[0001] The present invention relates to a torque sensor for magnetically detecting a torque
transmitted to a rotating shaft without direct contact with the rotating shaft.
2. Description of the Prior Art:
[0002] Conventional torque sensors of the type utilizing magnetostriction are classified
into two groups. A first group of torque sensors include a rotating shaft made of
a magnetic alloy, such as a ferro-alloy, having a magnetostrictive property, and a
second group of torque sensors include a rotating shaft having on its outer peripheral
surface a magnetic alloy layer having a soft magnetic property and magnetostrictive
property. In either group of conventional torque sensors, the magnetostrictive magnetic
alloy is magnetically anisotropic in different directions slanting at angles of +45°
and -45°, respectively, with respect to a longitudinal axis of the shaft. Two coils
are disposed around the magnetostrictive magnetic alloy for detecting a magnetic property
of the magnetostrictive magnetic alloy. The coils are received end to end within a
tubular container which is made of an alloy of soft magnetic property and provided
for purposes of excluding the influence of a disturbance magnetic field and completing
a closed magnetic circuit. The tubular container is hereinafter referred to as "magnetic
yoke".
[0003] With this construction, when a torque is transmitted to the rotating shaft of the
torque sensor, an outer peripheral surface of the shaft is strained or otherwise deformed.
In this instance, if the torque exerted on the shaft is clockwise, a portion of the
magnetostrictive magnetic alloy which is magnetically anisotropic in the direction
of +45° increases its magnetic permeability, while a portion of the magnetostrictive
magnetic ally which is magnetically anisotropic in the direction of -45° decreases
its magnetic permeability. This relation in magnetic permeability is reversed when
the torque exerted on the shaft is counterclockwise. Changes in magnetic permeability
of the magnetostrictive magnetic alloy are detected in terms of changes in self-inductance
of the two coils, and the difference in self-inductance between the two coils is measured
by a differential detector whereby the direction and magnitude of the torque can be
detected (see, Japanese Patent Laid-open Publication No. 59-77326).
[0004] The two coils have the same inductance so that in a theoretical sense, no differential
output is produced from the torque sensor when a torque is not exerted on the shaft.
However, when the magnetic yoke is secured by screws to a structure for attaching
the torque sensor to the structure, the torque sensor produces an apparent differential
output due to tightening forces applied to the magnetic yoke. In addition, when the
environmental temperature changes, a stress is created due to a difference in thermal
expansion coefficient between the structure and the magnetic yoke. The stress thus
created results in generation of an apparent differential output from the torque sensor.
[0005] DE-A-3940220, on which the precharacterising portion of appended claim 1 is based,
discloses a torque sensor in which stresses are reduced by providing radial air gaps
between the coil, the magnetic yoke and a containing sleeve. However, these components
are fixed to the coil bobbin which itself is connected to bearings on the main shaft.
Therefore, longitudinal stresses are still prone to occur in the magnetic yoke.
[0006] It has been proved that the apparent differential output is caused by magnetostriction
of the magnetic yoke. It is obvious that the apparent differential output can be reduced
by using a magnetic yoke which is made of a soft magnetic property material, such
as 78% Ni-Mo-Cu-Fe alloy, having a small magnetostrictive property. However, such
a material is expensive and, hence, the torque sensor is costly to manufacture.
[0007] With the foregoing drawbacks of the prior art in view, it is an object of the present
invention to provide a torque sensor having structural features which substantially
eliminate generation of an apparent differential output caused by stresses created
in a magnetic yoke when the torque sensor is attached to a structure and, hence, guarantee
a highly accurate measurement of torque, and further enable production of the torque
sensor at a low cost.
[0008] According to the present invention, there is provided a torque sensor comprising:
a shaft for transmitting a torque exerted thereon, at least an outer peripheral surface
of said shaft being made of a magnetic alloy having a magnetostrictive property; coil
means disposed around said outer peripheral surface of said shaft for detecting a
magnetic property of said magnetostrictive magnetic alloy; a tubular magnetic yoke
disposed around said coil means for forming a magnetic circuit between itself and
said magnetostrictive magnetic alloy; a hollow cylindrical container disposed around
said magnetic yoke for containing the same; and electric means operatively connected
with said coil means for detecting a change in magnetic permeability of said magnetostrictive
magnetic alloy in terms of a change in impedance of said coil means caused by the
torque exerted on said shaft, thereby determining the torque; characterised in that
spaces are provided at each end of the tubular magnetic yoke; and stress absorbing
means attach the magnetic yoke to the container whilst absorbing stresses to prevent
magnetostriction of the magnetic yoke.
