(19)
(11) EP 0 518 264 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
06.12.1995 Bulletin 1995/49

(21) Application number: 92109700.2

(22) Date of filing: 09.06.1992
(51) International Patent Classification (IPC)6C23F 13/18, C08G 18/08, C08K 5/04, F16L 58/00

(54)

Anode protector

Schutz für Anode

Protecteur pour anode


(84) Designated Contracting States:
AT BE CH DE DK ES FR GB GR IT LI LU MC NL PT SE

(30) Priority: 14.06.1991 US 715363

(43) Date of publication of application:
16.12.1992 Bulletin 1992/51

(73) Proprietor: FOAM ENTERPRISES, Inc.
Minneapolis, MN 55441 (US)

(72) Inventors:
  • Dressel, David C.
    Friendswood, TX 77546 (US)
  • McBrien, James H.
    Houston, TX 77042 (US)
  • Wyke, Richard L.
    Missouri City, TX (US)

(74) Representative: Schwan, Gerhard, Dipl.-Ing. 
Elfenstrasse 32
81739 München
81739 München (DE)


(56) References cited: : 
DE-A- 2 648 771
US-A- 4 877 354
US-A- 3 994 794
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] This invention relates to a means and method for preventing damage to galvanic anodes and their electrical connections mounted on a pipeline to be laid in an underwater location.

    BACKGROUND OF THE INVENTION



    [0002] When pipelines are laid under water, particularly offshore in sea water, they are usually protected against galvanic corrosion by attaching galvanic anodes made of materials such as zinc or aluminum. These anodes will preferentially corrode and thereby protect the pipeline against corrosion. Such anodes usually consist of two or more arcuate segments which encircle the pipe. Pipelines larger than about 30 cm (12 inches) in diameter are commonly coated with a thick layer of concrete to weight the pipeline down in the water. On these, the anodes are placed in gaps in the concrete, and do not extend above the surface of the concrete. Smaller pipelines, however, will sink of their own weight, so concrete coatings are not used. On these, the anodes have a substantially larger diameter than the pipeline. The anode protector of this invention is designed for this type of installation.

    [0003] Offshore pipelines are commonly laid from a continuously moving vessel known as a lay barge. On some lay barges the joints of pipe making up the pipeline are welded together on the barge. On others, known as reel type lay barges, the joints of pipe are welded together on shore and coiled up in a coil as much as 91,4 m (300 feet) in diameter on the lay barge. The anodes are attached to the pipeline while it is still on shore or after it is put on the lay barge. In either case, the pipeline is continuously fed off the stern of the barge as the barge moves forward in the water. The forward motion of the barge causes the pipeline to be pulled off the stern of the barge by the weight of the pipe depending from the barge. To facilitate movement of the pipeline on the deck of the steel barge, it is sometimes supported on two or more sets of rollers which are mounted on the deck. Each set of rollers may consist of two pairs of automobile wheels with rubber tires set to engage and support the pipeline. The pipeline then moves down an elongate cradle, or "stinger", which extends rearwardly and downwardly from the lay barge toward the bed of the body of water. In some cases, the weight of pipe depending from the barge is great enough to pull the pipeline off the barge too fast. In such cases a tensioning device is used to restrain the pipeline movement. Such tensioning devices may consist of spring-loaded tracks engaging the pipe, or sets of automobile tires, in either case with brakes applied as necessary to hold the pipe back.

    [0004] It will be appreciated that due to wind, wave and current action there is often some lateral and vertical movement of the barge which makes it impossible to draw the pipeline off the barge in a smooth straight line at all times. The erratic motions produced under such circumstances often causes shock blows to the galvanic anodes as they pass over the rollers and down the stinger. Such shock blows tend to damage and tear the anodes loose from the pipeline. Whenever an anode is torn loose, it is necessary to stop the barge movement, weld the anode back on, and then restart the barge, all at great expense to the pipe laying operation.

