[0001] The present invention relates to a method according to the preamble of claim 1 capable
of achieving controlled compaction of a cast concrete product by way of measuring
the parameters related to the casting process.
[0002] The invention also concerns an apparatus according to the preamble of claim 8 for
implementing the method.
[0003] Elongated concrete products such as hollow-core slabs are conventionally produced
using extruder-type casting apparatuses. The casting apparatus is comprised of a conical
feed hopper connected to one or more feed augers beneath. The feed auger is frequently
followed by a shaping mandrel which is further extended as an auxiliary mandrel supporting
the core cavity formed within the product. The shaping mandrel contains a vibrator
or similar compacting arrangement for the compaction of the cast concrete into the
shape determined by the casting mould and the mandrels. Furthermore, the casting apparatus
has an upper trowelling beam forming the upper edge of the mould, and frequently,
the sides of the mould are also designed to perform as the side trowelling beams.
The trowelling beams compact the concrete mix during the course of the casting process
and give the cast product a neat surface finish. Besides trowelling or to augment
it, vibration can also be employed for compaction. Extruder-type casting apparatuses
are designed to operate as continuous-casting machines, which are transferred forward
on the mould top by the reaction forces imposed by the feed augers.
[0004] Extruder-type casting apparatuses are well suited for the mass production of concrete
products, but the attainment of controlled strength properties for concrete products
fabricated by means of conventional methods has been difficult and the production
equipment employed have been prone to malfunction. Measurement of the factors affecting
the quality of finished products has been attempted in several ways. The factor most
typically measured has been the internal pressure of the concrete mix in the casting
mould. The internal pressure of the mix has been measured either directly using appropriate
sensors or indirectly by sensing the force imposed by the internal pressure of mix
onto an element of the casting machine such as the feed augers, trowelling beams or
other components of the machinery.
[0005] Strength variations in the finished product are principally related to the fact that
the concrete mix is not compacted in an identical manner throughout the entire casting
sequence. Compaction is affected by such factors as, i.a., concrete mix moisture,
aggregate size and variations between the relative proportions of the mix constituents.
For instance, a minor change in mix moisture can cause a major change in the degree
of compaction of the final product, even if the other process variables are kept constant.
Hence, the factors affecting the degree of compaction become very difficult to manage
during the preparation stage of the concrete mix. In practice, the composition of
the concrete mix is always very inhomogeneous and consequently compacts inconsistently
in the different parts of the product even within a single product. The casting machines
move on the casting bed by the reactive forces imposed by the feed augers. The transfer
resistance of the casting machine can vary due to different reasons, and with an increase
in the resistance, the feed augers must propel the mix with a higher force resulting
in higher compaction of the cast product. Conversely, a reduction in the transfer
resistance results in a lower degree of compaction. To obtain a consistent quality
for the finished products, the compaction process of the concrete mix should be measurable
and controllable.
[0006] Compaction of concrete has been measured indirectly by sensing, e.g., the power applied
to rotate the augers or the axial force imposed on the auger. Such an implementation
is disclosed in, e.g., the US patent publication 3,175,477. The GB patent 1,586,181
describes a method in which the input power to the auger or the reactive force imposed
on it are employed as the control signal for adjusting the casting machine speed.
The casting speed is advantageously held as steady as possible, thus achieving a consistent
degree of compaction for the concrete mix in all parts of the product. The degree
of compaction cannot be measured in the apparatus according to these prior art publications,
and the compaction result in the final product is not controllable particularly in
extruders in which the casting machine is transferred by the reactive propulsion forces
of the augers.
[0007] Furthermore, direct measurement of the internal pressure in the concrete mix is conventionally
employed, or alternatively, the pressure is measured indirectly from the pressure
imposed by the concrete mix on an element of the casting machine. Pressure measurement
is known in the art from casting apparatuses of concrete products as well as plastics
extruders. The US patent 3,799,719 describes pressure measurement in plastics extruders.
[0008] In the prior-art techniques, the best approach to the control of the compaction process
of a concrete product at the final production phase has been by way of methods based
on pressure measurement. Such a measurement of the internal pressure prevailing in
the mix during the course of the casting process is, however, difficult to implement
and its transducer technology is expensive. Sensors employed for direct pressure measurement
in the concrete mix being cast are easily damaged by the flow of the cast concrete.
