BACKGROUND OF THE INVENTION
(1) Field of the Invention
[0001] This invention relates to an input system comprising a resistance film touch panel
and a device for detecting a pushed position of the touch panel, especially the one
including a device for conducting the above detection by use of a change in electric
potential which occurs when the touch panel is pushed.
(2) Description of the Prior Art
[0002] A simple input system including a touch panel and a detecting device for detecting
a pushed position of the touch panel and for outputting a signal which indicates the
two-dimensional coordinates of the position is widely used in combination with a character
display device (CRT, LCD or PDP) or the like.
[0003] In an input system including a resistance film touch panel, a pushed position of
the touch panel, namely, the position where two resistance films are contacted on
each other, is detected based on the resistance value of the position -- contrary
to using capacitance.
[0004] Conventionally, two types of touch panels comprising resistance films have been offered:
analog system touch panels and matrix system touch panels.
[0005] Fig. 1 shows an analog system touch panel. Two resistance films 91 and 92 are opposed
to each other with a certain distance therebetween. The film 91 has outer connecting
electrodes 93 and 94 along ends thereof, the ends extending along a Y axis; and the
film 92 has outer connecting electrodes 95 and 96 along ends thereof, the ends extending
along an X axis. In this construction, a pushed position A or B is detected by obtaining
a resistance value r
1 or r
3 between the position A or B and the outer connecting electrode 95 and a resistance
value r
2 or r
4 between the position A or B and the outer connecting electrode 93 and then converting
the obtained resistance values into a voltage, which is outputted through the electrodes
94 or 96.
[0006] If the two points A and B are pushed simultaneously, r
1 and r
3 are connected in parallel and r
2 and r
4 are connected in parallel, thereby combined resistances are formed. The voltage is
divided by the combined resistances, resulting in finding a position which is neither
A nor B. Therefore, accurate detection of two pushed positions are impossible with
this construction.
[0007] As shown in Fig. 2, a matrix system touch panel comprises a plurality of strip-like
resistance films 101 arranged in parallel and a plurality of strip-like resistance
films 102 arranged in parallel. The films 101 are extended along the X axis and the
films 102 are extended along the Y axis, the films 101 and the films 102 having a
certain distance therebetween. A pushed position is detected by finding out which
films are contacted on each other by use of an appropriate scanner.
[0008] Since each film has a lead connected thereto, a great number of leads are necessary,
which causes the wiring area to be too large compared with the detection area of the
touch panel. Also required are a large number of input circuit components. These facts
increase size of the system and manufacturing cost.
[0009] In an effort to minimize the number of the leads, touch panels are manufactured these
days with various numbers of films for different usages. However, the necessity of
manufacturing products with various numbers of films brings about another troublesome
matter such as management of various components.
[0010] JP-A-59 127 181 discloses a resistive touch panel comprising a conductive film divided
into parts on one side of a pressure-sensitive sheet together with a resistance film
provided on the other side of the sheet. A voltage is supplied to the parts of the
conductive film one by one via switches. When pressure is applied to a point on the
touch panel, one of the parts of the conductive film makes contact with the underlying
resistive film. Both coordinates of this point are determined by measuring the voltage
dropped across external resistors connected to the underlying resistive film. The
preamble of each of the claims 1 and 12 is based on JP-A-59 127 181.
SUMMARY OF THE INVENTION
[0011] Accordingly, this invention has an object of offer an input system including a resistance
film touch panel and a pushed position detecting device for accurately detecting two
or more positions pushed simultaneously with a minimized number of leads.
[0012] According to a first aspect of the invention the above object is fulfilled by an
input system as defined by claim 1. According to a second aspect of the invention
there is provided a resistance film touch panel as defined by claim 12. Preferred
features of the invention are defined in the dependent claims.