    [0005] In addition, the tensioning devices cannot pass over the anodes, so it is necessary to either put the anodes on after the pipe passes through the tensioner, or use two tensioning devices. If the latter option is chosen, every time an anode is reached during the laying of the pipeline, it is necessary to attach a second tensioning device on the other side of the anode, and then release the first tensioning device until the anode passes through. This is also a time-consuming and expensive operation. However, if it is not done, the axial load of the tensioner on the anode would tear it loose from the pipe. The alternative of welding the anodes on after the pipe goes through the tensioner is equally objectionable, because it slows down the laying of the pipe.

    Summary of the Invention



    [0006] It is an object of this invention to provide a means and method for protecting the galvanic anodes on pipeline from being damaged during the laying of the pipeline.

    [0007] Another object of the invention is to improve the corrosion protection of the pipeline adjacent to galvanic anodes.

    [0008] Still another object of the invention is to provide a means for improving the bond between the anode and the pipe.

    [0009] These and other objects of the invention are achieved according to the present invention by providing a molded in place taper at each end of each anode. The taper is made from a tough, fast setting polymer which will set up in a short time, often as little as three to five minutes, so that the pipe laying operation is not delayed. In a preferred embodiment the polymer is a fast setting polyurethane, having a low viscosity prior to polymerization, which not only forms the molded taper, but fills the space between the anode segments, and flows between the anode segments and the pipe. This material adheres to the pipe as well as to the anode material, so that it provides an additional corrosion barrier and bonds the anode segments to the pipe.

    Brief Description of the Drawings



    [0010] 

    Figure 1 is a plan view of the stern end of a lay barge showing a pipeline being laid from the barge;

    Figure 2 is a vertical sectional view of a portion of the pipeline shown in Figure 1;

    Figure 3 is a sectional view of a portion of the pipeline showing a galvanic anode and one embodiment of the tapered protector of this invention;

    Figure 4 is a vertical sectional view taken at line 4-4 of Figure 3; and

    Figure 5 is a vertical sectional view showing one embodiment of the method for applying the tapered anode protector of this invention.



    [0011] As shown in Figure 1 of the drawing, the pipeline 10 is being laid from the barge 12. A stinger 14 extends outwardly and downwardly from the stern 16 of the barge, with the pipeline resting on the rollers which comprise cross members 18 of the stinger and moving down these cross members as the barge moves forwardly in the water. On the deck of the barge the pipeline is supported by two sets of rollers 20. A galvanic anode 22 is mounted on the pipeline with an anode protector 24 on each end of the anode.

    [0012] As shown in Figure 3, the anode 22 consists of two arcuate anode segments 26 which are held together around the pipe 10 by means of steel straps 28 with ends 30 protruding into the two gaps between the edges of the anode segments. A "pigtail" 32 consists of an electrically conducting wire which is welded to the strap ends 30 at 34 and welded to the pipeline at 36. The anode segments are made of a material which is higher on the electromotive scale than iron, and commonly are made of zinc or aluminum. In the drawing, the segments are tapered at 38 at each end, each taper ending in a wall 40 which is perpendicular to the pipeline. Some anode segments, however, are not tapered, but are squared off at the ends.

    [0013] According to this invention, a tapered protector 42 encircles the pipeline and encloses each end of the anode. The outer surface of each protector is tapered in a straight line from its intersection with the pipeline to a point on the taper 38 of each anode segment, enclosing the surface 40 and at least a portion of the taper 38 of the anode. The protector thereby provides a continuous tapered surface from the pipeline to the outer circumference of the anode segments.

    [0014] In the embodiment shown in the drawing, the protector is formed from a cast in place fast setting elastomeric polyurethane. Preferably the protector also includes reinforcement adjacent the pipe surface, and it may also include reinforcement adjacent the outer surface of the protector. Such reinforcement may, for example, comprise a glass fiber mat or other reinforcing material which will reduce the possibility of cracking or fracture of the protector when it is hit by a hard blow. In the drawing the outer reinforcement is shown at 44 and the inner reinforcement adjacent the surface of the pipe is shown at 46.