Although these drawbacks can be avoided if according to the EP-A-0 359 572 the pressure
acting against the compaction surface is used as an indication for the degree of compaction
of the concrete. To be precise, however, this method, too, only measures the internal
pressure of the concrete mix being cast. This pressure however does not directly correlate
to the degree of compaction in the final product, because the degree of compaction
is also affected by the rheological properties of the mix such as mix consistency,
moisture content and a large number of other factors whose effect cannot be taken
into account by any method known in the art. As the direct measurement of the degree
of compaction at the casting time is impossible, the compaction effect cannot either
be controlled to attain a consistently homogenous quality of the final product. By
the same token, a sufficiently accurate control of the properties of the final product
such as its strength and dimensional tolerances is not possible.
[0009] It is an object of the present invention to achieve a novel measurement method capable
of measuring the compaction process of a concrete mix being cast and achieving the
control of the casting machine on the basis of the obtained measurement result so
as to attain a desired quality of the final product.
[0010] The method according to the invention is based on measuring the input power to the
side or top trowelling beam of the casting machine, or alternatively, a variable related
to the input power, then processing the result by computational methods, and finally
utilizing the result of the computation for controlling the factors affecting the
degree of compaction such as the rotational speed of the feed augers or the vibration
input power and/or the mechanical trowelling movements of the mandrels or other elements
of the casting machine.
[0011] More specifically, the method according to the invention is principally characterized
by what is stated in claim 1.
[0012] Furthermore, the apparatus according to the invention is characterized by what is
stated in claim 8.
[0013] The invention provides significant benefits.
[0014] The input power consumed by the trowelling beam, which performs the compaction of
the concrete mix, correlates well with the variables characterizing the workability
and rheological properties of the concrete mix. These properties are dependent on,
i.a., the mix aggregate composition, binding agents and admixtures, and the amount
of mix water. For instance, the aggregate size affects to a high degree the workability
of the mix and the amount of compaction work required. Thus, by measuring the compaction
power and adjusting the feed rate of the concrete mix on the basis of this information,
or alternatively, the compaction parameters such as the input power to the vibrator
or mechanical trowelling element, the internal pressure of the concrete mix and the
compaction power can be set to an optimal level with respect to the mix composition
and the properties desired for the final product. As the upper trowelling beam extends
over a major part of the area to be compacted in the slab-like cast product, and correspondingly,
the side trowelling beam extends over the area to be compacted in beam-like products,
the measured input power gives an extremely realistic estimate of the total compaction
power required. Hence, the power consumption of the casting machine can be optimized
for each product, thereby minimizing energy costs and avoiding unnecessary loading
of the machinery, thus reducing wear.
[0015] The invention is next explained with the help of exemplifying embodiments illustrated
in the annexed drawing, in which
Figure 1 shows in a partially longitudinally sectional view a casting apparatus according
to the invention.
Figure 2 shows a cross section of the apparatus illustrated in Fig. 1 at the trowelling
beams.
Figure 3 shows an alternative cross section for the product to be cast.
Figure 4 is a block diagram outlining the control algorithm employed in the apparatus.
[0016] The apparatus according to the invention is an extruder-type casting apparatus adapted
to run along the sides of a mould 13 supported by load-bearing wheels 5. The apparatus
is assembled onto a frame 4. The exemplifying casting apparatus has three conical
feed augers 2. The augers 2 are mounted on the frame 4 by means of a rotatable shaft
7 of the auger. Shaping mandrels 3 are placed to the trailing end of the feed augers
2 relative to the casting direction. A pull rod 6 adapted to pass through the center
of each auger shaft 7 is actuated by a drive motor 9 of the compacting motion adapted
to drive the rod via a crank lever mechanism 16, and the auger end is provided with
a variator gear 17, via which the drive motors of the augers 2 are connected to the
auger shaft 7. At the input end of the feed augers 2, the top of the apparatus carries
a conical feed hopper 1. Next to the feed hopper 1, at the opposite end of the apparatus
relative to the casting direction, above the apparatus, are located a top trowelling
beam 11 and lower trowelling beams 12 which are located at the sides of the apparatus.
The top trowelling beam 11 is connected via a crank lever mechanism 15 to the drive
actuator of the top trowelling beam, and correspondingly, the side trowelling beams
12 are connected via crank lever mechanisms 22 to drive motors 10' of the side trowelling
beams. A measurement signal line 19 is routed from the drive motor 10 of the top trowelling
beam to a control unit 18, wherefrom control signal lines are routed to a drive motor
8 of the auger and the actuator of the compacting motion. The control of the actuators
can be implemented by means of, e.g., a variator or frequency converter, or any other
conventional means known in the art.
