FIELD OF THE INVENTION
[0001] The present invention relates generally to a force measuring instrument, and more
particularly to an instrument for determining the strength of an applied force by
measuring the strength of an electromagnetic force developed so as to counterbalance
the applied force, wherein the applied force means any load derivable from a mass,
a load and a fluid pressure.
BACKGROUND OF THE INVENTION
[0002] As a typical example of the force measuring instruments an electronic balance and
a diaphragm-implemented measuring instrument are known in the art, wherein the diaphragm-implemented
measuring instrument means a measuring instrument having a diaphragm on which an external
force such as fluid pressure is applied. These measuring instruments include a balanceable
scale beam which is displaced under a force exerting on a weighing pan and a diaphragm
secured to the scale beam, and in response to the displacement, an electromagnetic
force is developed by a transducer having a force coil placed in the static electromagnetic
field so as to compensate the displacement. The strength of the electromagnetic force
is detected. At this stage no equilibrium is yet reached between the force and the
electromagnetic force. The detecting result is subjected to PID operation, and then
fed back to the force coil so as to obtain an optimum strength of electromagnetic
force for achieving the equilibrium. In this way the applied force is determined by
measuring the feedback current. The "PID" is a known symbol standing for proportionality
signal (P), an integral signal (I) and a differential signal (D).
[0003] However, the known system has the following problems and disadvantages:
[0004] First, the detecting result is represented in analog quantity, and the PID operation
is performed in analog. The resulting signal is fed back to the force coil, and the
current flowing through the force coil is converted into analog voltage signal through
a resistance, and is then digitalized by an A/D (analog-to-digital) converter. The
digitalized signal is supplied to a microcomputer, and the resulting measuring value
is arithmetically operated like averaging, and displayed as a mean value.
[0005] In such an analog servomechanism it is required to employ an A/D converter having
a relatively large number of bits so as to achieve high precision without sacrificing
the dynamic range. As a whole the system becomes expensive because of the unavoidable
provision of an A/D converter having a large number of bits and a high responsibility.
[0006] Second, the resistance through which the feedback current flowing through the force
coil is converted into analog voltage signal generates heat. Owing to the heat the
resistance values are varies, thereby resulting in an unstable span. The force coil
also generates heat which is likely to raise the temperatures of the permanent magnet
in the coil. Thus the magnetostatic field becomes unstable. Unstable magnetostatic
field causes drifts in the measuring values.
[0007] Third, under the known analog servomechanism the achievement of stable control requires
a lower proportional gain of the system but in order to enhance resolution a higher
proportional gain is required. The two requirements for stability and resolution are
contradictory with each other, and cannot be satisfied at the same time.
[0008] In order to overcome these disadvantages, there is a proposal for digitalizing the
whole process of PID operation but a high-speed A/D converter having a large number
of bits occupies a large space and is costly. An example of one such device is described
in EP-A-0 411 920.
SUMMARY OF THE INVENTION
[0009] According to the present invention, there is provided a force measuring instrument
for determining the strength of an applied force by measuring the strength of an electromagnetic
force developed so as to counterbalance the applied force, the instrument including
a force coil, a displacement sensor for detecting any displacement occurring on a
scale balance, an analog arithmetic unit for performing PD operation of analog detecting
signals sent by the displacement sensor, a pulse converter for converting the analog
signal into a signal having a frequency depending upon the magnitude of the analog
signal, an up/down counter for counting up or down pulse signals from the pulse converter
depending upon the polarity of the analog signal, a D/A (digital-to-analog) converter
for converting the number of counts by the up/down counter into an analog signal,
and wherein the sum of the output of the D/A converter and the output of the analog
arithmetic unit is fed back to the force coil, thereby ensuring that the counts by
the counter alone are used to determine the measurements.
BRIEF DESCRIPTION OF THE DRAWINGS
[0010]
Figure 1 is a block diagram schematically showing the circuit and the structure of
a first example according to the present invention;
Figure 2 is a block diagram schematically showing the circuit and the structure of
a second example according to the present invention; and
Figure 3 is a block diagram schematically showing the circuit and the structure of
a third example according to the present invention.