    [0015] The protector of this invention is made of a fast setting elastomeric polymer which will set up in a few minutes so that the pipe can be handled without fear of damage to the anode protector. Preferred polymers are rapid setting solid polyurethanes, as for example those prepared by the reaction of the polyhydroxyl containing compounds and the organic polyisocyanates described in U.S. Patents 3,983,064, 4,154,716 and 4,246,363. Other suitable polymers include the rapid setting polyureas, for example those prepared by the reaction of amine terminated polyethers and the organic polyisocyanates described in U. S. Patent No. 4,474,900.

    [0016] The compositions of this invention preferably also include a liquid modifier, such as those described in the aforesaid patents. In addition, the compositions preferably include a liquid organic carbonate, and a sufficient amount of one or more catalysts to insure that the composition will set up in not more than about five minutes.

    [0017] The reactants to produce these polymers have a low viscosity, not greater than about 100 centipoises, before polymerization, so that when they are fed into a mold to form the anode protectors around an anode, they will easily completely wet filler and reinforcing materials, and they will flow into very small clearances between the anode segments and the pipe, so that when the polymer sets up, it provides corrosion protection to the pipe and also increases the bond of the anode segments to the pipe.

    [0018] In preparing the preferred polyurethanes, preferably an amine initiated polyol is used and more preferably a polyol is selected which has a hydroxyl number in the range of about 600 to about 900 and a minimum functionality of 4. One such material which can be obtained from Dow Chemical Company at Freeport, Texas is sold under the trademark Voranol 800 and is the product of reacting ethylene diamine with 3 parts of propylene oxide and one part of ethylene oxide.

    [0019] For the rapid setting polyureas, it is preferable to use an amine terminated polyether which has an equivalent weight in the range of 50 to 100 and a minimum functionality of 3.0. One such material which can be obtained from Texaco Chemical Co. is sold under the trademark JEFFAMINE T-403 and is fully described in U. S. Patent No. 4,474,900.

    [0020] The polymeric isocyanate used is preferably one which has a high vapor pressure for safety purposes. Dow Chemical Company sells a suitable material under the trademark PAPI 27 which is a crude polymeric isocyanate containing some methylene bis phenyl isocyanate and 50-60% polyethylene polyphenyl isocyanate.

    [0021] The liquid modifier used is preferably a heavy aromatic solvent naphtha consisting primarily of C9 to C11 aromatic hydrocarbons. Such a product is available from Shell Chemical Company under the designation SC150 Solvent.

    [0022] The liquid organic carbonate used may be one of those described in Patent No. 4,154,716. Propylene carbonate has been found to give good results. The organic carbonates are known as plasticizers, and in the composition of this invention they reduce the propensity of the composition to shrink as it cures, and therefore reduces the tendency of the product to crack under stresses produced during curing. Other plasticizers which have been tried do not produce this advantageous result.

    [0023] The reactants for preparing the composition of the invention are preferably prepared as two components. Component A consists of the polymeric isocyanate combined with the liquid modifier and a liquid organic carbonate. Component B consists of the polyhydroxyl compound or polyether combined with the liquid modifier and a small percentage of the liquid organic carbonate, together with an amount of catalyst sufficient to insure that the composition will set up in no more than about five minutes.

    [0024] The catalyst used for polyurethanes may be any of the well known catalysts for polyurethane. A number of such catalysts are described in Patent No. 4,246,363. The preferred catalysts for the polyurethane composition of this invention are approximately 0.1% to about 0.5% of a 1-2 mixture of triethylene diamine and dipropylene glycol together with about 0.01% to about 0.04% of an alkyl tin mercaptide such as that sold by Witco Chemical Company as their UL-22 catalyst.

    [0025] The ingredients of Components A and B are mixed separately and held at essentially ambient temperature until ready for use, although they should be protected from extreme cold or extreme heat, because temperature affects the speed of reaction. In use, the two components are mixed, preferably in a blending valve, as they are pumped into the mold where the product of the invention is to be made.