[0017] The function of the apparatus is as follows. Concrete mix poured in the feed hopper
1 flows by gravity onto the feed augers 2 rotated by the actuator 10. The rotating
augers 2 propel the mix into a pressurized space continued as the shaping space delineated
by the mould 13, the side trowelling beams 12 and the top trowelling beam 11. In this
space the concrete mix is compressed into the space between the shaping mandrels 3,
the walls 11, 12, 13 delineating the shaping space, and is further compacted by the
motion of the shaping mandrels 3 and the trowelling beams 11, 12 and the generated
internal pressure, thus taking the shape of the desired finished product 14 such as
a hollow-core beam. The reciprocating motion of the shaping mandrels 3 is provided
by an electric motor 9 connected via a reduction gear and the crank lever mechanism
16 to the end of the pull rod 6. The motion of the top trowelling beam 11 and the
side trowelling beams is implemented by means of similar combination electric motor/crank
mechanisms 10, 15 and 10', 22.
[0018] The control of the apparatus is implemented by direct or indirect measurement of
the input power to the drive motor 10, 10' of the top trowelling beam 11 and/or the
side trowelling beam 12. The measured variable can be, e.g., the input current or
hydraulic input pressure to the drive motor, and the selection of the variable is
adapted according to the actuators and control technology employed. The input power
to the drive motor 10 of top trowelling beam is advantageously measured for fabricating
hollow-cored slabs and similar slab-like products illustrated in Fig. 2, while fabrication
of products illustrated in Fig. 3 such as I-beams having a smaller width-to-height
ratio is preferably carried out by measuring the power input to the drive motors 10'
of the side trowelling beams.
[0019] The input power to the drive motor or a signal value relative to that appropriately
correlates with the energy required for compaction of the concrete mix and the amount
of energy necessary for achieving a desired final result. If the stiffness of the
concrete mix becomes greater, the required input power increases, as well as the internal
pressure within the compaction space. Similarly, if the aggregate size in the mix
becomes greater or the proportion of aggregate in the mix is increased, mix workability
becomes worse and the input power to the drive motors grows higher.
[0020] The measurement signal of the control variable is taken into the control unit 18
so that the control unit 18 can compute the necessary control signals employed for
regulating the rotational speed of the augers 2 or the speed of the compacting motion
of the shaping mandrels, or possibly both of these. The basic rule of the control
principle is to slow down the rotational speed of the augers 2 to attain pressure
reduction in the compaction/shaping space, and in a similar fashion, the speed of
the compacting motion of mandrels 3 can be increased to effect pressure reduction.
As a pressure reduction results in reduced input power, it is possible to establish
defined relationships of the power consumption, the internal pressure and the compaction
energy.
[0021] Figure 4 shows a block diagram of an exemplifying control system in which the speed
of two feed augers 2 and the reciprocating stroke rate of the shaping mandrels 3 are
controlled on the basis of the input current to the drive motor 10 of the trowelling
beam 11. The control system is operated as a discrete state system, that is, by sampling
the motor input current at certain time intervals t
p. If the measured value mI
p of the motor input current deviates outside its tolerance limits, that is, the measured
value is greater than the sum of the set value I
p of the input current to the trowelling beam drive motor 10 and the nominal allowable
deviation I
ps thereof, the program proceeds to the next step. Otherwise, the program resumes the
initial state without performing any control steps. If the program decides to proceed
to the next step, the time tim
r required for regulating the variator gears of the feed augers is checked to be shorter
than the maximum allowable regulation time t
c. If not, the program steps to the alarm state in which the apparatus is halted and
the operator is alerted by issuing an alarm. Provided that the time required for regulating
the variators remains smaller than the maximum allowable regulation time, the measured
value mI
p of motor input current is tested whether it exceeds the sum of the set value I
p of the trowelling beam drive motor input current and the maximum allowable deviation
I
pu thereof. If larger, the measured value is tested whether it exceeds the absolute
maximum input current; and with a positive result, the program returns to the initial
state via the alarm and halt states. If the absolute maximum input current is not
exceeded, the program issues a control signal to increase the reciprocating stroke
rate of the compacting mandrel for a preset mandrel-regulating time t
tt. In the opposite case with the measured value mI
p remaining below the sum of the set value I
p and the deviation limit I
pu, the next program step issues a control signal to reduce the rotational speed of
the augers 2 for a preset auger-regulating time t
rt. In the next step the program checks the relative rotational speeds of the augers
2 by comparing the absolute value of the difference of measured motor currents mI
1 and mI
2 of said augers against a preset allowable difference I
rd. If the absolute value of the difference remains below the set limit, the program
resumes the initial state; otherwise, the rotational speed of the faster running auger
is reduced for a preset regulating time t
it of the auger drive motors.