[0009] The stress absorbing means may be a tubular cushioning sleeve made from a synthetic
resin and bonded to the container and the magnetic yoke, a clearance defined between
the container and the magnetic yoke as a result of loose-fitting engagement between
the container and the magnetic yoke, or a tubular thin film of synthetic resin filled
in a clearance defined between the container and the magnetic yoke as a result of
a loose-fit between the container and the magnetic yoke.
[0010] The above and other objects, features and advantages of the present invention will
become more apparent from the following description when making reference to the detailed
description and the accompanying sheets of drawings in which preferred structural
embodiments incorporating the principles of the present invention are shown by way
of illustrative example.
Fig. 1 is a diagrammatical front elevational view, with parts cutaway for clarity,
of a torque sensor according to a first embodiment of this invention;
Fig. 2 is a front elevational view showing dimensions of a shaft portion of the torque
sensor;
Fig. 3 is a plan view showing an amorphous magnetic alloy film formed by etching;
Fig. 4 is a circuit diagram of a detecting circuit;
Fig. 5 is a schematic plan view illustrative of the manner in which the torque sensor
is attached to a base of a structural member;
Fig. 6 is a clamp band for clamping the torque sensor to the base;
Fig. 7 is a graph showing the relationship between the output of the torque sensor
and the clamping force exerted on the torque sensor when the torque sensor is attached
to the base by the clamp band;
Fig. 8 is a view similar to Fig. 1, but showing the construction of a torque sensor
according to a second embodiment of this invention; and
Fig. 9 is a view similar to Fig. 8, but showing a modification of the torque sensor.
[0011] The present invention will be described hereinbelow in greater detail with reference
to certain preferred embodiments illustrated in the accompanying drawings.
[0012] Fig. 1 shows the general construction of a torque sensor according to a first embodiment
of this invention. The torque sensor includes a shaft 1 made of titanium and having
a diameter of 12 mm. The titanium shaft 1 has a coefficient of thermal expansion of
9.4 x 10
-6(1/°C). Actual dimensions of the shaft 1 is shown in Fig. 2. The shaft 1 has a pair
of longitudinally spaced annular flanges 1a and 1b for positioning a pair of ball
bearings 8a, 8b and an amorphous magnetic alloy film 2. The amorphous magnetic alloy
film 2 is disposed between the annular flanges 1a, 1b and attached by bonding to an
outer peripheral surface of the shaft 1. The amorphous magnetic alloy film 2 thus
bonded forms a surface magnetic layer. To form the surface magnetic layer, an amorphous
magnetic alloy film strip shown in Fig. 3 is fabricated by etching. The amorphous
magnetic alloy film strip is then rolled into a tubular form having the same radius
of curvature as an outer peripheral surface of the shaft 1, and finally bonded to
the outer peripheral surface of the shaft 1. The bonding is performed at a temperature
ranging from 200 to 250°C using an adhesive composed of bismaleimidetriazine resin
sold under the tradename BT2164 manufactured by Mitsubishi Gas Chemical Company. The
thickness of the adhesive is in the range of about 20 - about 60 µm. The amorphous
magnetic alloy film 2 is an Fe-Cr-Si-B alloy, has a coefficient of linear thermal
expansion of 7.8 x 10
-6(1/°C) and a saturation magnetostriction constant of 20 x 10
-6, and is 25 µm in thickness. As shown in Fig. 1, the amorphous magnetic alloy film
2 has two juxtaposed, symmetrical helical patterns 2a and 2b. The first helical pattern
2a has a pitch angle of +45° with respect to a longitudinal axis of the shaft 1, while
the second helical pattern 2b has a pitch angle of -45° with respect to the longitudinal
axis of the shaft 1.
