(19)
(11) EP 0 469 534 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
22.05.1996 Bulletin 1996/21

(21) Application number: 91112763.7

(22) Date of filing: 30.07.1991
(51) International Patent Classification (IPC)6G03G 15/00

(54)

Image forming apparatus having sheet hold-down device

Bilderzeugungsgerät mit Vorrichtung zum Niederhalten von Blättern

Appareil de formation d'images muni d'un dispositif de maintien vers le bas de feuilles


(84) Designated Contracting States:
DE FR GB IT

(30) Priority: 31.07.1990 JP 203324/90

(43) Date of publication of application:
05.02.1992 Bulletin 1992/06

(73) Proprietor: CANON KABUSHIKI KAISHA
Tokyo (JP)

(72) Inventor:
  • Kobayashi, Hiroo, Canon Kabushiki Kaisha
    Ohta-ku, Tokyo (JP)

(74) Representative: Tiedtke, Harro, Dipl.-Ing. et al
Patentanwaltsbüro Tiedtke-Bühling-Kinne & Partner Bavariaring 4
80336 München
80336 München (DE)


(56) References cited: : 
DE-A- 247 214
US-A- 2 991 999
   
  • IBM TECHNICAL DISCLOSURE BULLETIN, vol. 18, no. 7, December 1975, New York, US, pp. 2059-2060 ; D.F. Colglazier et al. : "Variable Size Exit Tray"
  • PATENT ABSTRACTS OF JAPAN vol. 9, no. 186 (P-377)(1909) 2 August 1985 ; & JP-A-60 055 361
  • PATENT ABSTRACTS OF JAPAN vol. 10, no. 153 (M-484)(2209) 3 June 1986 ; & JP-A-61 007 171
   
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description


[0001] The present invention relates to an image forming apparatus having a sheet hold-down device, such as a copying machine, printer and the like, and more particularly it relates to an image forming apparatus having a deeper ejection tray capable of collecting a large number of sheets.

[0002] The DE-A-247 214 and the US-A-2,991,999 show known stacking devices. The device according to DE-A-247 214 comprises a pressing device having a lever operated pressing plate which is urged on the top sheet after each discharge operation of a sheet. The device according to US-A-2,991,999 shows a card stacking and storing device having a pivotable arm one end side of which exerts a constant pressing force against the center of the card stack.

[0003] Recently, in image forming systems such as copying machines, printers and the like, in order to save time for supplying sheets regarding a large number of prints, a stacking capacity for sheets to be supplied has been increased. For example, in a large-sized or middle-sized copying machine, a sheet supply deck having a large sheet stacking capacity has been used, and, even in a small-sized copying machine, a sheet supply cassette having a stacking capacity capable of supplying 500 or more sheets at a time has been used.

[0004] Pursuant to the increase in the sheet stacking capacity, also in the sheet ejecting side of the image forming system, a sheet collecting capacity has been increased to stack a large number of ejected sheets regarding the large number of prints by using a deeper ejection tray arranged at an upper part of the system.

[0005] By the way, if the deeper ejection tray is used to increase the sheet collecting capacity, when a sheet ejected by a pair of ejector rollers is rested on the ejection tray, the distance that a trailing end of the sheet is dropped onto the ejection tray in space will be increased. Consequently, there is a discrepancy in the falling points of the sheets on the ejection tray, thereby worsening the registration of the sheets collected on the ejection tray.

[0006] Incidentally, some image forming systems are of the type that the sheets can be sorted in such a manner that they are shifted (got out of position) in groups on the ejection tray by shifting a pair of ejection rollers in the axial direction or by shifting the ejection tray in a direction perpendicular to a sheet feeding direction. Particularly, in the image forming system of this kind, in order to maintain the sorted condition, the sheets must be collected on the ejection tray with correct registration.

[0007] For this reason, in an image forming system having a deep ejection tray 2 attached to an upper part of a body frame 1 as shown in Fig. 3, there is normally provided a sheet hold-down member 5 for urging or holding down a leading end of the sheet (not shown) before a trailing end of the sheet falls on the ejection tray in order to prevent the movement of the sheet (on the ejection tray) ejected out of the system by means of a pair of ejector rollers 3.