[0022] In addition to those described above, the invention can be implemented in alternative
embodiments.
[0023] The drive elements can be any power actuators capable of delivering the required
output power. In the above applications, however, electric or hydraulic motors are
superior. The conversion of a rotational movement into a linear cyclically reciprocating
motion can be implemented in different ways using, e.g., a crank lever or eccentric
cam and follower mechanism. All drive elements can be controllable, but the simplest
embodiment requires only the rotational speed of the augers 2 or the reciprocating
compacting motion of the mandrels 2 to be controllable.
[0024] Concrete mix feed by means of the augers 2 can be replaced by an alternative feed
method such as, e.g., ram feed. The shaping mandrels are not absolutely necessary,
but rather, can be replaced by tapering mandrels when fabricating cast products with
a solid core. Replacing or complementing the action of the mandrels, other compaction
methods such as high-frequency vibration can be employed. If so desired, the shaping
mandrels can be mounted apart from the feed augers, whereby they operate as separate
elements, allowing the augers to feed the concrete mix between the mandrels.
[0025] The control of the compacting motion or the compaction effect can be implemented
by regulating the speed or stroke length of the compacting motion or the vibration
input power.
1. A method for producing a concrete product with a controlled degree of compaction,
in which method
- concrete mix is fed by means of at least one rotational feed element (2) through
a delineated cross section (3, 11, 12, 13) in order to fabricate a concrete product
of desired shape,
- the mix being cast is compacted by means of at least one reciprocating motion of
trowelling beams (11, 12) and/or of shaping mandrels (3), and
the reciprocating motion of the trowelling beams (11, 12) is actuated by drive means
(10, 10'),
characterized in that
- the power consumed by the drive means (10, 10') actuating the reciprocating motion
of the top trowelling beam (11) and/or the side trowelling beam (12) or a variable
related to said power is measured by an appropriate method and, on the basis of the
obtained measurement result, at least the compacting reciprocating motion of one of
the trowelling beams (11, 12) and/or the shaping mandrels (3) and/or the rotational
speed of the feed element (2) is regulated so as to attain the control of the compaction
effect and pressure within the confines of the delineated cross section.
2. A method as defined in claim 1, in which method the concrete mix is compacted by moving
at least one (11) of the surfaces delineating said cross section, characterized in that the measured power is the power consumed to move said surface (11), whereby
direct or indirect measurement of the power is employed.
3. A method as defined in claim 1, in which method the concrete mix is fed through the
delineated cross section (3, 11, 12, 13) and compacted by moving at least one of the
mandrels (3) placed in said cross section so as to delineate said cross section, characterized in that, on the basis of the measurement value, both the feed and compaction of the
concrete mix are regulated by controlling the motion of the mandrel (3).
4. A method as defined in claim 1, in which method the concrete mix is fed through the
delineated cross section (3, 11, 12, 13) and compacted by moving at least one of the
mandrels (3) placed in said cross section so as to delineate said cross section as
well as moving three of the surfaces (11, 12) delineating said cross section, characterized in that the power consumed to move all three surfaces (11, 12) is measured in an
appropriate manner and the feed of the concrete mix is regulated on the basis of the
measurement values.
5. A method as defined in claims 3 and 4, characterized in that both the feed and compaction of the concrete mix are regulated on the basis
of the measurement value.
6. A method as defined in any foregoing claim, characterized in that the measured variable is the input current to an electric drive motor.
7. A method as defined in any foregoing claim, characterized in that the measured variable is hydraulic drive fluid pressure.