[0013] A tubular bobbin 3 molded of synthetic resin is disposed concentrically around the
amorphous magnetic alloy film 4 with a space or air gap 10 defined therebetween. The
bobbin 3 has, in its outer peripheral surface, two circumferential grooves having
a depth of about 0.6 mm. The grooves extend over and around the first and second helical
patterns 2a, 2b, respectively, and receive therein first and second coils 4a and 4b,
respectively. Each of the coils 4a, 4b is formed from a copper wire having a diameter
of about 0.1 mm and wound on the bobbin 3 into three layers each having 40 turns.
Thus, each coil 4a, 4b has 160 turns and extends over and around a corresponding one
of the helical patterns 2a, 2b of the amorphous magnetic alloy film 4.
[0014] A tubular magnetic yoke 5 made of 45% Ni-Fe alloy steel is firmly fitted over the
bobbin 3 to hold the coils 4a, 4b within the circumferential grooves of the bobbin
3. The tubular magnetic yoke 5 is fitted in a tubular cushioning sleeve 9. The cushioning
sleeve 9 is made from Duracon ("Duracon" is the trademark for a certain acetal resin
manufactured by Polyplastic Corporation) and serves as a stress absorbing means. A
hollow cylindrical holder or container 6 made of stainless alloy is fitted over the
cushioning sleeve 9. The cushioning sleeve 9 is secured by bonding to the magnetic
yoke 5 and the container 6. A pair of end caps 7a and 7b is attached to opposite ends
of the hollow cylindrical container 6 to retain the ball bearings 8a, 8b within bearing
holes formed at the opposite end of the container 6. Thus, the container 6 is rotatably
mounted on the shaft 1 via the ball bearings 8a, 8b. The bobbin 3, cushioning sleeve
9 and magnetic yoke 5 have a length smaller than the distance between the ball bearings
8a, 8b and they are disposed centrally between the ball bearings 8a, 8b, with a space
11 defined between each of the bearings 8a, 8b and a corresponding one of opposite
ends of the bobbin 3, cushioning sleeve 9 and magnetic yoke 5. The spaces 11 thus
provided preclude the generation of stresses acting in the longitudinal direction
of the shaft due to the difference in thermal expansion coefficient between the container
6, the magnetic yoke 5 and the shaft 1 when the temperature changes. Opposite ends
12a, 12b of each coil 4a, 4b are led out from the bobbin 3 through three aligned holes
13a, 13b extending through the magnetic yoke 5, cushioning sleeve 9 and container
6, respectively.
[0015] The coil ends 12a, 12b are connected to a detecting circuit shown in Fig. 4. The
detecting circuit includes a sine-wave oscillator 14 operating at a frequency of 16
kHz, two resistances 15 and 15 each connected in series to one of the coils 4a, 4b
so as to form a bridge circuit, two ac to dc converters 16 and 16 which hold the peak
ac voltage appearing across each respective coil 4a, 4b and convert the ac voltage
into dc voltage, and a differential amplifier 17 connected to the ac to dc converters
16, 16 for producing a torque sensor output which is proportional to the difference
between the voltages applied to its two inputs from the respective converters 16,
16. The detecting circuit of the foregoing construction is used to evaluate characteristics
of the torque sensor.
[0016] Fig. 5 shows one form of application of the torque sensor of the first embodiment
described above, in which the torque sensor 22 (indicated by hatching for clarity)
is attached to a body of a screw-tightening robot. In Fig. 5, numeral 18 is a base
of the robot body, 19 is a shaft of a drive motor 25 connected via a universal joint
20 to the shaft 1 (Fig. 1) of the torque sensor 22, 21 is a driver bit 21 connected
via another universal joint 20 to the shaft 1 of the torque sensor 22, and 23 is a
metallic clamp band secured at opposite ends to the base 18 by means of a pair of
screws 24, 24 for attaching the torque sensor 22 to the base 18. The clamp band 23
extends around substantially a central portion of the torque sensor 22 and hence tights
the central portion.