DETAILED DESCRIPTION OF THE INVENTION
[0011] Referring to Figure 1, the illustrated example is an electronic balance. The exemplary
balance includes a force coil 5a for a coarse range and a force coil 5b for a fine
range. A weighing pan 1 is secured to a scale beam 2 which is capable of seesawing
on a pivot. The displacement of the scale beam 2 is detected by a displacement sensor
3. The analog output from the sensor 3 is amplified by a preamplifier 4, and then
is sent to a circuit (described below). The analog output controls a current flowing
through the force coils 5a and 5b.
[0012] The force coils 5a and 5b are placed in the magnetostatic field, and each force coil
generates an electromagnetic force having a strength which depends upon the intensity
of the current flowing therethrough. The electromagnetic force exerts on the scale
beam 2 in an opposite direction to the applied force.
[0013] The signal output by the displacement sensor 3 is amplified by the preamplifier 4
and input to an absolute value circuit 6, an analog PD (proportionality and differential)
arithmetic circuit 8 and a zero-crossing detector 9. The output of the absolute value
circuit 6 is sent to a V/F (voltage-frequency) converter 7 and a comparator 10. The
V/F converter generates a pulse signal whose frequency is proportional to the modulus
of the detecting value.
[0014] The pulse signal from the V/F converter 7 is sent to a coarse up/down counter 11a
and a fine up/down counter 11b. Each of the up/down counters 11a and 11b is to add
a pulse signal when the detecting value is positive (+) and deducts a pulse signal
when the detecting value is negative (-) controls a signal detected by the zero-crossing
detector 9 whereby changes in the polarity of displacement value are determined. The
comparator 10 will be referred to below.
[0015] The outputs from the coarse and fine up/down counters 11a and 11b are supplied to
a D/A (digital-to-analog) converters 12a and 12b using a PWM (pulse width modulator)
circuit and a low-pass filter. The D/A (digital-to-analog) converters 12a and 12b
each modulate the width of the signals output by the up/down counters 11a and 11b,
and generate a PWM signal having a rectangular waveform having a duty which depends
upon the number of signals counted. The PMW signal is cut off by the low-pass filter
so as to obtain analog d.c. signals. In converting digital to analog signals, the
circuits of the converters 12a and 12b are in synchronism with the counters 11a and
11b by using latch circuits 120a and 120b designed to latch any input to the PWM circuits
temporarily. Without the latch circuits 120a and 120b, the counters 11a and 11b would
go on counting without break which unfavorably affects the On/Off cycle for conversion.
This impairs the accuracy of digital-to-analog conversion.
[0016] The analog signals from the converters 12a and 12b are subjected to voltage-current
conversion by power-amplifiers 13a and 13b, and supplied to the coarse coil 5a and
fine coil 5b. The coarse coil 5a, in addition to the signal from the power amplifier
13a, receives a further signal which was converted into an electric current by a third
power amplifier 13c.
[0017] The comparator 10 compares an absolute value representing the displacement (hereinafter
"displacement value") with a predetermined reference threshold, and the result thus
obtained is used as a monitor signal which switches from the coarse range to the fine
range and vice versa; more specifically, when the output from the absolute value circuit
6 exceeds the reference threshold, a pulse signal from the V/F converter 7 is supplied
only to the coarse up/down counter 11a. The sum of two currents, that is, (1) a current
obtained by converting an output from the coarse up/down counter 11a and (2) a current
obtained by converting an output from the analog PD arithmetic unit 8 by the third
power amplifier 13c is supplied to the coarse force-coil 5a alone. The resultantly
generating electromagnetic force and the displacement value of the scale beam 2 in
equilibrium are jointly returned to the absolute value circuit 6. Thus a coarse feedback
loop is formed. When the system becomes stabilized with the situation described above
being maintained, the value representing the displacement gradually comes to zero.
When the displacement value falls below the threshold set by the comparator 10, the
output of the absolute value circuit 6 is supplied to the fine up/down counter 11b.
Thereafter, another feedback loop, that is, a fine feedback loop including the fine
up/down counter 11b, the D/A converter 12b and the power amplifier 13b is executed,
thus enabling the coarse and fine loops to control the system cooperatively.
[0018] While the two loops are executed, if the fine up/down counter 11b is over-charged,
an overcharge signal is generated and sent to the coarse up/down counter 11a so as
to count up the signals thereof.
[0019] The relationship between the LSB (least significant bit) of the coarse up/down counter
11a and the MSB (most significant bit) of the fine up/down counter 11b may be such
that the electromagnetic forces generated by the force coils 5a and 5b fully match
or alternatively, overlap by a few bits; in the latter case, an amount corresponding
to the overlapping portion be added to the coarse up/down counter 11a.