[0008] The conventional sheet hold-down member 5 arranged at the ejection tray portion 2 of the image forming system is pivotally mounted, at its base end, on the body frame 1 via a support shaft 6 for pivotal movement in a direction (shown by the arrow) perpendicular to the surface of the tray, so that the sheet hold-down member can hold the sheet ejected on the ejection tray with a predetermined urging force by its own weight. In this case, the leading end of the sheet ejected out of the system by means of the ejector roller pair 3 is slidingly moved upwardly along the inclined surface of the tray and then is slid into below a bent portion 7 formed on a free end of the hold-down member 5 so that the sheet is held down by the bent portion 7 with the predetermined force.

[0009] As mentioned above, although the sheet hold-down member holds the sheet by its own weight, if the weight of the member is too great, the leading end of the sheet cannot be slid into below the bent portion 7, with the result that the sheets are disordered on the tray, thus preventing the correct stacking of the sheets. Accordingly, the sheet hold-down member 5 is made of a thin molded plate or a fine metal wire or rod to reduce the weight thereof.

[0010] However, since the conventional sheet hold-down member 5 arranged at the ejection tray portion 2 of the image forming system is weak in construction, it is easily deformed or damaged if an operator roughly handles it, with the result that the correct or normal function of the sheet hold-down member will be worsened. Further, since the sheet hold-down member 5 is pivoted around the support shaft 6, as it is lifted in accordance with the increase in the sheets collected on the ejection tray, the urging force of the sheet hold-down member acting on the sheet will be decreased, thus making the sheet holding function unstable.

[0011] On the other hand, in the image forming system having the deeper ejection tray 2, since a large number of sheets can be collected, the operator does not often pay attention to the sheet ejecting condition in comparison with normal image forming systems, and, thus, in many cases, a sheet full load condition is left as it is. Consequently, overejected sheets sent to the ejection tray exceeding its maximum sheet collecting capacity are dropped onto a floor to become dirty or are jammed in the vicinity of the ejector roller pair 3.

[0012] The present invention proceeds from a state of the art as is described above in accordance with the Fig. 3.

[0013] The present invention aims to eliminate the above-mentioned conventional drawbacks, and an object of the present invention is to provide an image forming system having a sheet-hold-down device, which can hold sheets with a constant urging force even when an amount of sheets collected onto an ejection tray is changed and which has a function for detecting a sheet full load condition.

[0014] In order to achieve the above object, the present invention provides an image forming apparatus according to claim 1.

[0015] An embodiment of the present invention is characterized by a sheet hold-down device comprising a sheet hold-down member pivotally mounted, at its base end, on a sheet ejection tray via a support shaft for pivotal movement in a direction perpendicular to a surface of the tray, and a hold-down member biasing means for biasing the sheet hold-down member away from the surface of the tray in opposition to a weight of the sheet hold-down member and for maintaining an urging force of the sheet hold-down member to a constant value so long as the sheet hold-down member is within a predetermined range of its pivotal movement.

[0016] According to claim 5 the sheet hold-down device may include a detection means for detecting the fact that the sheet hold-down member or the sheet hold-down roller is brought into a sheet full load position.

[0017] With the arrangement according to claim 1, the weight of the sheet hold-down member of the sheet hold-down device is relieved or lightened by a biasing force of the hold-down member biasing means. Thus, it is possible to use the sheet hold-down member having a relatively tough or rigid construction which would increase the weight of the member itself.

[0018] The biasing force of the hold-down member biasing means for biasing the sheet hold-down member is changed in accordance with the pivot angle of the sheet hold-down member so that it is decreased as the sheet hold-down member is shifted upwardly. As a result, the sheet hold-down member has always a predetermined urging force at any pivot angle so long as the member is within the predetermined range of its pivotal movement.

[0019] In addition, the detection means of the sheet hold-down device according to claim 5 detects the fact that the sheet ejection tray is completely filled with the sheets. Accordingly, by stopping a sheet supplying operation of the image forming system or by alerting the sheet full load condition to the operator in response to a detection signal from the detection means, it is possible to avoid the overload of the sheets on the tray, thus preventing the sheets from dropping on the floor to become dirty and the jamming of the sheet in the vicinity of the ejector roller pair.

[0020] In the image forming apparatus according to the present invention, it is possible to use a sheet hold-down device which is rigid and is not deformed or damaged and which can always hold the sheets with the constant urging force even when the sheet collecting amount on the tray is changed.

[0021] Further, since the sheet hold-down device according to the embodiment of claim 5 has the detection means for detecting the fact that the sheet hold-down member or the sheet hold-down roller is brought into the sheet full load position, it is possible to stop the operation of the image forming system or alert the sheet full load condition to the operator, in response to the detection signal from the detection means.