    Example 1:



    [0026] Component A is prepared by mixing 27 kg (60 pounds) of a polyisocyanate sold under the trademark PAPI 27 by Dow Chemical Company, 13.6 kg (30 pounds) of Shell Chemical Company's SC-150 Solvent, and 4.5 kg (10 pounds) of propylene carbonate. Component B is prepared by mixing 14 kg (31 pounds) of Dow Chemical Company's Voranol 800, 29 kg (64 pounds) of the SC-150 Solvent, 2.3 kg (5 pounds) of propylene carbonate, 36 g (0.08 pounds) of a catalyst consisting of 1/3 triethylenediamine and 2/3 dipropylene glycol, and 0.9 g (0.002 pounds) of an alkyl tin mercaptide sold by Witco Chemical Company under the designation UL-22 catalyst. The two components are kept separate from each other until they are to be used, and are kept at atmospheric temperature. When the product is to be molded, separate pumps are used to pump the components into a mixing valve, where they are mixed together and then fed into a mold made of polyethylene sheet, until the mold is filled. After a wait of five minutes, the mold is removed, leaving a solid tapered protector which is highly resistant to injury from sharp blows. The protector is also securely adhered to the pipe and to the anode.

    Example 2:



    [0027] In preparing a polyurea according to this invention Component A is preparing by mixing 29 kg (64 pounds) of the PAPI 27 polyisocyanate, 11.8 kg (26 pounds) of SCI50 solvent, and 4.5 kg (10 pounds) of propylene carbonate. Component B is prepared by mixing 14 kg (31 pounds) of JEFFAMINE T-403, 29 kg (64 pounds) of the SC150 solvent, 2.3 kg (5 pounds) of propylene carbonate, 36 g (0.08 pound) of catalyst consisting of 1/3 triethylenediamine and 2/3 dipropylene glycol, and 0.9 g (0.002 pound) of Witco's UL-22 catalyst. The components are handled the same way as in Example 1, producing a fast-setting polyurea. Five minutes after pouring into the mold, the mold is removed, resulting in a solid tapered protector which is highly resistant to injury by sharp blows.

    [0028] Figure 5 shows a suitable mold structure and a schematic drawing of a mixing valve for providing the mixture of components to the mold. The value 50 includes an inlet 52 for one of the components, an inlet 54 for the other component, an air inlet 56 and an outlet 58. The valve is suspended with the outlet 58 above one of the gaps between two adjacent anode segments 22. The tapered protector is formed by a piece of sheet material 60 which is wrapped around the pipe and the end of the anode and held in place by means of an adhesive tape or straps 62 and 64. An adhesive tape such as duct tape works well for this purpose. If desired, a sheet of reinforcing material, such as a mat of glass fiber, may be wrapped around the pipe adjacent the end of the anode before the mold sheet 60 is installed. A further sheet of reinforcing material may be applied around the interior surface of the mold. The mold sheet may be made of polyethylene, polypropylene, or any of the other suitable demoldable materials, such as those described in Patent No. 3,983,064. Alternatively, the mold may be made of two pieces of sheet steel which are hinged together and clamped around the pipe. The steel mold will require a release agent, such as wax or oil, to prevent it from sticking to the molded protector. Preferably, a sheet of corrugated paperboard is used as a release membrane. The paperboard is fitted within the steel mold so that the polyurethane composition is prevented from contacting the mold. The paperboard is biodegradable, so may be left on the completed anode protector.

    [0029] A piece of adhesive tape 66 may be placed across the lower gap between the anode segments 22 and strips of reinforcing material may be placed on the pipe and on the tape 66. Such reinforcing material may also be placed on the pipe in the upper gap between the anodes.

    [0030] When the molds are in place, the two components A and B are then pumped through the conduits 52 and 54 and are mixed within the valve 50 and the mixture deposited in the upper gap. This mixture has a very low viscosity, usually not greater than about 100 centipoises, so that it flows readily into the space confined within the mold sheets 60 and the tape 66 and easily permeates the reinforcing material. When the mold has been filled to the top of the upper gap, flow is stopped and a piece of reinforcing material, if desired, is placed on top of the liquid material to close the top of the upper gap. The valve may then be cleaned out by blowing air through the conduit 56 in order to prevent the material from solidifying within the valve and the conduits. A check valve 59 prevents the liquid components from entering the air inlet conduit 56.