[0020] The outputs from the coarse and fine up/down counters 11a and 11b are input to the
microcomputer 14, and they are mutually subjected to weighting addition. Then the
resulting values are arithmetically operated such as averaging for displaying on the
indicator 15 as a measurement. The analog PD arithmetic unit 8 controls noise until
the scale beam 2 is brought into equilibrium (where there is no indication of displacement),
thereby maintaining the system in an optimum condition. When the system becomes stabilized,
the output becomes zero, it no longer functions to determine a measuring value.
[0021] At this stage, noises occurring in the ambience around the balance should be eliminated.
If noise occurs, the output of the displacement sensor 3 fluctuates irrespective of
the fact that the applied load is static. Even after the feedback loop for the coarse
range turns into the stabilized state, the displacement value does not become constant
and fails to stay within the threshold. If this state is realized by an output of
the comparator 10, it is required to eliminate noises so as to indicate an accurate
measuring value constantly.
[0022] One of the features of the present invention is that among the PID operations the
integral operation is performed in digits whereas the others are performed in analog,
and that the sum of the results is used as a feedback signal and displayed as a single
measuring value represented in digits. In digitalizing a signal which performs one
arithmetic operation, no high-speed A/D converter is required but a V/F converter
and up/down counters are used. Another feature is that to represent the results of
the I operation in analog, a combination circuit of the low-pass filter and the PWM
circuit operable in synchronism with the up/down counters by a cycle latch circuit
is used.
[0023] According to the present invention, it is not required to use a high-speed A/D converter
to digitalize the results of the I arithmetic operation. Dispensing with A/D converters
can reduce production cost. In addition, the operation time can be shortened by having
no time for performing the A/D conversion, thereby speeding up the display of measurements.
[0024] By setting two groups of "coarse" and "fine" ranges and selectively operating them,
a wide dynamic range can be advantageously divided into a coarse loop having a large
loop gain, and a fine loop having a small loop gain. Thus the resolution is enhanced.
[0025] Figure 2 shows a second example which demonstrates that the coarse range and the
fine range are substituted by a single loop which performs the digital I arithmetic
operation and also performs analog PD arithmetic operations.
[0026] The feature of the second example is in the single loop which is substantially equivalent
to the coarse loop. In Figure 2 like reference numerals designate like elements and
components to those in Figure 1 so that the description of them is omitted for simplicity.
As a result of the omission of the fine loop, the comparator 10 is no longer required,
and the measuring value is determined by supplying a sum of the output (current changing
signal) of the D/A converter 12a and the output of the analog PD arithmetic unit 8
to a force coil 5a wherein the values to be displayed are determined by the counting
of the up/down counter 11a. The circuit described above can be applied to a diaphragm-implemented
balances in which a fluid pressure exerts upon the scale beam through the diaphragm.
[0027] Figure 3 shows a third example using a diaphragm wherein like reference numerals
designate like elements and components to those in Figure 2, the description of which
will be omitted for simplicity:
[0028] The illustrated diaphragm-implemented balance includes a diaphragm 31 which is deformed
in accordance with the magnitude of fluid pressure exerting thereupon. The diaphragm
31 is secured to a scale beam 33 through a connecting bar 32 in such a manner as to
allow the beam 33 to seesaw on a pivot 330. When fluid pressure is applied to the
diaphragm 31, the scale beam 33 declines in accordance with the deformation of the
diaphragm 31.
[0029] The displacement of one end of the scale beam 33 is detected by a displacement sensor
3, and an analog signal is supplied to a preamplifier 4, and the subsequently arranged
elements and components are the same as those described with respect to Figure 2.
The other end of the scale beam 33 is secured to a force coil 34. The current flowing
through the force coil 34 is controlled in accordance with the amount of the displacement
of the scale beam 33.
[0030] The force coil 34 is placed in a static electromagnetic field, and when a current
flows through the force coil 34, an electromagnetic force is generated in accordance
with the intensity of the current. The electromagnetic force works in opposite direction
to the direction in which the pressure exerts on the diaphragm 31.