Fig. 1 is an elevational sectional view of an image forming system (laser beam printer) according to a preferred embodiment of the present invention;

Fig. 2A is a perspective view of a main portion of the image forming system, and Fig. 2B is a schematic elevational view showing an alteration; and

Fig. 3 is an elevational sectional view a conventional sheet hold-down member arranged at a sheet ejection tray portion of an image forming system.



[0022] The present invention will now be explained in connection with embodiments thereof with reference to the accompanying drawings.

[0023] First of all, a first embodiment of the present invention will be explained.

[0024] First, the image forming apparatus will be briefly described with reference to Fig. 1.

[0025] At a central position within a body frame 7 of the image forming apparatus, there is disposed an image forming means 15 comprising a photosensitive drum 9, a process cartridge 10 incorporating a primary charger, developing device (both not shown) and the like, a transfer roller 11, a laser scanner 12, and a cleaner 13. At a sheet supply side of the image forming means 15, there are disposed a pair of regist rollers 16, a sheet supply roller 17 and a sheet supply cassette 19. On the other hand, at a sheet ejecting side of the image forming means 15, there are disposed a fixing device 23 comprising a pair of fixing rollers 20 and a pair of convey rollers 21, and a pair of ejector rollers 25.

[0026] A sheet S supplied from the sheet supply cassette 19 by the sheet supply roller 17 is sent to an image forming portion (transfer roller 11) of the image forming means 15 by means of the regist roller pair 16, where an image formed on the photosensitive drum is transferred onto the sheet. Then, the transferred image is fixed onto the sheet by the fixing device 23. Thereafter, the sheet S is sent along a sheet feeding path 26 to an upper part of the body frame 7 and then is ejected out of the system by means of the ejector roller pair 25 to be collected on a deeper sheet ejection tray 27. In this case, a leading end of the sheet S ejected out of the system by means of the ejector roller pair 25 is slidingly moved upwardly along an inclined surface 29 of the tray and then is held down by a sheet hold-down device 30 arranged above the ejection tray 27, with a predetermined urging force. In this condition, a trailing end of the sheet S is falling on the tray 27.

[0027] Next, the sheet hold-down device 30 arranged above the ejection tray 27 will be explained with reference to Fig. 2A.

[0028] The sheet hold-down device 30 comprises a sheet hold-down member 32 pivotally supported for pivotal movement around a support shaft 31 in a direction perpendicular to a surface of the tray, and a torsion coil spring (hold-down member biasing means) 43 for biasing the sheet hold-down member 32 away from the surface of the tray (i.e., toward an upward direction in Fig. 1) in opposition to a weight of the member itself.

[0029] The sheet hold-down member 32 is removably mounted on the support shaft 31 which is separately formed from the member. The support shaft 31 comprises a prismatic base portion 31a and a cylindrical drum portion 33 which are integrally connected to each other. In the support shaft 31, the base portion 31a is rotatably supported, at its one end, by a bearing portion 35 formed on the body frame 7, and the drum portion 33 is rotatably supported by a horizontal fixed shaft 37 provided on a side plate 37 formed on the body frame 7.

[0030] The sheet hold-down member 32 is made of molded material as a box-shape having a thick wall so that the sheet hold-down member has a rigid construction. A pair of left and right rollers 39 are rotatably mounted on a lower portion of a free end of the sheet hold-down member 32, and a connection pin 40 is protruded horizontally from a rear end of the sheet hold-down member at its central portion. The sheet hold-down member 32 is mounted on the support shaft 31 by fitting the connection pin 40 into a hole 41 (Fig. 1) formed in the base portion 31a. In this case, the position of the sheet hold-down member 32 is adjusted by rotating the member around the connection pin 40 in a clockwise or anti-clockwise direction so that the left and right rollers 39 correctly contact with the surface of the tray.

[0031] The torsion coil spring 43 is fitted around a peripheral surface of the drum portion 33 of the support shaft 31, and a hook 42 formed on one end of the spring is locked at the drum side and a hook 43a formed on the other end of the spring is locked on a circular adjusting plate 45 rotatably mounted on the fixed shaft 37. An L-shaped positioning hook 47 is formed on an inner surface of the adjusting plate 45. By inserting the hook 47 into one of holes 49 formed in the side plate 36 in a circumferential direction thereof, the adjusting plate 45 can be fixed with respect to the side plate 36. By selecting the hole 49 into which the hook 47 is to be inserted, a spring force of the torsion coil spring 43 for biasing the sheet hold-down member 32 away from the tray surface is varied. Accordingly, when the adjusting plate 45 is fixedly positioned with respect to the side plate 36, the hook 47 is inserted into the hole 49 which provides the spring force in accordance with the weight of the sheet hold-down member 32 itself.