    [0031] After the mold is filled, the composition will set in a very short time, preferably not over about 5 minutes, and the mold sheets can then be removed. The product is a smooth tapered impact resistant protector for the ends of the anode segments. Because the polyurethane has a high adhesive strength on the steel pipe as well as the anode, the protector helps to prevent the anode from being damaged or knocked loose from the pipe, or from sliding along the pipe. Its ability to prevent such damage is enhanced by allowing the polyurethane to flow into the space between the anode segments and the pipe so that it acts as a glue to hold the anode segments to the pipe. In addition, the smooth taper insures that the anode can ride down the stinger without hanging up on the cross members. When tensioners are required, they can ride over the anodes, so only one tensioner is required, and the anodes can be attached before the pipeline passes through the tensioner.

    [0032] This invention is not limited to the embodiments shown and described, but instead extends to all variations which are included within the scope of the following claims.


    Claims

    1. A protector for a segmented anode encircling a pipeline, said anode having opposed ends which are tapered toward the pipeline, comprising
       a molded in place elastomeric polymeric structure at each end of the anode, said structure having the external shape of the frustrum of a cone with the base of the cone encircling the tapered end of the anode, and the frustrum terminating at the diameter of the pipeline.
     
    2. A protector as defined by claim 1, and including reinforcing material within said structure adjacent the inner circumference of said structure.
     
    3. A protector as defined by claim 2, and including reinforcing material within said structure adjacent the outer circumference of said structure.
     
    4. A protector as defined by either of claims 2 and 3 in which the reinforcing material is a fibrous mat.
     
    5. A protector as defined by claim 1 in which the material of the protector fills the spaces between the segments of the anode.
     
    6. A protector as defined by claim 1 in which the polymeric material is a polyurethane composition which sets up in no more than about five minutes.
     
    7. A protector as defined by claim 1 in which the polymeric material is a polyurea composition which sets up in no more than about five minutes.
     
    8. A method for forming a protector for a segmented anode encircling a pipeline with gaps between the anode segments which comprises
       placing a mold having a frustro-conical shape on each end of the anode with the base of the frustrum around the end of each tapered end of the anode and the frustrum terminating at the outside surface of the pipeline,
       clamping the proximal end of each mold around the anode and clamping the distal end of each mold around the pipeline to form a cavity between the mold and the pipeline at each end of the anode,
       enclosing all but one of the gaps to form cavities between the anode segments,
       positioning the unclosed gap so that it faces upward,
       injecting a mixture of unreacted liquid components of a rapid setting elastomeric polymer into the unclosed gap until all the cavities and the unclosed gap are filled,
       allowing the components to react until the polymer sets up, and
       removing the molds.
     
    9. A method as defined by claim 8 and including placing a mat of fibrous material around the pipeline adjacent each end of the anode before the frustro-conical mold is installed.
     
    10. A method as defined by claim 8 and including placing a mat of fibrous material around the inside of the mold before the mold is installed.
     
    11. A method as defined by claim 8 wherein the polymeric material is a polyurethane composition which sets up in no more than about five minutes.
     