[0017] Fig. 7 is a graph showing the relationship between the clamping force exerted on
a torque sensor and the differential output of the torque sensor measured when the
torque sensor is attached to the base 18 by means of the clamp band 23 in the manner
as shown in Fig. 5. During the measurement, no torque is exerted on the shaft of the
torque sensor, and the detecting circuit shown in Fig. 4 is used for measuring the
differential output of the torque sensor. The axis of abscissas of the graph represents
the clamp force (kgfm) exerted on the torque sensor, and the axis of ordinates represents
the differential output of the torque sensor. In Fig. 7, the thick solid line is the
differential output-clamp force curve of the torque sensor 22 of the first embodiment
described above, the broken line is the differential output-clamp force curve of a
modified torque sensor which differs from the torque sensor 22 in that the magnetic
yoke 5 is directly press-fitted with the container 6 without the intervention of the
Duracon cushioning sleeve 9, and the thin solid line is the differential output-clamp
force curve of a conventional torque sensor having a magnetic yoke and devoid of the
container 6.
[0018] As evidenced from Fig. 7, the differential output drift of the torque sensor 22 is
stable and substantially constant and does not produce an apparent differential output
even when a large clamp force is applied to the torque sensor 22. In the case of the
conventional torque sensor, zero drift increases as the exerted clamp force is increased.
The modified torque sensor produces an apparent differential output to some extent
due to press-fitting connection between the magnetic yoke 5 and the container 6. It
is obvious from the foregoing results that the plastic cushioning sleeve 9 absorbs
stresses and thereby prevents the magnetic yoke 6 from undergoing magnetostriction
which will bring about a change in magnetic characteristic of the torque sensor.
[0019] It has been found that when the conventional torque sensor while being attached to
the base 18 is subjected to a temperature change, zero drift is produced due to a
change in clamp force caused by the difference in thermal expansion coefficient between
the clamp band 23 and a body of the torque sensor. As against the conventional torque
sensor, the torque sensor of the above-mentioned first embodiment is free from zero
drift even when the environmental temperature changes.
[0020] The material used for forming the cushioning sleeve 9 is not limited to Duracon (acetal
resin) but may be epoxy resin, bismaleimidetriazine resin, Teflon ("Teflon" is the
trademark for certain fluorocarbon resins manufactured by Du Pont) or a material which
is softer than metal. The synthetic resin cushioning sleeve preferably has a thickness
in excess of 0.05 mm. It is expected however that the same effect can be attained
even when the thickness of the cushioning sleeve 9 is less than 0.05 mm.
[0021] Fig. 8 shows the general construction of a torque sensor according to a second embodiment
of this invention. These parts which are identical or corresponding to those of the
first embodiment shown in Fig. 1 are designated by identical or corresponding reference
characters, and a further description can be omitted.
[0022] The torque sensor of the second embodiment differs from the torque sensor of the
first embodiment in that the hollow cylindrical container 6 and the tubular magnetic
yoke 5 are loose-fitted with each other so as to jointly forming a stress absorbing
means. The fit tolerance of the loose-fitting is 50 µm. The container 6 and the magnetic
yoke 5 are joined at their longitudinal central portion by a screw 5a. With this construction,
zero drift does not occur as in the case of the first embodiment. Instead of using
the screw 5a, a synthetic resin such as epoxy resin is used to fill a clearance between
the container 6 and the magnetic yoke 5 so that the container 6 and the magnetic yoke
5 are joined together via a tubular thin film 9a of synthetic resin, as shown in Fig.
9. The epoxy resin thus filled forms a cushion absorbing means.
[0023] Eligible materials for the magnetic yoke 5 may include a amorphous magnetic alloy
film rolled into a tubular form, a rolled silicon steel plate of 0.1 mm thick, or
a ferrite tube. When the magnetic yoke 5 is composed of a ferrite tube, the use of
the container 6 is preferable in order to protect the ferrite tube against damage.
[0024] Obviously, various minor changes and modifications of the present invention are possible
in the light of the above teaching. It is therefore to be understood that within the
scope of the appended claims the invention may be practiced otherwise than as specifically
described.