8. An apparatus for producing a concrete product with a controlled degree of compaction,
said apparatus comprising
- at least one rotational feed element (2) for feeding concrete mix through a delineated
cross section (3, 11, 12, 13),
- at least one trowelling beam (11, 12) and/or shaping mandrel (3) delineating said
cross section (3, 11, 12, 13) that can be brought to a reciprocating motion in order
to compact the concrete mix, and
- drive means (10, 15) for actuating the reciprocating motion of said surface,
characterized by
- means for measuring (19), transmitting and processing (18) the input power level
to the drive means (10, 10') moving the top trowelling beam (11) and/or one side trowelling
beam (12), or alternatively, a variable related to said power level so as to attain
a control signal and means (20, 21) for transmitting said control signal to at least
the regulating elements for the reciprocating motion of one of the trowelling beams
(11, 12) and/or shaping mandrels (3) and/or the rotational speed of the feed means
(2) for the concrete mix.
9. An apparatus as defined in claim 8, comprising at least one shaping mandrel (3) extending
to said delineated cross section and of elements for actuating a reciprocating motion
of said mandrel (3), characterized by means (21) suited to transmit a control signal to said actuating elements (9,
16) for the regulation of the compaction effect of said mandrel.
10. An apparatus as defined in claim 9, comprising a mould (13) surrounding said delineated
cross section, two side trowelling beams (12) movable by an actuator (10'), and a
top trowelling beam (11) movable by an actuator (10), and at least one shaping mandrel
(3), characterized by means (19) suited to measure the power consumed by said actuators or said trowelling
beams (11, 12), or alternatively, a variable related to said power.
1. Verfahren zum Herstellen eines Betonerzeugnisses mit einem gesteuerten Verdichtungsgrad,
bei welchem Verfahren
- eine Betonmischung mittels zumindest eines sich drehenden Förderelements (2) durch
einen abgegrenzten Querschnitt (3,11,12,13) gefördert wird, um ein Betonerzeugnis
von gewünschter Form herzustellen,
- die Mischung, die geformt wird, mittels zumindest einer hin- und hergehenden Bewegung
von Streichschienen (11,12) und/oder von Formungsdornen (3) verdichtet wird,
- und die hin- und hergehende Bewegung der Streichschienen (11,12) durch Antriebseinrichtungen
(10, 10') in Gang gesetzt wird,
dadurch gekennzeichnet,
daß die durch die Antriebseinrichtungen (10, 10'), welche die hin- und hergehende
Bewegung der oberen Streichschiene (11) und/oder der Seiten-Streichschiene (12) in
Gang setzen, verbrauchte Leistung oder eine zu der genannten Leistung in Beziehung
stehende Variable nach einem geeigneten Verfahren gemessen wird
und daß auf der Basis des erhaltenen Meßergebnisses zumindest die verdichtende Hin-
und Herbewegung einer der Streichschienen (11,12) und/oder eines der Formungsdorne
(3) und/oder die Drehzahl des Förderelements (2) derart reguliert wird, daß die Steuerung
der Verdichtungswirkung und des Drucks innerhalb der Grenzen des abgegrenzten Querschnitts
erreicht wird.
2. Verfahren nach Anspruch 1, wobei die Betonmischung durch Bewegung zumindest einer
(11) der Flächen, welche den genannten Querschnitt abgrenzen, verdichtet wird,
dadurch gekennzeichnet,
daß die gemessene Leistung die Leistung ist, die verbraucht wird, um die genannte
Fläche (11) zu bewegen, wobei eine direkte oder indirekte Messung der Leistung benutzt
wird.
3. Verfahren nach Anspruch 1, wobei die Betonmischung durch den abgegrenzten Querschnitt
(3,11,12,13) gefördert und durch Bewegung zumindest eines der Dorne (3) verdichtet
wird, die in dem genannten Querschnitt derart angeordnet sind, daß der genannte Querschnitt
abgegrenzt ist,
dadurch gekennzeichnet,
daß auf der Basis des Meßwertes die Förderung und die Verdichtung der Betonmischung
durch Steuern der Bewegung des Dornes (3) reguliert werden.
4. Verfahren nach Anspruch 1, wobei die Betonmischung durch den abgegrenzten Querschnitt
(3, 11, 12, 13) gefördert und durch Bewegung zumindest eines der Dorne (3) verdichtet
wird, die in dem genannten Querschnitt derart angeordnet sind, daß der genannte Querschnitt
abgegrenzt ist und drei der den genannten Querschnitt abgrenzenden Flächen (11, 12)
bewegt werden,
dadurch gekennzeichnet,
daß die zur Bewegung sämtlicher drei Flächen (11, 12) verbrauchte Leistung in einer
geeigneten Weise gemessen wird und daß die Förderung der Betonmischung auf der Basis
der Meßwerte reguliert wird.