[0013] In the present invention, since the first resistance film extends in first and second
directions, the touch panel requires approximately only half the electrodes compared
with the matrix system touch panel as well as a smaller wiring area and fewer input
circuit components. Thus a simple construction is obtained with lower manufacturing
cost.
[0014] If two or more positions are pushed simultaneously at least in the first or the second
direction, the strip-like second resistance films can be selected one by one to allow
each of the positions to be accurately detected.
[0015] Also according to preferred feature, the potentials at both ends of each strip-like
resistance film are detected alternately. Even an area defined by two or more points
is pushed, the outer periphery thereof can be detected with a small number of leads.
[0016] Further, when the touch panel comprises a resistance film extended two-dimensionally
and formed on the upper base layer on which an external force is to be applied and
a plurality of strip-like resistance films formed on the lower base layer, the touch
panel is easy to manufacture and moreover, enhance yield rate for the following reason.
[0017] The upper base layer should be thin because it is to be pushed by a finger or the
like. Much care should be taken in forming the resistance film on such a thin upper
base layer. Since no laser trimming or other processing is necessary in forming the
resistance film extended two-dimensionally in contrast to the strip-like ones, there
is no worry of spoiling the upper base layer.
[0018] On the other hand, used for the lower base layer is a hard and thick plate which
is tough enough to withstand laser trimming for forming the strip-like resistance
films.
BRIEF DESCRIPTION OF THE DRAWINGS
[0019] These and other objects, advantages and features of the invention will become apparent
from the following description thereof taken in conjunction with the accompanying
drawings which illustrate specific embodiments of the invention. In the drawings:
Figs. 1 and 2 are views showing conventional touch panels;
Fig. 3 is a plan view of a touch panel of an embodiment according to this invention;
Fig. 4 is a cross sectional view along the A-A line of Fig. 3;
Figs. 5a and 5b show examples of the construction of a resistance film;
Fig. 6 shows an overall construction of the embodiment;
Figs. 7a, 7b and 7c show the principle of detecting the pushed position;
Figs. 8, 9 and 10 show other embodiments of this invention;
Fig. 11 is an exploded perspective view of still another embodiment of this invention;
Fig. 12 is a view of the embodiment of Fig. 11 combined with a character display device;
Fig. 13 is a bottom view of an upper plate of the embodiment of Fig. 11;
Fig. 14 is a top view of a lower plate of the embodiment of Fig. 11;
Fig. 15 is a view showing a printed circuit board of the system of Fig. 11;
Fig. 16 is an enlarged view of the part A of Fig. 15;
Fig. 17 is a view of still another embodiment of this invention; and
Figs. 18, 19 and 20 are views of modifications of Fig. 17.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
[0020] A first embodiment according to this invention will be described with reference to
Fig. 3 through 8.
[0021] As shown in Figs. 3 and 4, a touch panel of the system comprises two insulating base
layers 1 and 2, a resistance film 3, a plurality of resistance films 4 (eight in this
embodiment), and spacers 5 for keeping a certain distance between the resistance films
3 and 4. The films 3 and 4 are respectively formed on main surfaces 1a and 2a of the
base layers 1 and 2.
[0022] The insulating base layers 1 and 2 are formed of transparent polyethylene terephthalete
films in this embodiment. Also employable are glass, plastics and other insulating
materials which have an appropriate flexibility or elasticity.
[0023] The resistance film 3 is extended along the X and y axes crossing each other perpendicularly.
The resistance film 3 desirably has a uniform surface resistance value (will be referred
simply to resistance value, hereinafter) for accurate detection with the maximum tolerance
of ±2%. Such a film is produced by sputtering, ion-plating or coating an oxide of
indium and tin, other metals or metal oxides. The resistance film 3 has outer connecting
electrodes (for example, formed of silver) at both ends thereof, the ends extending
along the Y axis.
[0024] The resistance films 4 are lengthy strips arranged in parallel, each film being extended
along the X axis. The resistance value of the film 4 is not required to be uniform
but is favorably ten to a hundred times higher than that of the film 3 so that the
resistance value of each film 4 may not affect the electric potential slope of the
film 3 even if the film 4 is contacted on the film 3.