1. A torque sensor comprising:
a shaft (1) for transmitting a torque exerted thereon, at least an outer peripheral
surface of said shaft (1) being made of a magnetic alloy (2) having a magnetostrictive
property;
coil means (3,4a,4b) disposed around said outer peripheral surface of said shaft (1)
for detecting a magnetic property of said magnetostrictive magnetic alloy (2);
a tubular magnetic yoke (5) disposed around said coil means (4a,4b) for forming a
magnetic circuit between itself and said magnetostrictive magnetic alloy (2);
a hollow cylindrical container (6) disposed around said magnetic yoke (5) for containing
the same; and
electric means (14-17) operatively connected with said coil means (4a,4b) for detecting
a change in magnetic permeability of said magnetostrictive magnetic alloy (2) in terms
of a change in impedance of said coil means (4a,4b) caused by the torque exerted on
said shaft (1), thereby determining the torque; characterised in that
axially extending spaces (11) are provided at each axial end of the tubular magnetic
yoke (5) in a way that stresses on the yoke (5) in the axial direction are precluded
; and
stress absorbing means (5a,9,9a) attach the magnetic yoke (5) to the container (6)
whilst absorbing stresses to prevent magnetostriction of the magnetic yoke (5).
2. A torque sensor according to claim 1, wherein said tubular magnetic yoke (5) is an
amorphous magnetic alloy film rolled into a tubular form, a silicon steel plate rolled
into a tubular form, or a ferrite tube, and said container (6) is made of stainless
alloy.
3. A torque sensor according to claim 1 or 2 wherein the stress absorbing means includes
a tubular cushioning sleeve (9) made from a synthetic resin and disposed between said
magnetic yoke (5) and said container (6), said cushioning sleeve (9) being softer
than metal.
4. A torque sensor according to claim 3, wherein said cushioning sleeve (9) is bonded
to said magnetic yoke (5) and said container (6).
5. A torque sensor according to claim 3 or 4 wherein said synthetic resin constituting
said cushioning sleeve (9) is Duracon, epoxy resin, bismaleimidetriazine resin, or
Teflon (trademark).
6. A torque sensor according to claim 1 or 2 wherein said hollow cylindrical container
(6) is loose-fitted over said magnetic yoke (5), and stress absorbing means comprises
a screw fastener (5a) joining said container (6) and said magnetic yoke (5).
7. A torque sensor according to claim 1 or 2 wherein said hollow cylindrical container
(6) and said magnetic yoke (5) are loose-fitted with each other and said stress absorbing
means comprises a tubular thin film (9a) of synthetic resin filled in a clearance
between and firmly joining together said container (6) and said magnetic yoke (5).
8. A torque sensor according to claim 7, wherein said synthetic resin is softer than
metal.
9. A torque sensor according to claim 7 or 8 wherein said synthetic resin is an epoxy
resin.
10. A torque sensor according to any preceding claim wherein said coil means (3,4a,4b)
is composed of a tubular bobbin (3) made from synthetic resin and disposed around
said outer peripheral surface of said shaft (1) with a space (10) defined therebetween,
and at least one coil (4a) wound around said bobbin (3), said tubular magnetic yoke
(5) being firmly fitted around said bobbin (3) to hold said coil (4a) therebetween.
1. Drehmomentmeßfühler mit:
einer Welle (1) zur Übertragung eines darauf ausgeübten Drehmoments, wobei zumindest
eine äußere Umfangs-Oberfläche der Welle (1) aus einer magnetischen Legierung (2)
mit einer magnetostriktiven Eigenschaft hergestellt ist,
um die äußere Umfangs-Oberfläche der Welle (1) angeordnete Spuleneinrichtungen (3,
4a, 4b) zur Erfassung einer magnetischen Eigenschaft der magnetostriktiven magnetischen
Legierung (2),
einem um die Spuleneinrichtungen (4a, 4b) herum angeordneten rohrförmigen Magnetjoch
(5) zur Ausbildung eines magnetischen Kreises zwischen sich selbst und der magnetostriktiven
magnetischen Legierung (2),
einem um das Magnetjoch (5) herum angeordneten zylindrischen Hohlbehälter (6), der
dieses beinhaltet, und
mit den Spuleneinrichtungen (4a, 4b) wirksam verbundenen elektrischen Einrichtungen
(14 - 17) zur Erfassung einer Veränderung der magnetischen Permeabilität der magnetostriktiven
magnetischen Legierung (2) als Impedanzveränderung der Spuleneinrichtungen (4a, 4b),
die durch das auf die Welle (1) ausgeübte Drehmoment verursacht wird, wodurch das
Drehmoment bestimmt wird,
dadurch gekennzeichnet, daß
axial verlaufende Zwischenräume (11) an jedem axialen Ende des rohrförmigen Magnetjochs
(5) in einer solchen Art vorgesehen sind, daß Spannungen auf das Magnetjoch (5) in
axialer Richtung verhindert werden, und
durch Spannungs-Absorptionseinrichtungen (5a, 9, 9a) das Magnetjoch (5) an dem Behälter
(6) befestigt ist, wobei diese zur Verhinderung von Magnetostriktion des Magnetjochs
(5) Spannungen absorbieren.