5. Verfahren nach Anspruch 3 und 4, dadurch gekennzeichnet, daß die Förderung und die Verdichtung der Betonmischung auf der Basis des Meßwertes
reguliert werden.
6. Verfahren nach irgendeinem vorhergehenden Anspruch, dadurch gekennzeichnet, daß die gemessene Variable der Eingangsstrom für einen elektrischen Antriebsmotor
ist.
7. Verfahren nach irgendeinem vorhergehenden Anspruch, dadurch gekennzeichnet, daß die gemessene Variable ein hydraulischer Antriebsfluiddruck ist.
8. Vorrichtung zum Herstellen eines Betonerzeugnisses mit einem gesteuerten Verdichtungsgrad,
umfassend
- zumindest ein sich drehendes Förderelement (2) für die Förderung einer Betonmischung
durch einen abgegrenzten Querschnitt (3,11,12,13),
- zumindest eine den genannten Querschnitt (3,11,12,13) abgrenzende Streichschiene
(11,12) und/oder zumindest einen abgrenzenden Formungsdorn (3), die bzw. der in eine
hin- und hergehende Bewegung versetzt werden kann, um die Betonmischung zu verdichten,
- und Antriebseinrichtungen (10,15) zur Vornahme der hin- und hergehenden Bewegung
der genannten Fläche,
gekennzeichnet
durch eine Einrichtung zum Messen (19), Übertragen und Verarbeiten (18) des Eingangsleistungspegels
für die Antriebseinrichtungen (10,10'), welche die obere Streichschiene (11) und/oder
eine Seiten-Streichschiene (12) bewegen, oder alternativ einer Variablen, die zu dem
genannten Leistungspegel in Beziehung steht, derart, daß ein Steuersignal erhalten
wird, und durch Einrichtungen (20, 21) zur Übertragung des genannten Steuersignals
zumindest zu den Regulierelementen für die hin- und hergehende Bewegung einer der
Streichschienen (11,12) und/oder eines der Formungsdorne (3) und/oder für die Drehzahl
der Fördereinrichtung (2) für die Betonmischung.
9. Vorrichtung nach Anspruch 8, umfassend zumindest einen Formungsdorn (3), der sich
in den abgegrenzten Querschnitt erstreckt, und Elemente zur Betätigung bzw. Vornahme
einer hin- und hergehenden Bewegung des genannten Dornes (3),
gekennzeichnet
durch eine Einrichtung (21), die geeignet ist, ein Steuersignal zu den genannten Betätigungselementen
(9,16) für die Regulierung der Verdichtungswirkung des genannten Dornes (10) zu übertragen.
10. Vorrichtung nach Anspruch 9, umfassend eine Form (13), welche den genannten abgegrenzten
Querschnitt umgibt, zwei Seiten-Streichschienen (12), die durch eine Betätigungseinrichtung
(10') bewegbar sind, und eine obere Streichschiene (11), die durch eine Betätigungseinrichtung
(10) bewegbar ist, und zumindest einen Formungsdorn (3),
gekennzeichnet durch eine Einrichtung (19), die geeignet ist, die durch die genannten Betätigungseinrichtungen
oder die genannten Streichschienen (11,12) verbrauchte Leistung oder alternativ eine
zu der genannten Leistung in Beziehung stehende Variable zu messen.
1. Méthode pour la production d'un élément en béton ayant un degré de compactage contrôlé,
dans laquelle :
un prémélange de béton est distribué au moyen d'au moins un élément de distribution
rotatif (2) ayant une section transversale à contour défini (3,11,12,13) afin de fabriquer
un élément en béton de forme désirée,
le prémélange coulé est compacté au moyen d'au moins un mouvement de va-et-vient de
poutres d'égalisation (11,12) et/ou de mandrins de formage (3), et
le mouvement de va-et-vient des poutres d'égalisation (11,12) est engendré par des
moyens d'entraînement (10, 10'),
caractérisée en ce que
la puissance consommée par les moyens d'entraînement (10,10') engendrant le mouvement
de va-et-vient de la poutre d'égalisation supérieure (11) et/ou de la poutre d'égalisation
latérale (12), ou une variable liée à ladite puissance, est mesurée par une méthode
appropriée et, sur la base du résultat de mesure obtenu, au moins le mouvement de
va-et-vient de compactage d'une des poutres d'égalisation (11,12) et/ou des mandrins
de formage (3),et/ou la vitesse de rotation de l'élément de distribution (2), est
réglé de façon à effectuer le réglage de l'effet de compactage et de la pression dans
les limites de la section transversale à contour défini.