[0025] The resistance films 4 are formed, for example, by sputtering an oxide of indium
and tin on the surface 2a before etching. Forming the films 4 of the same material
as the film 3 as in this embodiment generates no problem since each film 4 has a bigger
resistance value due to its smaller surface area compared with the film 3. The resistance
value of each film 4 is further increased by making cutoffs 9 from both longer sides
thereof alternately (Fig. 5b). With the cutoffs 9, the electric current path is half
as wide and twice as long as the current path without the cutoffs (Fig. 5a). Therefore,
the resistance value of the film 4 of Fig. 5b is four times higher than that of the
film 4 of Fig. 5a. The resistance value can easily become a hundred times or more
higher by making much more cutoffs. This type of resistance film is formed by screen
printing or etching when only a small number of cutoffs are required, and by photolithography
or laser processing when a large number of cutoffs are required.
[0026] Each film 4 has outer connecting electrodes 10 and 11 (formed of silver) at both
ends thereof.
[0027] The films 4 may be provided in approximately the same number as the lines or rows
of the conventional matrix system touch panel.
[0028] The spacers 5 are transparent cylinders formed of an insulating material and are
provided in an appropriate number at appropriate positions so that they may not prevent
the films 3 and 4 from contacting each other when the base film 2 is pushed. The spacers
5 may be non-transparent if the spacers 5 are small, and also may be small dots, globes,
or semi-spheres.
[0029] Fig. 6 shows an overall construction of the embodiment.
[0030] In Fig. 6, analog switches 41 and 42 have the same construction and are controlled
to connect their respective terminals 1 through 17 to terminals 18 one by one, in
synchronization concerning the same-numbered terminals, by the controller 44 through
a decoder 45. The terminals which are not connected to the terminal 18 are kept at
high impedance.
[0031] In the analog switch 41, the terminal 18 is supplied with a DC potential V
2 by an external power source, and the terminals 2 through 17 are to be connected with
all the outer connecting electrodes 10 and 11, respectively. In this construction,
V
2 is supplied to all the electrodes 10 and 11 one by one.
[0032] In the analog switch 42, the terminal 1 is supplied with a DC potential V
1, and the terminals 2 through 17 are to be connected with all the electrodes 10 and
11, respectively. The terminal 18 is connected to an A/D converter 43. In this construction,
the potential which is supplied to the film 3 through the terminal 1 is outputted
as the reference potential, thereafter the electric potentials of all the electrodes
10 and 11 are outputted one by one.
[0033] The terminals 2 through 17 of both analog switches 41 and 42 and the electrodes 10
and 11 have such a relationship that, while the electric potentials of the electrodes
10 and 11 are selectively outputted one by one, the analog switch 41 may apply V
2 to the electrode belonging to the same film 4 as the selected one does.
[0034] For measuring the resistance value, the electrode 6 of the film 3 is supplied with
V
1, and the electrode 7 is grounded. The level of V
2 is desirably the same or higher than that of V
1.
[0035] The following is how this system is operated.
[0036] The terminals 1 of the analog switches 41 and 42 are selected by the command from
the decoder 45. The terminals 1 and 18 of the analog switch 41 have low impedances
(ON), but the terminal 1 is connected to nothing. Therefore, power is supplied to
none of the films 4. On the other hand, the terminals 1 and 18 of the analog switch
42 are connected to each other. Accordingly, V
1 is A/D-converted by the A/D converter 43 and sent to the controller 44. The controller
44 stores the value of V
1 for easy detection of the X coordinate of the pushed position.
[0037] Then, the terminals 2 of the analog switches 41 and 42 are selected, thereby the
electrode 10 of the uppermost film 4 gets V
2 through the terminal 18 of the analog switch 41. At this time, the potential of the
electrode 11 of the same film 4 is conveyed to the terminals 2 and then 18, both of
the analog switch 42, and to the controller 44 through the A/D converter 43.
