
Polyurethankatalysator, wobei, bezogen auf das Gewicht des Polyols, das Gewicht des
Destillats zwischen etwa 150 % und etwa 300 % liegt und das Gewicht des organischen
Karbonats zwischen etwa 10 % und etwa 30 % liegt, und wobei die Menge des Katalysators
so gewählt ist, daß eine Erhärtungsdauer von nicht mehr als etwa fünf Minuten erzielt
wird.
1. Protecteur pour une anode divisée en segments, entourant une canalisation, ladite
anode ayant des extrémités opposées qui sont effilées vers la canalisation, comportant
une structure polymérique élastomérique moulée en place à chaque extrémité de l'anode,
ladite structure ayant la forme extérieure du tronc d'un cône dont la base entoure
l'extrémité effilée de l'anode, le tronc se terminant au diamètre de la canalisation.
2. Protecteur selon la revendication 1, comprenant une matière de renfort à l'intérieur
de ladite structure, adjacente à la circonférence intérieure de ladite structure.
3. Protecteur selon la revendication 2, comprenant une matière de renfort à l'intérieur
de ladite structure, adjacente à la circonférence extérieure de ladite structure.
4. Protecteur selon l'une des revendications 2 et 3, dans lequel la matière de renfort
est un mat fibreux.
5. Protecteur selon la revendication 1, dans lequel la matière du protecteur remplit
les espaces entre les segments de l'anode.
6. Protecteur selon la revendication 1, dans lequel la matière polymérique est une composition
de polyuréthanne qui prend en environ cinq minutes, au maximum.
7. Protecteur selon la revendication 1, dans lequel la matière polymérique est une composition
de polyurée qui prend en environ cinq minutes au maximum.
8. Procédé pour former un protecteur pour une anode divisée en segments entourant une
canalisation, avec des espaces entre les segments de l'anode, qui comprend les étapes
dans lesquelles
on met en place un moule ayant une forme tronconique sur chaque extrémité de l'
anode, la base du tronc entourant le bout de chaque extrémité effilée de l'anode et
le tronc se terminant à la surface extérieure de la canalisation,
on serre l'extrémité proximale de chaque moule autour de l'anode et on serre l'extrémité
distale de chaque moule autour de la canalisation pour former une cavité entre le
moule et la canalisation à chaque extrémité de l'anode,
on ferme tous les espaces sauf un pour former des cavités entre les segments de
l'anode,
on positionne l'espace non fermé afin qu'il soit tourné vers le haut,
on injecte un mélange de constituants liquides, n'ayant pas réagi, d'un polymère
élastomérique à prise rapide dans l'espace non fermé jusqu'à ce que toutes les cavités
et l'espace non fermé soient remplis,
on permet aux constituants de réagir jusqu'à ce que le polymère prenne, et
on enlève les moules.
9. Procédé selon la revendication 8, comprenant la mise en place d'un mat de matière
fibreuse autour de la canalisation, à proximité immédiate de chaque extrémité de l'anode,
avant la pose du moule tronconique.
10. Procédé selon la revendication 8, comprenant la mise en place d'un mat de matière
fibreuse autour de l'intérieur du moule avant la pose du moule.
11. Procédé selon la revendication 8, dans lequel la matière polymérique est une composition
de polyuréthanne qui prend en environ cinq minutes au maximum.
12. Procédé selon la revendication 8, dans lequel la matière polymérique est le produit
de réaction de
A. un polyol amorcé par une amine ayant un poids équivalent d'hydroxyde d'environ
50 à environ 250,
B. un polyisocyanate organique,
C. un modificateur liquide ayant un point d'ébullition supérieur à environ 150°C,
D. au moins un catalyseur pour polyuréthanne,
E. un modificateur liquide à carbonate organique.
13. Procédé selon la revendication 8, dans lequel la matière polymérique est le produit
de réaction de
A. un polyéther terminé par une amine qui a un poids équivalent dans la plage d'environ
50 à environ 100,
B. un polyisocyanate organique,
C. un modificateur liquide ayant un point d'ébullition supérieur à environ 150°C,
D. au moins un catalyseur pour polyurée,
E. un modificateur liquide à carbonate organique.
14. Procédé selon la revendication 8, dans lequel la matière polymérique est le produit
de réaction de parts approximativement égales en volume de
A. un mélange d'un polyisocyanate organique liquide et d'un distillat de pétrole aromatique
ayant un point d'éclair d'au moins 93°C (200°F) et d'un carbonate organique liquide,
le poids de distillat étant d' environ 30 % à environ 70 %, le poids de carbonate
organique étant d'environ 10 % à environ 30 %, tous deux basés sur le poids du polyisocyanate.
B. un mélange d'un polyol amorcé par une amine ayant un poids équivalent d' hydroxyde
d'environ 50 à environ 250, un distillat de pétrole aromatique ayant un point d'éclair
de 93°C (200°F), un carbonate organique liquide et au moins un catalyseur pour polyuréthanne,
le poids de distillat étant d'environ 150 % à environ 300 %, le poids de carbonate
organique étant d'environ 10 % à environ 30 %, tous basés sur le poids du polyol,
et la quantité de catalyseur étant choisie de façon à établir un temps de prise ne
dépassant pas environ cinq minutes.