    12. A method as defined by claim 8 wherein the polymeric material is the reaction product of

    A. an amine initiated polyol having an OH equivalent weight of from about 50 to about 250,

    B. an organic polyisocyanate,

    C. a liquid modifier having a boiling point above about 150°C,

    D. at least one polyurethane catalyst, and

    E. an organic carbonate liquid modifier.


     
    13. A method as defined by claim 8 wherein the polymeric material is the reaction product of

    A. an amine terminated polyether which has an equivalent weight in the range of about 50 to about 100,

    B. an organic polyisocyanate,

    C. a liquid modifier having a boiling point above about 150°C,

    D. at least one polyurea catalyst, and

    E. an organic carbonate liquid modifier.


     
    14. A method as defined by claim 8 wherein the polymeric material is the reaction product of approximately equal parts by volume of

    A. a mixture of a liquid organic polyisocyanate, and an aromatic petroleum distillate having a flash point of at least 93°C (200°F) and a liquid organic carbonate, the weight of distillate being from about 30% to about 70%, the weight of organic carbonate being from about 10% to about 30%, both based on the weight of polyisocyanate,

    B. a mixture of an amine initiated polyol having an OH equivalent weight of from about 50 to about 250, an aromatic petroleum distillate having a flash point of at least 93°C (200°F), a liquid organic carbonate and at least one polyurethane catalyst, the weight of distillate being from about 150% to about 300%, the weight of organic carbonate being from about 10% to about 30%, all based on the weight of the polyol, and the amount of catalyst being selected so as to achieve a set time of not more than about five minutes.


     


    Ansprüche

    1. Schutz für eine eine Pipeline umgreifende segmentierte Anode mit entgegengesetzten Enden, die sich in Richtung auf die Pipeline verjüngen, wobei der Schutz versehen ist mit
    einer an jedem Ende der Anode an der betreffenden Stelle geformten elastomeren Polymeranordnung, welche die Außenform eines Kegelstumpfes hat, wobei die Grundfläche des Kegels das verjüngte Ende der Anode umgreift und der Stumpf am Durchmesser der Pipeline endet.
     
    2. Schutz nach Anspruch 1 mit innerhalb der Anordnung benachbart dem Innenumfang der Anordnung vorgesehenem Verstärkungsmaterial.
     
    3. Schutz nach Anspruch 2 mit innerhalb der Anordnung benachbart dem Außenumfang der Anordnung vorgesehenem Verstärkungsmaterial.
     
    4. Schutz nach einem der Ansprüche 2 und 3, bei dem das Verstärkungsmaterial eine Fasermatte ist.
     
    5. Schutz nach Anspruch 1, bei dem der Werkstoff des Schutzes die Zwischenräume zwischen den Segmenten der Anode ausfüllt.
     
    6. Schutz nach Anspruch 1, bei dem das polymere Material eine Polyurethanzusammensetzung ist, die in nicht mehr als etwa fünf Minuten erhärtet.
     
    7. Schutz nach Anspruch 1, bei dem das polymere Material eine Polyharnstoffzusammensetzung ist, die in nicht mehr als etwa fünf Minuten erhärtet.
     
    8. Verfahren zur Bildung eines Schutzes für eine eine Pipeline umgreifende segmentierte Anode, wobei zwischen den Anodensegmenten Zwischenräume vorhanden sind, bei dem
    eine Form von kegelstumpfförmiger Gestalt auf jedes Ende der Anode aufgesetzt wird, wobei die Grundfläche des Kegelstumpfes jeweils das verjüngte Ende der Anode umgreift und der Stumpf an der Außenfläche der Pipeline endet,
    das proximale Ende jeder Form um die Anode herum festgeklemmt wird und das distale Ende jeder Form um die Pipeline herum festgeklemmt wird, um zwischen der Form und der Pipeline an jedem Ende der Anode einen Hohlraum zu bilden,
    bis auf einen alle Zwischenräume umschlossen werden, um zwischen den Anodensegmenten Hohlräume zu bilden,
    der nichtverschlossene Zwischenraum so positioniert wird, daß er nach oben weist,
    ein Gemisch aus nichtumgesetzten flüssigen Komponenten eines rasch erhärtenden elastomeren Polymers in den nichtverschlossenen Zwischenraum injiziert wird, bis alle Hohlräume und der nichtverschlossene Zwischenraum ausgefüllt sind,
    den Komponenten Gelegenheit zur Umsetzung gegeben wird, bis das Polymer erhärtet ist und
    die Formen abgenommen werden.
     