[0038] If this potential is the same or higher than V
1 supplied to the film 3, the uppermost film 4 is not pushed. In this case, the terminals
4 of the analog switches 41 and 42 are selected, thereby the second uppermost film
4 is pushed or not is detected in the same manner.
[0039] If the potential of the electrode 11 of the uppermost film 4 is smaller than V
1, the uppermost film 4 is pushed. In this way, the Y coordinate of the pushed position
is detected.
[0040] The X coordinate of the pushed position is detected in the following way.
[0041] Figs. 7a, 7b and 7c show the relationship between the pushed position along the X
axis and the potentials of the electrodes 6, 7, 10 and 11. The solid line indicates
the potential slope of the film 3. Concerning each film 4, the electrode 10 is supplied
with V
2 and the electrode 11 has its potential measured through the analog switch 42. When
the film 4 is not pushed, no power is supplied and therefore the potential of the
electrode 11 is the same as V
2 of the electrode 10 as shown with the chained line (Fig. 7a). As mentioned before,
the resistance value of the film 4 is too high to have any affect on the potential
slope of the film 3. Accordingly, when the film 4 is pushed and contacted on the film
3 at a point C, the potential of the point C of the film 4 is lowered down to V
S, which is the same as that of the corresponding point of the film 3 (the dashed line
of Fig. 7a). Then, the electrode 11 gets the same potential V
S. The controller 44 obtains the X coordinate of the point C by use of the difference
between V
S and V
1.
[0042] If the pushed position is not one point but a wider area, the detection is done as
follows.
[0043] In Fig. 7b, points D and E indicate the left end and the right end of the pushed
area, respectively. As apparent from Fig. 7b, the electrode 11 gets V
R, namely, the potential of the point E, based on which the X coordinate of the point
E is detected.
[0044] After the potential of the electrode 11 is outputted, the decoder 45 commands the
analog switches 41 and 42 to select the terminals 3. By this selection, the electrode
11 is supplied with V
2. On the other hand, the electrode 10 gets V
L, namely, the potential of point D (Fig. 7c), based on which the X coordinate of the
point D is detected. In this way, the X coordinates of the two points are detected.
[0045] The potentials of the electrodes 10 and 11 of the other films 4 are obtained one
by one in the same way, whereby the X and Y coordinates of all the points that define
the pushed area are detected.
[0046] In Fig. 6, a DC power source is connected to the terminal 18 of the analog switch
41 in order to supply a certain level of potential to the film 4 even when the film
4 is not pushed and thus to make the unpushed film distinct from the pushed film.
The analog switch 41 and the DC power source may be eliminated so as to release the
unpushed film from any potential although a little unstable electrically. In that
case, the electrodes 10 and 11 of the pushed film 4 have V
L and V
R as shown in Fig. 8. In this construction, the potentials of all the electrodes 10
and 11 are selectively obtained by the analog switch 42 to detect the X coordinates
of the points D and E.
[0047] Fig. 9 shows a second embodiment according to this invention. This embodiment is
distinct from the first embodiment except the followings. All the films 4 share by
a common electrode 71 at one ends thereof, the electrode 71 being supplied with the
same potential as the electrode 6. The potentials of the electrodes 11 are selectively
obtained by an analog switch 72. The number of the terminals of the analog switch
72 is larger by one than the number of the films 4.
[0048] In this construction, if the film 4 is pushed at two or more points, only the rightmost
point is detected along the X axis. Along the Y axis, however, all the coordinates
can be detected by obtaining the potential of each film 4.