2. Drehmomentmeßfühler nach Anspruch 1,
dadurch gekennzeichnet, daß
das rohrförmige Magnetjoch (5) ein in eine Rohrform gerollter amorpher Film aus einer
magnetischen Legierung, eine in eine Rohrform gerollte Siliziumstahl-Platte oder ein
Ferritrohr ist, und daß
der Behälter (6) aus einer nichtrostenden Legierung hergestellt ist.
3. Drehmomentmeßfühler nach Anspruch 1 oder 2,
dadurch gekennzeichnet, daß
die Spannungs-Absorptionseinrichtungen eine aus einem Kunstharz hergestellte und zwischen
dem Magnetjoch (5) und dem Behälter (6) angeordnete rohrförmige Dämpfungsbuchse (9)
aufweisen, wobei die Dämpfungsbuchse (9) weicher als Metall ist.
4. Drehmomentmeßfühler nach Anspruch 3,
dadurch gekennzeichnet, daß
die Dämpfungsbuchse (9) an das Magnetjoch (5) und den Behälter (6) geklebt ist.
5. Drehmomentmeßfühler nach Anspruch 3 oder 4,
dadurch gekennzeichnet, daß
der die Dämpfungsbuchse (9) bildene Kunstharz Duracon, Epoxidharz, Bismaleimidtriazin-Harz
oder Teflon (Warenzeichen) ist.
6. Drehmomentmeßfühler nach Anspruch 1 oder 2,
dadurch gekennzeichnet, daß
der zylindrische Hohlbehälter (6) mittels einer Spielpassung über dem Magnetjoch (5)
angeordnet ist, und die Spannungs-Absorptionseinrichtungen eine den Behälter (6) und
das Magnetjoch (5) verbindende Schraubbefestigung (5a) aufweisen.
7. Drehmomentmeßfühler nach Anspruch 1 oder 2,
dadurch gekennzeichnet, daß
der zylindrische Hohlbehälter (6) und das Magnetjoch (5) mittels einer Spielpassung
miteinander verbunden sind, und daß
die Spannungs-Absorptionseinrichtungen einen rohrförmigen Dünnfilm (9a) aus Kunstharz
aufweisen, der in einem Zwischenraum zwischen dem Behälter (6) sowie dem Magnetjoch
(5) gefüllt ist und diese fest miteinander verbindet.
8. Drehmomentmeßfühler nach Anspruch 7,
dadurch gekennzeichnet, daß
das Kunstharz weicher als Metall ist.
9. Drehmomentmeßfühler nach Anspruch 7 oder 8,
dadurch gekennzeichnet, daß
das Kunstharz ein Epoxidharz ist.
10. Drehmomentmeßfühler nach einem der vorangehenden Ansprüche,
dadurch gekennzeichnet, daß
die Spuleneinrichtungen (3, 4a, 4b) aus einem aus Kunstharz hergestellten und um die
äußere Umfangs-Oberfläche der Welle (1) mit einem dazwischen festgelegten Zwischenraum
(10) angeordneten rohrförmigen Spulenkörper (3) und zumindest aus einer um den Spulenkörper
(3) gewickelten Spule (4a) bestehen, wobei das rohrförmige Magnetjoch (5) zum Halten
der Spule (4a) dazwischen fest um den Spulenkörper (3) eingepaßt ist.