[0031] Under this structure the feedback loop subsequent to the absolute value circuit 6,
and the feedback loop subsequent to the analog PD arithmetic unit 8 each control a
current flowing through the force coil 34 so as to constantly bring the scale beam
33 into equilibrium irrespective of any magnitude of the fluid pressure exerting on
the diaphragm 31. The current flowing through the force coil 34 at equilibrium depends
upon the magnitude of fluid pressure exerting on the diaphragm 31. The relations between
them are stored in a microcomputer 14'.
[0032] The microcomputer 14' takes in the results counted by the up/down counter 11a, and
the value is represented in terms of fluid pressure in the above-mentioned relationship.
The finally determined value is displayed on a display 15'. The result of the I arithmetic
operation is digitalized without the use of a high-speed A/D converter. This example
also has the advantages of economy, stability, and responsibility.
[0033] It is of course possible to provide a diaphragm-implemented balance with the same
coarse feedback loop and fine feedback loop as those in the first example.
1. A force measuring instrument for determining the strength of an applied force by measuring
the strength of an electromagnetic force developed so as to counterbalance the applied
force, comprising:
a force coil;
a displacement sensor for detecting any displacement occurring on a scale balance;
an analog arithmetic unit for performing PD operation of analog detecting signals
sent by the displacement sensor;
a pulse converter for converting the analog signal into a signal having a frequency
depending upon the magnitude of the analog signal;
an up/down counter for counting up or down pulse signals from the pulse converter
depending upon the polarity of the analog signal;
a D/A (digital-to-analog) converter for converting the number of counts by the up/down
counter into an analog signal; and
wherein the sum of the output of the D/A converter and the output of the analog arithmetic
unit is fed back to the force coil, thereby ensuring that the counts by the counter
alone are used to determine the measurements.
2. The force measuring instrument according to claim 1, further comprising an amplifier
for amplifying the analog signal from the displacement sensor, an absolute value circuit
and a zero-crossing detector, wherein the output of the absolute value circuit is
converted into a pulse signal by a V/F (voltage-to-frequency) converter, the zero-crossing
detector detects any change in the polarity of the analog signal, and the up/down
counter is controlled in accordance with the polarity changes detected by the zero-crossing
detector.
3. The force measuring instrument according to claim 1 or 2, wherein the D/A converter
comprises a pulse width modulator, a low-pass filter, and a latch circuit, wherein
the PWM circuit (pulse width modulator) inputs the signals output by the up/down counter,
and the low-pass filter inputs the signals of the PWM circuit, and the latch circuit
latches the PWM circuit from outputting temporarily so as to synchronize the modulation
of the PWM modulator with the counting by the counter.
4. The force measuring instrument according to claim 1, 2 or 3, wherein the up/down counter
and the D/A converter are provided in two pairs, one pair constituting a coarse loop
and the other pair constituting a fine loop, wherein the sum of the outputs of the
D/A converters for the two loops and the outputs of the analog arithmetic unit is
fed back to the force coil, and further comprising means for assessing the magnitude
of an absolute value of an analog signal of the displacement sensor so as to determine
whether the assessed result falls in or out of a reference threshold, wherein if the
assessed result is above the threshold, the pulse signal from the pulse converter
is sent to the coarse up/down counter alone, and if the assessed result is below the
threshold, the pulse signal is sent to the coarse and fine up/down counters, and to
determine a measuring value, the results counted by the coarse and fine up/down counters
are used after they are subjected to weighting addition.
5. The force measuring instrument according to any of the preceding claims, wherein the
measuring instrument comprises a balance mechanism including a scale beam and a weighing
pan secured to the scale beam, and wherein a force to be measured is given by a load
placed on the weighing pan, the measuring value being indicated by mass or by weight.
6. The force measuring instrument according to any of the preceding claims, wherein the
measuring instrument comprises a balance mechanism including a scale beam and a diaphragm
secured thereto for receiving fluid pressure, a displacement occurring on the scale
beam being detected by the displacement sensor, and the force to be measured is given
by the fluid pressure received on the diaphragm, the measuring value being indicated
in pressure.