[0049] Fig. 10 shows a third embodiment according to this invention. The electrodes 10 are
all to be connected to an analog switch 81 and the electrodes 11 are all to be connected
to an analog switch 82. The analog switches 81 and 82 are controlled to supply V
1 to all the films 4 one by one, in synchronization concerning each film. The electrodes
6 and 7 of the film 3 are supplied with V
2 through a switch 83, which is switched twice as fast as the analog switches 81 and
82. The electrodes 6 and 7 are also connected to the A/D converter through an analog
switch 84, which is switched as fast as but reversely to the switch 83. The output
from the A/D converter is sent to a controller (not shown). The switches 81 through
84 are switched by the controller through a decoder (not shown).
[0050] In this construction, when the analog switches 81 and 82 select one of the films
4, the selected film 4 gets the potential slope based on V
1. At this time, the potentials of the electrodes 6 and 7 are obtained through the
analog switch 84. This operation is repeated for all the films 4.
[0051] In this way, even if the film 4 is pushed at two or more points along the X axis,
all the points can be detected. In this embodiment, each film 4 should have a uniform
resistance value, which should be ten or a hundred times lower than that of the film
3.
[0052] A fourth embodiment of this invention will be described referring to Figs. 11 through
14.
[0053] This embodiment includes a touch panel comprising an insulating upper plate 201 to
be pushed, an insulating lower plate 202, a transparent resistance film 203 formed
on a lower surface 201a of the plate 201, a plurality of transparent resistance films
204 formed on an upper surface 202a of the plate 202, a cylindrical spacer 205 for
keeping a certain distance between the resistance films 203 and 204, and a printed
circuit board 214. The system is combined with a character display 208 (CRT, LCD,
PDP or EL) as shown in Fig. 12 . The spacer 205 is formed of an insulating material
and may be small dots, globes or semi-spheres.
[0054] The upper plate 201 is formed of a polyethylene terephthalete film in this embodiment,
but plastics or other insulating materials which have an appropriate flexibility or
elasticity can also be used. The upper plate 201 has a projecting portion 201b for
forming leading electrodes. The lower plate 202 is formed of, for example, transparent
glass which is excellent in resistance against chemicals. Also acceptable are polycarbonate
and hard plastics which have excellent resistance against chemicals and laser.
[0055] As shown in Fig. 13, the resistance film 203 is extended along the X and Y axes,
which cross each other perpendicularly. The film 203 is produced in the same way as
the film 3 of the first embodiment. The film 203 has outer connecting electrodes 206
and 207 (for example, formed of silver) along both ends thereof, the ends extending
along the Y axis. The projecting portion 201b has leading electrodes 215 through 218.
The leading electrodes 215 and 216 are both connected to the outer connecting electrode
206, respectively through a power supply line 219 and a voltage sensing line 221.
The leading electrodes 217 and 218 are both connected to the outer connecting electrode
207, respectively through a voltage sensing line 222 and a power supply line 220.
The power supply lines 219 and 220 have larger cross sections than the voltage sensing
lines 221 and 222 in order to keep voltage drop small.
[0056] As shown in Fig. 14, the resistance films 204 are lengthy strips arranged in parallel,
the films 204 extending along the X axis. The resistance films 204 are produced by
sputtering an oxide of indium and tin on the surface 202a and then masking it with
screen printing or photolithography before etching it. Laser processing can be used
instead of etching.
[0057] Forming the films 204 of the same material as the film 203 as in this embodiment
generates no problem since each film 204 has a bigger resistance value due to its
smaller surface area compared with the film 203. The resistance value of each film
4 is further increased by employing the construction illustrated in Fig. 5b.
[0058] Each film 204 has outer connecting electrodes 210 and 211 (formed of carbon-coated
silver) at both ends thereof, which are connected to leading electrodes 230 formed
on the lower plate 202 through connecting lines 231.
[0059] As shown in Fig. 15, the printed circuit board 214 is fixed on the upper surface
202a of the lower plate 202 and has a chip component 221 such as an IC mounted thereon.
The printed circuit board 214 further has a connecter 222 fixed at an outer end thereof.