1. Capteur de couple comprenant:
un arbre (1) pour transmettre un couple exercé sur cet arbre, au moins la surface
périphérique extérieure dudit arbre (1) étant faite d'un alliage magnétique (2) ayant
une propriété magnétostrictive;
un moyen formant enroulement (3, 4a, 4b) disposé autour de ladite surface périphérique
dudit arbre (1) pour détecter la propriété magnétique dudit alliage magnétique magnétostrictif
(2);
une culasse magnétique tubulaire (5) disposée autour dudit moyen formant enroulement
(4a, 4b) pour former un circuit magnétique entre celui-ci et ledit alliage magnétique
magnétostrictif (2);
un récipient cylindrique creux (6) disposé autour de ladite culasse magnétique (5)
pour contenir cette dernière; et
un moyen électrique (14-17) relié fonctionnellement audit moyen formant enroulement
(4a, 4b) pour détecter une variation dans la perméabilité dudit alliage magnétique
magnétostrictif (2) sous la forme d'une variation d'impédance dudit moyen formant
enroulement (4a, 4b) provoquée par le couple exercé sur ledit arbre (1), en déterminant
ainsi le couple; caractérisé en ce que:
des espaces (11) s'étendant axialement sont formés à chaque extrémité axiale de la
culasse magnétique tubulaire (5) d'une façon telle que les contraintes auxquelles
est soumise la culasse (5) dans la direction axiale se trouvent éliminées; et
un moyen (5a, 9, 9a) d'absorption de contraintes relie la culasse magnétique (5) au
récipient (6) tout en absorbant les contraintes afin d'empêcher la magnétostriction
de la culasse magnétique (5).
2. Capteur de couple selon la revendication 1, dans lequel ladite culasse magnétique
tubulaire (5) est un film en alliage magnétique amorphe enroulé sous une forme tubulaire,
un plaque d'acier au silicium enroulée sous une forme tubulaire, ou un tube en ferrite,
et ledit récipient (6) est formé d'un alliage inoxydable.
3. Capteur de couple selon la revendication 1 ou 2, dans lequel le moyen absorbant les
contraintes comprend un manchon d'amortissement tubulaire (9 formé d'une résine synthétique
et disposé entre ladite culasse magnétique (5) et ledit récipient (6), ledit manchon
d'amortissement (9) étant plus mou qu'un métal.
4. Capteur de couple selon la revendication 3, dans lequel ledit manchon d'amortissement
(9) est relié à ladite culasse magnétique (5) et audit récipient (6).
5. Capteur de couple selon la revendication 3 ou 4, dans lequel ladite résine synthétique
constituant ledit manchon d'amortissement (9) est du Duracon, une résine epoxy, une
résine à base de bismaléimidetriazine, ou du Téflon (marque déposée).
6. Capteur de couple selon la revendication 1 ou 2, dans lequel ledit récipient cylindrique
creux (6) est emmanché avec du jeu sur la culasse magnétique (5), et le moyen absorbant
les contraintes comprend un élément de fixation fileté (5a) associant ledit récipient
(6) et ladite culasse magnétique (5).
7. Capteur de couple selon la revendication 1 ou 2, dans lequel ledit récipient cylindrique
creux (6) et ladite culasse magnétique (5) sont assemblés mutuellement avec du jeu
et ledit moyen absorbant les contraintes comprend un mince film tubulaire (9a) de
résine synthétique remplissant un espace libre compris entre ledit récipient (6) et
ladite culasse magnétique (5) et associant fermement ce récipient et cette culasse
magnétique.
8. Capteur de couple selon la revendication 7, dans lequel ladite résine synthétique
est plus molle que du métal.
9. Capteur de couple selon la revendication 7 ou 8, dans lequel ladite résine synthétique
est une résine époxy.
10. Capteur de couple selon l'une quelconque des revendications précédentes, dans lequel
ledit moyen formant enroulement (3, 4a, 4b) est composé d'une bobine tubulaire (3)
formée d'une résine synthétique et disposée autour ladite surface périphérique extérieure
dudit arbre (1), un espace (10) étant défini entre cette bobine et cette surface,
et au moins un enroulement (4a) enroulé autour de ladite bobine (3), ladite culasse
magnétique tubulaire (5) étant montée solidement autour de ladite bobine (3) de manière
à maintenir ledit enroulement (4a) entre cette culasse et cet enroulement.