2. Méthode suivant la revendication 1, dans laquelle le prémélange de béton est compacté
par déplacement d'au moins une (11) des surfaces délimitant ladite section transversale,caractérisée
en ce que la puissance mesurée est la puissance consommée pour déplacer ladite surface
(11), de sorte qu'on emploie une mesure directe ou indirecte de la puissance.
3. Méthode suivant la revendication 1, dans laquelle le prémélange de béton est distribué
à travers la section transversale à contour défini (3,11,12,13) et compacté par déplacement
d'au moins un des mandrins (3) placés dans ladite section transversale de façon à
délimiter ladite section transversale,caractérisée en ce que, sur la base de la valeur
de mesure, à la fois la distribution et le compactage du prémélange de béton sont
régulés par commande du mouvement du mandrin (3).
4. Méthode suivant la revendication 1, dans laquelle le prémélange de béton est distribué
à travers la section transversale à contour défini (3,11,12,13) et compacté par déplacement
d'au moins un des mandrins (3) placés dans ladite section transversale de façon à
délimiter ladite section transversale, ainsi que par déplacement de trois des surfaces
(11,12) délimitant ladite section transversale, caractérisée en ce que la puissance
consommée pour déplacer la totalité des trois surfaces (11,12) est mesurée d'une manière
appropriée et la distribution du prémélange de béton est régulée sur la base de la
valeur de mesure.
5. Méthode suivant les revendications 3 et 4, caractérisée en ce qu'à la fois la distribution
et le compactage du prémélange de béton sont régulés sur la base de la valeur de mesure.
6. Méthode suivant une quelconque des revendications précédentes, caractérisée en ce
que la variable mesurée est le courant d'entrée d'un moteur électrique d'entraînement.
7. Méthode suivant une quelconque des revendications précédentes, caractérisée en ce
que la variable mesurée est une pression de fluide hydraulique d'entraînement.
8. Dispositif pour la production d'un élément en béton ayant un degré de compactage contrôlé,
ledit dispositif comprenant :
au moins un élément de distribution rotatif (2) pour distribuer un prémélange de béton
à travers une section transversale à contour défini (3,11,12,13),
au moins une poutre d'égalisation (11,12) et/ou un mandrin de formage (3) délimitant
ladite section transversale (3,11,12,13), pouvant être mis en mouvement de va-et-vient
afin de compacter le prémélange de béton, et
des moyens d'entraînement (10,15) pour engendrer le mouvement de va-et-vient de ladite
surface, caractérisé par
des moyens de mesure (19) qui transmettent et traitent (18) la valeur de puissance
d'entrée appliquée aux moyens d'entraînement (10,10') qui déplacent la poutre d'égalisation
supérieure (11) et/ou une poutre d'égalisation latérale (12), ou en variante une variable
liée à ladite valeur de puissance, de façon à engendrer un signal de commande, et
des moyens (20,21) pour transmettre ledit signal de commande au moins aux éléments
de régulation du mouvement alternatif d'une des poutres d'égalisation (11,12) et/ou
des mandrins de formage (3), et/ou de la vitesse de rotation des moyens de distribution
(2) du prémélange de béton.
9. Dispositif suivant la revendication 8, comprenant au moins un mandrin de formage (3)
s'étendant dans ladite section transversale à contour défini et des éléments de génération
d'un mouvement de va-et-vient du. dit mandrin (3), caractérisé par des moyens (21)
appropriés à la transmission d'un signal de commande auxdits éléments de génération
de mouvement (9,16) afin de réguler l'effet de compactage dudit mandrin.
10. Dispositif suivant la revendication 9, comprenant un moule (13) qui entoure ladite
section transversale à contour défini, deux poutres d'égalisation latérales (12) déplaçables
par un actionneur (10') et une poutre d'égalisation supérieure (11) déplaçable par
un actionneur (10), et au moins un mandrin de formage (3), caractérisé par des moyens
(19) permettant de mesurer la puissance consommée par lesdits actionneurs ou lesdites
poutres d'égalisation (11,12), ou,en variante, de mesurer une variable liée à ladite
puissance.