Formed at an inner end of the printed circuit board 214 are electrodes 223 to be connected
to the electrodes 230 and electrodes 225 to be connected to the electrodes 215 through
218. Each electrode 225 is formed of anisotropic conductive film. Each electrode 223
has a cutout 223a, with which a solder 224 for soldering the electrodes 223 and 230
is securely fixed (Fig. 16).
[0060] A fifth embodiment of this invention will be described referring to Fig. 17.
[0061] The electrodes 210 of the resistance films 204 are supplied with a common potential
+V through serial resistances 276 and a common electrode 271. The serial resistances
276 are provided to regulate the amount of current flown into the resistance film
203 from the film 204 when the film 203 is pushed. If a DC voltage is directly supplied
to the film 204 without the serial resistances 276, too much current is flown into
the film 203, thereby to alter the potential slope between the pushed position and
the electrode 207. This has an adverse influence on the accuracy of the pushed position
detection. The electrode 206 of the film 203 is supplied with the potential +V through
an external resistance 273, and the electrode 207 is grounded through another external
resistance 274.
[0062] The potentials +V of the electrodes 206 and 207 of the film 203 are respectively
led to reference inputs V
REF(+) and V
REF(-) of an A/D converter 272 through buffers 275. The potentials of the electrodes
211 of the film 204 are detected by the A/D converter 272 with a built-in analog switch.
The A/D converter 272 has the same number of terminals with the number of the films
204.
[0063] In the above construction, if two or more positions of the same film 204 are contacted
on the film 203, only the rightmost position is detected. Along the Y axis, however,
all the pushed positions are detected by obtaining the potentials of all the films
204.
[0064] Fig. 18 shows a modification of the above construction. Here, serial circuits each
consisting of a resistance 310 and a diode 311 is provided instead of the common electrode
271. The serial circuits are respectively connected to the electrodes 211 at one ends
thereof and are grounded through a switch 312 at the other ends thereof. Although
the switch 312 has a contact in Fig. 18, a non-contact type switch such as a transistor
can be used as long as it is turned on periodically with an appropriate timing. If
a certain film 204 is not contacted on the film 203 when the switch 312 is turned
on, the electrode 211 of the film 204 gets the ground-level potential by the resistance
310 and the diode 311. If the film 204 is contacted on the film 203 when the switch
312 is turned on, the potential of the electrode 211 is changed to the potential of
the film 203. Accordingly, whether the films 203 and 204 are contacted on each other
or not is judged in the following way: if the input V
IN of the A/D converter 272 is lower than the reference input V
REF(-) (now shown) when the switch 312 is turned on, the touch panel is not pushed; if
the input V
IN is higher than the reference input V
REF(-) when the switch 312 is turned on, the touch panel is pushed. In the latter case,
the switch 312 is then turned off and the pushed position is detected. It is desirable
that protecting diodes 313 and 314 are provided respectively between the +V and the
electrode 211 and between the electrode 211 and the ground. The protecting diodes
313 and 314 prevent the input voltage of the A/D converter 272 from being broken by
the induced voltage when switch 312 is off with the touch panel not being pushed.
[0065] Fig. 19 shows another modification of Fig. 17. In the construction of Fig. 17, the
A/D converter 272 has the same number of terminals as the number of the film 204.
However, an A/D converter usually has 8 input terminals. This means two or more expensive
A/D converters are required if the number of terminals are increased to 16, 24, or
even 32. The sixth embodiment is proposed to solve this problem of high cost. Used
as the A/D converter is a single-chip microcomputer with a built-in A/D converter
(will be referred simply to A/D converter, hereinafter), and a multiplexer is provided
at the input side of each A/D converter. The plurality of the films 204 are connected
to the A/D converter one by one by the multiplexer.