[0032] Such a torsion coil spring 43 affords a predetermined urging force to the sheet hold-down member 32 at any pivot angle of the latter when this member is within a predetermined range of its pivotal movement. The torsion coil spring 43 is so arranged that the return torsion force thereof becomes stronger when the support shaft 31 is rotated in the clockwise direction and weaker when the shaft 31 is rotated in the anti-clockwise direction. The urging force of the sheet hold-down member 32 is selected so that the leading end of the sheet S can slide in below the rollers 39 and the sheet is prevented from moving on the tray. That is to say, when the sheet hold-down member 32 is in the horizontal condition as shown in Fig. 1, since the weight G₁ of the sheet hold-down member acting on the rollers 39 is great, by increasing the left rotational force P₁ of the sheet hold-down member 32 (i.e., force for lifting this member) by means of the coil spring 43, an appropriate urging force (G₁ - P₁) is given to the sheet hold-down member 32. On the other hand, when the sheet hold-down member 32 is in a position shown by a phantom line in Fig. 1, the weight G₂ of the sheet hold-down member acting on the rollers 39 is smaller than the weight G₁ because of the inclination of the sheet hold-down member. In this case, since the torsion coil spring 43 is also rotated in the anti-clockwise direction (to reduce the spring force), the left rotational force P₂ will be smaller than the force P₁. Thus, the spring force is so selected the relation (G₂ - P₂) = (G₁ - P₁) is obtained.

[0033] On the side plate 36, there is disposed a sheet hold-down member detection sensor 50 for detecting the fact that the sheet hold-down member 32 is brought to a sheet full load position. The sheet hold-down detection sensor 50 comprises a light emitting element 51 such as a luminous diode and a light receiving element 52 such as a photo-transister so that, when the light receiving element 52 receives the light from the light emitting element 51, the sensor outputs a detection signal.

[0034] On the other hand, a shield plate 53 for activating the sheet hold-down member detection sensor 50 is arranged on the drum portion 33 of the support shaft 31. The shield plate 53 has a notched portion 55 for passing the light from the light emitting element 51, and shield portions 56, 57 for blocking the light from the light emitting element 51. When the sheet hold-down member 32 does not reach the sheet full load position, the shield portion 56 faces the light emitting element 51 of the detection sensor 50 (sensor OFF); whereas, when the sheet hold-down member 32 reaches the sheet full load position, the notched portion 55 faces the light emitting element 51 of the sensor 50 (sensor ON). Further, the sheet hold-down member 32 exceeds the sheet full load position, the shield portion 57 faces the light emitting element 51 of the sensor 50 (sensor OFF).

[0035] When the sheet hold-down member detection sensor 50 detects the fact that the sheet hold-down member 32 reached the sheet full load position, the sheet supplying operation of the image forming system is stopped, or the sheet full load condition is alerted to the operator. In this way, after the sheet full load condition, the sheet is prevented from falling on a floor or from being jammed in the vicinity of the ejector roller pair 25.

[0036] When the sheet full load condition is reached, the operator can remove the sheets collected on the ejection tray 27 after he detaches the sheet hold-down member 32 from the support shaft 31. When the sheet hold-down member 32 is detached from the support shaft 31, since the support shaft 31 is further rotated by the spring force of the torsion coil spring 43, the shield portion 57 will face the light emitting element 51 of the sheet hold-down member detection sensor 50, thus making the sensor 50 OFF condition.

[0037] In the sheet hold-down device 30 so constructed, before the sheet supplying operation is initiated, the rollers 39 of the sheet hold-down member 32 contact the inclined surface 29 of the ejection tray 27 with the predetermined urging force (condition shown by the solid line in Fig. 1). In this condition, after the predetermined treatment processes has been finished regarding the sheet S within the body frame 7 of the image forming system, the latter is ejected by means of the ejector roller pair 25 onto the ejection tray 27 disposed outside the system. When the sheet S is ejected out of the system by means of the ejector roller pair 25, the leading end of the sheet slidingly moves upwardly along the inclined surface 29 of the ejection tray 27 and then slides in below the rollers 39 of the sheet hold-down member 32 while rotating these rollers. When the leading end of the sheet reaches the predetermined position, it is held by the sheet hold-down member 32 via the rollers 39 with the predetermined urging force.