    9. Verfahren nach Anspruch 8, bei dem eine Matte aus Fasermaterial um die Pipeline herum benachbart jedem Ende der Anode angeordnet wird, bevor die kegelstumpfförmige Form installiert wird.
     
    10. Verfahren nach Anspruch 8, bei dem eine Matte aus Fasermaterial um die Innenseite der Form herum angeordnet wird, bevor die Form installiert wird.
     
    11. Verfahren nach Anspruch 8, bei dem das polymere Material eine Polyurethanzusammensetzung ist, die in nicht mehr als etwa fünf Minuten erhärtet.
     
    12. Verfahren nach Anspruch 8, bei dem das polymere Material das Reaktionsprodukt der folgenden Stoffe ist:

    A. einem amin-initiierten Polyol mit einem OH-Äquivalentgewicht von etwa 50 bis etwa 250,

    B. einem organischen Polyisocyanat,

    C. einem flüssigen Modifikationsmittel mit einem Siedepunkt über etwa 150 °C,

    D. mindestens einem Polyurethankatalysator, und

    E. einem organischen Karbonat-Flüssigmodifikationsmittel.


     
    13. Verfahren nach Anspruch 8, bei dem das polymere Material das Reaktionsprodukt der folgenden Stoffe ist:

    A. einem mit Amin abgeschlossenen Polyether, der ein Äquivalentgewicht im Bereich von etwa 50 bis etwa 100 hat,

    B. einem organischen Polyisocyanat,

    C. einem flüssigen Modifikationsmittel mit einem Siedepunkt von über etwa 150°C,

    D. mindestens einem Polyharnstoffkatalysator, und

    E. einem organischen Karbonat-Flüssigmodifikationsmittel.


     
    14. Verfahren nach Anspruch 8, bei dem das polymere Material das Reaktionsprodukt von näherungsweise gleichen Volumenteilen der folgenden Stoffe ist:

    A. einem Gemisch aus flüssigem organischem Polyisocyanat und einem aromatischen Erdöldestillat mit einem Flammpunkt von mindestens 93 °C (200 °F) und einem flüssigen organischen Karbonat, wobei, jeweils basierend auf dem Gewicht des Polyisocyanats, das Gewicht des Destillats zwischen etwa 30 % und etwa 70 % beträgt und das Gewicht des organischen Karbonats etwa 10 % bis etwa 30 % beträgt,

    B. einem Gemisch aus einem amin-initiierten Polyol mit einem OH-Äquivalentgewicht von etwa 50 bis etwa 250, einem aromatischen Erdöldestillat mit einem Flammpunkt von mindestens 93 °C (200 °F), einem flüssigen organischen Karbonat und mindestens einem Polyurethankatalysator, wobei, bezogen auf das Gewicht des Polyols, das Gewicht des Destillats zwischen etwa 150 % und etwa 300 % liegt und das Gewicht des organischen Karbonats zwischen etwa 10 % und etwa 30 % liegt, und wobei die Menge des Katalysators so gewählt ist, daß eine Erhärtungsdauer von nicht mehr als etwa fünf Minuten erzielt wird.


     


    Revendications

    1. Protecteur pour une anode divisée en segments, entourant une canalisation, ladite anode ayant des extrémités opposées qui sont effilées vers la canalisation, comportant
       une structure polymérique élastomérique moulée en place à chaque extrémité de l'anode, ladite structure ayant la forme extérieure du tronc d'un cône dont la base entoure l'extrémité effilée de l'anode, le tronc se terminant au diamètre de la canalisation.
     
    2. Protecteur selon la revendication 1, comprenant une matière de renfort à l'intérieur de ladite structure, adjacente à la circonférence intérieure de ladite structure.
     
    3. Protecteur selon la revendication 2, comprenant une matière de renfort à l'intérieur de ladite structure, adjacente à la circonférence extérieure de ladite structure.
     
    4. Protecteur selon l'une des revendications 2 et 3, dans lequel la matière de renfort est un mat fibreux.
     
    5. Protecteur selon la revendication 1, dans lequel la matière du protecteur remplit les espaces entre les segments de l'anode.
     