1. Kraftmeßinstrument zum Ermitteln der Stärke einer aufgebrachten Kraft durch Messen
der Stärke einer elektromagnetischen Kraft, die entwickelt wird, um die aufgebrachte
Kraft auszubalanzieren, mit:
einer Kraftspule;
einem Verlagerungssensor zum Ermitteln einer bei einer Skalenwaage stattfindenden
Verlagerung;
einer analogen Recheneinheit zum Durchführen einer Impulsdaueroperation an den durch
den Verlagerungssensor ausgesandten analogen Ermittlungssignalen;
einem Impulskonverter zum Verwandeln des analogen Signals in ein Signal mit einer
Frequenz, die von der Größe des analogen Signals abhängt;
einem Aufwärts/Abwärts-Zähler zum Aufwärts- oder Abwärtszählen von Impulssignalen
des Impulskonverters in Abhängigkeit von der Polarität des analogen Signals;
einem D/A(Digital-Analog)-Konverter zum Verwandeln der Zähleranzeige des Aufwärts/Abwärts-Zählers
in ein analoges Signal; dadurch gekennzeichnet, daß die Summe des Ausgangs des D/A-Konverters und des Ausgangs der analogen Recheneinheit
in die Kraftspule zurückgeführt wird, wodurch sichergestellt wird, daß allein die
Anzeige des Zählers benutzt wird, um die Maße zu ermitteln.
2. Kraftmeßinstrument nach Anspruch 1, ferner gekennzeichnet durch einen Verstärker zum Verstärken des analogen Signals des Verlagerungssensors,
eine Absolutwertschaltung und einen Nulldurchgangdetektor, wobei der Ausgang der Absolutwertschaltung
durch einen V/F-(Spannung-Frequenz)-Konverter in ein Impulssignal verwandelt wird,
wobei der Nulldurchgangdetektor jede Veränderung der Polarität des analogen Signals
ermittelt und der Aufwärts/Abwärts-Zähler entsprechend den durch den Nulldurchgangdetektor
ermittelten Polaritätsveränderungen gesteuert wird.
3. Kraftmeßinstrument nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der D/A-Konverter einen Impulsbreitenmodulator, einen Tiefpaßfilter und eine
Sperrschaltung umfaßt, wobei die PWM-Schaltung (Impulsbreitenmodulator) die durch
den Aufwärts/Abwärts-Zähler ausgegebenen Signale eingibt, der Tiefpaßfilter die Signale
der PWM-Schaltung eingibt und die Sperrschaltung die PWM-Schaltung vorübergehend gegen
die Ausgabe von Signalen sperrt, um die Modulation des Impulsbreitenmodulators mit
der Zählung des Zählers zu synchronisieren.
4. Kraftmeßinstrument nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, daß der Aufwärts/Abwärts-Zähler und der D/A-Konverter in Form von zwei Paaren vorgesehen
sind, wobei ein Paar eine grobe Schleife und das andere Paar eine feine Schleife bildet,
wobei die Summe der Ausgänge der D/A-Konverter für beide Schleifen und die Ausgänge
der analogen Recheneinheit zu der Kraftspule zurückgeführt werden; daß ferner Einrichtungen
zum Schätzen der Größe eines absoluten Wertes eines analogen Signals des Verlagerungssensors
vorhanden sind, um zu ermitteln, ob das geschätzte Resultat innerhalb oder außerhalb
eines Bezugsschwellenwertes liegt, wobei dann, wenn das geschätzte Resultat oberhalb
des Schwellenwertes liegt, das Impulssignal des Impulskonverters allein dem groben
Aufwärts/Abwärts-Zähler zugeführt wird, und wenn das geschätzte Resultat unterhalb
des Schwellenwertes liegt, das Impulssignal dem groben und dem feinen Aufwärts/ Abwärts-Zähler
zugeführt wird, und um einen Meßwert zu ermitteln, werden die durch den groben und
den feinen Aufwärts/Abwärts-Zähler gezählten Resultate verwendet, nachdem sie einer
Bewertungsaddition unterzogen worden sind.
5. Kraftmeßinstrument nach jedem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Meßinstrument einen Waagemechanismus mit einem Waagebalken und einer an
diesem befestigten Waagschale umfaßt und daß die zu messende Kraft durch eine auf
die Waagschale aufgebrachte Last gegeben ist, wobei der Meßwert durch Masse oder Gewicht
angezeigt wird.
6. Kraftmeßinstrument nach jedem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Meßinstrument einen Waagemechanismus mit einem Waagebalken und einer an diesem
befestigten Membran zur Aufnahme eines Fluiddruckes umfaßt, wobei eine Verlagerung
des Waagebalkens durch denverlagerungssensor ermittelt wird und die zu messende Kraft
durch den auf die Membran wirkenden Fluiddruck gegeben ist, wobei der Meßwert als
Druck angezeigt wird.