[0038] In this way, as the sheets S are ejected successively, the number of the sheets collected on the ejection tray 27 (i.e., the sheet collecting amount) is gradually increased, and accordingly, the sheet hold-down member 32 is also gradually pivoted upwardly around the support shaft 31 (condition shown by the phantom line in Fig. 1). In this case, the urging force of the sheet hold-down member 32 for urging the sheet S is always constant at any pivot angle of the sheet hold-down member. When the sheet hold-down member 32 is lifted up to the sheet full load position, the sheet hold-down member detection sensor 50 detects that fact.

[0039] When the sheet hold-down member 32 is dismounted from the support shaft 31 after the sheet full load condition is reached or the image forming system becomes a non-used condition, or when the sheet hold-down member 32 is mounted on the support shaft 31, since the sheet hold-down member 32 is made of the molded material to have the rigid construction, it is not deformed or damaged during the handling of this member.

[0040] In the illustrated embodiment, while the torsion coil spring 43 was used, in place of the torsion coil spring, a tension spring 143 may be used as shown in. Fig. 2B. Regarding this case, an example will be described by using concrete numerical values.

(a) When there is no sheet on the ejection tray 27, the urging force of the sheet hold-down member 32 due to its own weight was 25.9 grams, and when the sheet hold-down member is in the sheet full load condition, the urging force was 24.4 grams, so that the difference in force became about 1.5 grams.

(b) Next, a distance between a center of rotation (shaft 31) of the sheet hold-down member 32 and an attachment position of the spring to the sheet hold-down member was 20 mm, and the spring was lengthened by 5 mm between the no sheet condition and the sheet full load condition. A spring constant K of this spring was 3.24 g/mm. Further, the spring force in the no sheet condition was selected to have a value of 214.9 grams.



[0041] Torques generated by the spring at the center of rotation of the sheet hold-down member 32 would be as follows:

(no sheet condition);

(sheet full load condition).

[0042] Since a length of arm of the sheet hold-down member 32 was 216 mm, the urging forces given by the spring (for urging the sheet) would be as follows:

(no sheet condition);

(sheet full load condition).

(c) Accordingly, from the above (a) and (b), the actual sheet urging forces would be as follows:

(no sheet condition);

(sheet full load condition).
Thus, it is apparent that the urging force is not varied between the no sheet condition and the sheet full load condition.



[0043] Incidentally, the above calculations can also be adopted to the torsion coil spring 43 shown in Fig. 2A, and the spring constant of the coil spring 43 can be selected similarly.


Claims

1. An image forming apparatus comprising:

a sheet ejection open tray (27) on which ejected sheets can be collected; and

a sheet hold-down device (30) including a sheet hold-down member (32) pivotally mounted, at its end side, on said sheet ejection open tray (27) via a support shaft (31) for pivotal movement in a direction transversal to the upper surface (29) of said ejection open tray (27),

characterized by

a hold-down member biasing means (43; 143) for biasing said sheet hold-down member (32) away from said upper surface (29) of said sheet ejection open tray (27) in opposition to the weight of said sheet hold-down member (32) itself and for maintaining an urging force of said sheet hold-down member (32) at a predetermined value level as long as said sheet hold-down member (32) is within a predetermined range of its pivotal movement.


 
2. An image forming apparatus according to claim 1, wherein said hold-down member biasing means (43; 143) comprises a spring means having an elastic force which becomes smaller as said sheet hold-down member (32) is pivoted away from the surface (29) of said sheet ejection open tray (27).
 
3. An image forming apparatus according to claim 2, wherein said sheet hold-down member (32) is stood up as it is pivoted away from the surface (29) of said sheet ejection open tray (27), so that a gravity force of said sheet hold-down member (32) toward the surface (29) of said sheet ejection open tray (27) becomes smaller.
 