    6. Protecteur selon la revendication 1, dans lequel la matière polymérique est une composition de polyuréthanne qui prend en environ cinq minutes, au maximum.
     
    7. Protecteur selon la revendication 1, dans lequel la matière polymérique est une composition de polyurée qui prend en environ cinq minutes au maximum.
     
    8. Procédé pour former un protecteur pour une anode divisée en segments entourant une canalisation, avec des espaces entre les segments de l'anode, qui comprend les étapes dans lesquelles
       on met en place un moule ayant une forme tronconique sur chaque extrémité de l' anode, la base du tronc entourant le bout de chaque extrémité effilée de l'anode et le tronc se terminant à la surface extérieure de la canalisation,
       on serre l'extrémité proximale de chaque moule autour de l'anode et on serre l'extrémité distale de chaque moule autour de la canalisation pour former une cavité entre le moule et la canalisation à chaque extrémité de l'anode,
       on ferme tous les espaces sauf un pour former des cavités entre les segments de l'anode,
       on positionne l'espace non fermé afin qu'il soit tourné vers le haut,
       on injecte un mélange de constituants liquides, n'ayant pas réagi, d'un polymère élastomérique à prise rapide dans l'espace non fermé jusqu'à ce que toutes les cavités et l'espace non fermé soient remplis,
       on permet aux constituants de réagir jusqu'à ce que le polymère prenne, et
       on enlève les moules.
     
    9. Procédé selon la revendication 8, comprenant la mise en place d'un mat de matière fibreuse autour de la canalisation, à proximité immédiate de chaque extrémité de l'anode, avant la pose du moule tronconique.
     
    10. Procédé selon la revendication 8, comprenant la mise en place d'un mat de matière fibreuse autour de l'intérieur du moule avant la pose du moule.
     
    11. Procédé selon la revendication 8, dans lequel la matière polymérique est une composition de polyuréthanne qui prend en environ cinq minutes au maximum.
     
    12. Procédé selon la revendication 8, dans lequel la matière polymérique est le produit de réaction de

    A. un polyol amorcé par une amine ayant un poids équivalent d'hydroxyde d'environ 50 à environ 250,

    B. un polyisocyanate organique,

    C. un modificateur liquide ayant un point d'ébullition supérieur à environ 150°C,

    D. au moins un catalyseur pour polyuréthanne,

    E. un modificateur liquide à carbonate organique.


     
    13. Procédé selon la revendication 8, dans lequel la matière polymérique est le produit de réaction de

    A. un polyéther terminé par une amine qui a un poids équivalent dans la plage d'environ 50 à environ 100,

    B. un polyisocyanate organique,

    C. un modificateur liquide ayant un point d'ébullition supérieur à environ 150°C,

    D. au moins un catalyseur pour polyurée,

    E. un modificateur liquide à carbonate organique.


     
    14. Procédé selon la revendication 8, dans lequel la matière polymérique est le produit de réaction de parts approximativement égales en volume de

    A. un mélange d'un polyisocyanate organique liquide et d'un distillat de pétrole aromatique ayant un point d'éclair d'au moins 93°C (200°F) et d'un carbonate organique liquide, le poids de distillat étant d' environ 30 % à environ 70 %, le poids de carbonate organique étant d'environ 10 % à environ 30 %, tous deux basés sur le poids du polyisocyanate.

    B. un mélange d'un polyol amorcé par une amine ayant un poids équivalent d' hydroxyde d'environ 50 à environ 250, un distillat de pétrole aromatique ayant un point d'éclair de 93°C (200°F), un carbonate organique liquide et au moins un catalyseur pour polyuréthanne, le poids de distillat étant d'environ 150 % à environ 300 %, le poids de carbonate organique étant d'environ 10 % à environ 30 %, tous basés sur le poids du polyol, et la quantité de catalyseur étant choisie de façon à établir un temps de prise ne dépassant pas environ cinq minutes.


     




    Drawing