1. Un instrument de mesure de force pour déterminer la valeur d'une force appliquée en
mesurant la valeur d'une force électromagnétique développée de manière à contre-balancer
la force appliquée, comprenant:
une bobine de force;
un capteur de déplacement destiné à détecter tout déplacement se produisant sur une
balance graduée;
une unité arithmétique analogique, destinée à effectuer une opération de type proportionnel-différentiel,
sur des signaux de détection analogiques envoyés par le capteur de déplacement;
un convertisseur d'impulsions conçu pour convertir le signal analogique en un signal
ayant une fréquence dépendant de l'amplitude du signal analogique;
un compteur montant/descendant, destiné à compter en montant ou en descendant les
signaux d'impulsions venant du convertisseur d'impulsions, selon la polarité du signal
analogique;
un convertisseur N/A (numérique-analogique), conçu pour convertir. le nombre de comptages
faits par le convertisseur compteur montant/descendant en un signal analogique; et
dans lequel la somme de la sortie du convertisseur N/A et de la sortie de l'unité
arithmétique analogique est retournée à la bobine force, de manière à assurer que
les comptages faits par le compteur seul soient utilisés pour déterminer les mesures.
2. L'instrument de mesure de force selon la revendication 1, comprenant en outre un amplificateur
conçu pour amplifier le signal analogique venant du capteur de déplacement, un circuit
à valeur absolue et un détecteur de passage de zéro dans lequel la sortie du circuit
de valeur absolue est convertie en un signal d'impulsion par un convertisseur V/F
(tension vers fréquence), le détecteur de passage de zéro détectant tout changement
dans la polarité du signal analogique et le compteur montant/descendant étant commandé
en fonction des modifications de la polarité ayant été détectée par le détecteur de
passage de zéro.
3. L'instrument de mesure de force selon la revendication 1 ou 2, dans lequel le convertisseur
N/A comprend un modulateur de largeur d'impulsion, un filtre passe-bas et un circuit
de verrouillage, dans lequel le circuit PWM (modulateur de largeur d'impulsion) introduit
le signal envoyé par le compteur montant/descendant et le filtre passe-bas introduit
les signaux du circuit PWM et le circuit de verrouillage verrouille le circuit PWM
pour l'empêcher, temporairement, d'émettre de manière à synchroniser la modulation
du modulateur PWM avec le comptage fait par le compteur.
4. L'instrument de mesure de force selon la revendication 1, 2 ou 3, dans lequel le compteur
montant/descendant et le convertisseur N/A sont prévus en deux paires, une paire étant
constituée d'une boucle brute et l'autre paire constituant une boucle fine, dans lequel
la somme des sorties des convertisseurs N/A pour les deux boucles et des sorties de
l'unité arithmétique analogique est recyclée à la bobine de force; et comprenant en
outre des moyens pour évaluer l'amplitude d'une valeur absolue d'un signal analogique
du capteur de déplacement, de manière à déterminer si le résultat évalué tombe dans
ou hors des limites d'un seuil de référence, dans lequel, si le résultat évalué est
supérieur au seuil, le signal d'impulsion venant du convertisseur d'impulsions est
envoyé au compteur montant/descendant brut seul, et si le résultat d'impulsion est
envoyé aux compteurs montant/descendant brut et fin, et pour déterminer une valeur
de mesure, les résultats comptés par les compteurs montant/descendant brut et fin
étant utilisés après avoir été soumis à une addition de pondération.
5. L'instrument de mesure de force selon l'une quelconque des revendications précédentes,
dans lequel l'instrument de mesure comprend un mécanisme d'équilibrage comprenant
une poutre graduée et une auge de pesée fixée à la poutre graduée, et dans lequel
une force à mesurer est donnée par une charge placée sur l'auge de pesée, la valeur
de mesure étant indiquée par une masse ou par un poids.
6. L'instrument de mesure de force selon l'une quelconque des revendications précédentes,
dans lequel l'instrument de mesure comprend un mécanisme d'équilibrage comprenant
une poutre graduée et un diaphragme lui étant fixé afin de recevoir une pression hydraulique,
un déplacement se produisant sur la poutre graduée étant détectée par le capteur de
déplacement et la force à mesurer étant donnée par la pression hydraulique reçue sur
le diaphragme, la valeur de mesure étant indiquée en terme de pression.