4. An image forming apparatus according to claim 3, wherein, when the gravity force of said sheet hold-down member (32) toward the surface (29) of said sheet ejection open tray (27) in a horizontal position of said sheet hold-down member (32) is G₁, the return elastic force of said spring means at that time is P₁, the gravity force of said sheet hold-down member (32) toward the surface (29) of said sheet ejection open tray (27) at a certain pivot angle of said sheet hold-down member (32) is G₂, and the return elastic force of said spring means at that time is P₂, the sheet urging forces are defined by (G₁ - P₁), (G₂ - P₂), respectively, and said spring means is selected so that a relation (G₁ - P₁) = (G₂ - P₂) is obtained.
 
5. An image forming apparatus according to claim 1, further including a detection means (50) for detecting the fact that said sheet hold-down member (32) is brought into a sheet full load position.
 
6. An image forming apparatus according to claim 4, wherein said spring means comprises a torsion coil spring, further including a means for adjusting a torsion force of said torsion coil spring.
 
7. An image forming apparatus according to claim 1, wherein the upper surface (29) of said ejection open tray is inclined so that an ejection side thereof is lower than a non-ejection side; and the predetermined range is within a range between a substantially horizontal state and an inclined state where a pivot end is located lower than the other end.
 


Ansprüche

1. Ein Bilderzeugungsgerät, das umfaßt:

- eine offene Blattaustragschale (27), auf welcher ausgetragene Blätter angesammelt werden können; und

- eine Blatt-Niederhaltevorrichtung (30), die ein an seiner einen Endkante über eine Lagerwelle (31) drehbar für eine Schwenkbewegung in einer zur oberen Fläche (29) der genannten offenen Austragschale (27) transversalen Richtung an der genannten offenen Blattaustragschale (27) gehaltenes Blatt-Niederhalteelement (32) enthält,

gekennzeichnet durch

- ein Niederhalteelement-Belastungsorgan (43; 143), um das erwähnte Blatt-Niederhalteelement (32) von der besagten oberen Fläche (29) der genannten offenen Blattaustragschale (27) entgegen der Masse des erwähnten Blatt-Niederhalteelements (32) selbst weg zu belasten und um eine Druckkraft des erwähnten Blatt-Niederhalteelements (32) auf einem vorbestimmten Wertniveau solange zu halten, wie sich das erwähnte Blatt-Niederhalteelement (32) innerhalb eines vorbestimmten Bereichs seiner Schwenkbewegung befindet.


 
2. Ein Bilderzeugungsgerät nach Anspruch 1, in welchem das besagte Niederhalteelement-Belastungsorgan (43; 143) ein Federbauteil mit einer elastischen Kraft, die kleiner wird, während das erwähnte Blatt-Niederhalteelement (32) von der Fläche (29) der genannten offenen Blattaustragschale (27) weg verschwenkt wird, umfaßt.
 
3. Ein Bilderzeugungsgerät nach Anspruch 2, in welchem das erwähnte Blatt-Niederhalteelement (32) bei seinem Wegschwenken von der Fläche (29) der genannten offenen Blattaustragschale (27) aufgerichtet wird, so daß eine Gravitationskraft des erwähnten Blatt-Niederhalteelements (32) zu der Fläche (29) der offenen Blattaustragschale (27) hin kleiner wird.
 
4. Ein Bilderzeugungsgerät nach Anspruch 3, in welchem, wenn G₁ die Gravitationskraft des erwähnten Blatt-Niederhalteelements (32) in einer horizontalen Lage des erwähnten Blatt-Niederhalteelements (32) ist, P₁ die elastische Rückstellkraft des genannten Federbauteils zu dieser Zeit ist, G₂ die Gravitationskraft des erwähnten Blatt-Niederhalteelements (32) zu der Fläche (29) der genannten offenen Blattaustragschale (27) hin bei einem bestimmten Schwenkwinkel des erwähnten Blatt-Niederhalteelements (32) ist und P₂ die elastische Rückstellkraft des genannten Federbauteils zu dieser Zeit ist, die Blattbelastungskräfte durch (G₁ - P₁) beziehungsweise (G₂ - P₂) bestimmt sind und das genannte Federbauteil so ausgewählt wird, daß eine Beziehung (G₁ - P₁) = (G₂ - P₂) erhalten wird.
 
5. Ein Bilderzeugungsgerät nach Anspruch 1, das ferner eine Ermittlungseinrichtung (50) enthält, um die Tatsache zu ermitteln, daß das erwähnte Blatt-Niederhalteelement (32) in die Position einer vollen Blattanfüllung gebracht ist.
 