[0066] Practically, this embodiment has the following construction. Four commercially available
ICs 321 through 324 (74HC4052 manufactured by NEC Corporation), each having two 4-input,
1-output multiplexers, are used. The outputs from the ICs 321 through 324 are supplied
to an A/D converter 325 having 8 input terminals. Which output should be supplied
to the A/D converter 325 is controlled moment by moment by a channel control signal
supplied from the A/D converter 325.
[0067] Since this construction has 32 inputs in all, it can be applied to a touch panel
having up to 32 strip-like films.
[0068] Fig. 20 shows still another embodiment in which 8 commercially available ICs 331
through 338 (74HC4051 manufactured by NEC Corporation), each of which has an 8-input,
1-output multiplexer, are used. An A/D converter 329 has 8 input terminals. Which
output should be supplied to the A/D converter is controlled by the channel control
signal. This construction can be applied to a touch panel having up to 64 strip-like
films.
[0069] In all the above embodiments, the lengthy strip-like films cross the two-dimensional
film perpendicularly. However, they may be deflected if a little. Theoretically, it
is acceptable if only the strip-like films cross the Y axis.
[0070] Although the present invention has been fully described by way of embodiments with
references to the accompanying drawings, it is to be noted that various changes and
modifications will be apparent to those skilled in the art. Therefore, unless otherwise
such changes and modifications depart from the scope of the present invention, they
should be construed as being included therein.
1. An input system including a resistance film touch panel and a pushed position detecting
device for detecting two-dimensional coordinates of a pushed position of a touch panel,
the system further comprising:
a spacer (5);
a continuous first resistance film (3, 203) extended in first and second directions,
the first and second directions crossing each other perpendicularly and said first
resistance film (3, 203) having an outer connecting electrode (6, 7, 206, 207) on
both ends thereof along the second direction;
a plurality of second resistance films (4, 204), said second resistance films (4,
204) each being a lengthy strip extended in a direction crossing the second direction
and having an outer connecting electrode (10, 71, 11, 210, 211) on at least one end
thereof;
wherein said pushed position detecting device is adapted to detect one of said coordinates
based on the surface resistance value of said first resistance film between one of
the outer connecting electrodes of the first resistance film and the pushed position,
characterised in that
a pair of insulating base layers (1, 201, 2, 202) is provided opposed to each other
with a certain distance therebetween;
said spacer is provided between said insulating base layers (1, 201, 2, 202) for keeping
said layers apart but for allowing said layers (1, 201, 2, 202) to approach each other
when an external force is applied to one of the layers (1, 201, 2, 202);
said first resistance film is provided on an inner surface (1a, 201a) of one of said
layers (1, 201); said plurality of resistance films is provided on an inner surface
(2a, 202a) of the other of said layers (2, 202); and
said pushed position detecting device is further adapted to detect the other one of
said coordinates based on the location of the second resistance films in said panel.
2. An input system according to claim 1, characterised in that said second resistance
films (4; 204) have an outer connecting electrode (10, 71, 11, 210, 211) at both ends
thereof.
3. An input system according to claim 2, characterised in that a first outer connecting
electrode (11) is provided at one end of the second resistance films (4) and a second
outer connecting electrode (71) is provided at the other end which is shared with
the rest of said second resistance films (4).
4. An input system according to claim 2 or claim 3, characterised in that said second
resistance films (4, 204) are extended in the first direction.
5. An input system according to claim 2 or claim 3, characterised in that said second
resistance films (4, 204) each have a larger resistance than said first resistance
film (3, 203).
6. An input system according to claim 1 when the second resistance films have an outer
connecting electrode at one end thereof characterised in that the system further comprises:
DC potential supplying means for supplying said first resistance film (203) with a
DC potential (V) through one of the outer connecting electrodes (207) thereof;
a switch (312) switched to a first state for supplying all the outer connecting electrodes
(211) of said second resistance films (204) with a ground-level potential and to a
second state for releasing the same (211) from the ground-level potential; and
electric potential measuring means (272) for measuring the potentials of all the outer
connecting electrodes (211) of said second resistance films (204) both in the first
and the second states.