6. Ein Bilderzeugungsgerät nach Anspruch 4, in welchem das genannte Federbauteil eine Torsionsschraubenfeder umfaßt und dieses ferner ein Mittel, um eine Torsionskraft der besagten Torsionsschraubenfeder einzustellen, enthält.
 
7. Ein Bilderzeugungsgerät nach Anspruch 1, in welchem die obere Fläche (29) der genannten offenen Austragschale so geneigt ist, daß eine Austragseite von dieser niedriger als eine Nicht-Austragseite ist; und in welchem der vorbestimmte Bereich innerhalb eines Bereichs zwischen einem im wesentlichen horizontalen Zustand sowie einem geneigten Zustand, in dem eine Schwenkendkante niedriger als die andere Endkante angeordnet ist, liegt.
 


Revendications

1. Appareil de formation d'images comportant :

un plateau ouvert (27) d'éjection de feuilles sur lequel des feuilles éjectées peuvent être collectées ; et

un dispositif (30) de maintien de feuille comprenant un élément (32) de maintien de feuilles monté de façon pivotante, à son côté extrême, sur ledit plateau ouvert (27) d'éjection de feuilles, au moyen d'un axe (31) de support de façon à effectuer un mouvement pivotant dans une direction transversale à la surface supérieure (29) dudit plateau ouvert (27) d'éjection,

caractérisé par

un moyen (43 ; 143) de rappel de l'élément de maintien destiné à rappeler ledit élément (32) de maintien de feuilles à l'écart de ladite surface supérieure (29) dudit plateau ouvert (27) d'éjection de feuilles, en opposition au poids dudit élément (32) de maintien de feuilles, lui-même, et à maintenir une force de sollicitation sur ledit élément (32) de maintien de feuilles à un niveau d'une valeur prédéterminée tant que ledit élément (32) de maintien de feuilles, est dans une plage prédéterminée de son mouvement pivotant.


 
2. Appareil de formation d'images selon la revendication 1, dans lequel ledit moyen (43 ; 143) de rappel de l'élément de maintien comporte un moyen à ressort ayant une force élastique qui diminue lorsque ledit élément (32) de maintien de feuilles s'éloigne en pivotant de la surface (29) dudit plateau ouvert (27) d'éjection de feuilles.
 
3. Appareil de formation d'images selon la revendication 2, dans lequel ledit élément (32) de maintien de feuilles est redressé lorsqu'il s'éloigne en pivotant de la surface (29) dudit plateau ouvert (27) d'éjection de feuilles, de manière que la force de la gravité dudit élément (32) de maintien de feuilles, en direction de la surface (29) dudit plateau ouvert (27) d'éjection de feuilles, diminue.
 
4. Appareil de formation d'images selon la revendication 3, dans lequel, lorsque la force de la gravité dudit élément (32) de maintien de feuilles en direction de la surface (29) dudit plateau ouvert (27) d'éjection de feuilles, dans une position horizontale dudit élément (32) de maintien de feuilles, est G₁, la force élastique de rappel dudit moyen à ressort à cet instant est P₁, la force de gravité dudit élément (32) de maintien de feuilles en direction de la surface (29) dudit plateau ouvert (27) d'éjection de feuilles, en un certain angle de pivotement dudit élément (32) de maintien de feuilles est G₂, et la force élastique de rappel dudit moyen à ressort à cet instant est P₂, les forces de sollicitation de feuilles sont définies par (G₁ - P₁), (G₂ - P₂), respectivement, et ledit moyen à ressort est choisi de manière que l'on obtienne la relation (G₁ - P₁) = (G₂ - P₂).
 
5. Appareil de formation d'images selon la revendication 1, comprenant en outre un moyen de détection (50) destiné à détecter le fait que ledit élément (32) de maintien de feuilles est amené dans une position de chargement complet de feuilles.
 
6. Appareil de formation d'images selon la revendication 4, dans lequel ledit moyen à ressort comporte un ressort hélicoïdal de torsion, et comprenant en outre un moyen destiné à régler la force de torsion dudit ressort hélicoïdal de torsion.
 
7. Appareil de formation d'images selon la revendication 1, dans lequel la surface supérieure (29) dudit plateau ouvert d'éjection est inclinée de façon qu'un côté d'éjection de ce plateau soit inférieur à un côté de non-éjection ; et la plage prédéterminée est comprise dans une plage s'étendant entre un état sensiblement horizontal et un état incliné dans lequel une extrémité à pivot est placée plus bas que l'autre extrémité.
 




Drawing