7. An input system according to claim 2 characterised in that the system further comprises:
a first potential supplying means for supplying said first resistance film (3) with
a DC potential (V1) through one of the outer connecting electrodes (6) of said first
resistance film (3);
a first switch (41) electrically connected with all the outer connecting electrodes
(10) of said second resistance films (4) one by one, alternately for said each second
resistance film;
a second switch (42) switched in synchronization with the first switch (41) and electrically
connected to the outer connecting electrode (11) which is opposed to the outer connecting
electrode (10) connected to the first switch (41);
second potential supplying means for supplying said second resistance films (4) with
a DC potential (V2) through the first switch (41); and
electric potential measuring means (43) for measuring potentials of the second resistance
films (4) through the second switch (42).
8. An input system according to claim 2 characterised in that the system further comprises:
DC potential supplying means (81, 82) for supplying a DC potential to said second
resistance films (4) one by one;
switching means (83) switching at a speed at least twice as high as the DC potential
supplying means (81, 82), said switching means (83) being for supplying a DC potential
to the outer connecting electrodes (6, 7) of said first resistance film (3) alternately;
and
electric potential measuring means (84) for measuring the potential of the outer connecting
electrode (6 , 7) of said first resistance film (3), the electrode (6, 7) being opposed
to the electrode (6, 7) supplied with the DC potential by the switching means (83).
9. An input system according to claim 3 characterised in that the system further comprises:
a first potential supplying means for supplying said first resistance film (3) with
a DC potential (V) through one of the outer connecting electrodes (6) of said first
resistance film (3);
a second potential supplying means for supplying a DC potential (V) to the second
outer connecting electrode (71) of said second resistance films (4);
a switch (72) electrically connected with the first outer connecting electrodes (11)
of said second resistance films (4) one by one, alternately for said each second resistance
film (4); and
electric potential measuring means (43) for measuring potentials of the first outer
connecting electrodes (11) of the second resistance films (4) through the switch (72).
10. An input system according to claim 6 characterised in that said pair of insulating
base layers consist of a flexible upper base layer (201) on which an external force
is applied and a hard lower base layer opposed to the upper base layer (202) with
a spacer therebetween, and said first resistance film (203) is formed on a lower surface
(201a) of the upper layer (201) and said second resistance films (204) are formed
on an upper surface (202a) of the lower base layer (202).
11. An input system according to claim 1 wherein the second resistance films have an outer
connecting electrode at one end thereof, characterised in that one of said base layers
(201) is an upper transparent film and the other one of said base layers (202) is
a lower transparent and hard plate.
12. A resistance film touch panel comprising:
a continuous first resistance film ( 203) extending two-dimensionally;
a plurality of lengthy strip-like second films (204); and
a spacer (205) for keeping said first (203) and second (204) films apart but, when
an external force is applied on said first (203) film allows the first (203) and the
second (204) films to contact each other at a position corresponding to where the
external force is applied;
characterised in that the first film (203) is formed on a lower surface (201a) of
a flexible upper base layer (201), said layer having an upper surface to which the
external force is applied; and
the second (204) films are resistance films and are formed on a surface (202a)
of a lower base layer (202) opposed to said upper base layer (201).
13. An input system including a resistance film touch panel as defined in claim 12 and
a pushed position detecting device for detecting two-dimensional coordinates of a
pushed position on the touch panel wherein said pushed position detecting device is
adapted to detect one of said coordinates based on the surface resistance value of
said first resistance film between an outer connecting electrode of the first resistance
film and the pushed position, and to detect the other one of said coordinates based
on the location of the second films in said panel.
1. Ein Eingabesystem, das eine berührungsempfindliche Widerstandstafel und eine Bestimmungseinrichtung
für eine niedergedrückte Position zum Bestimmen von zweidimensionalen Koordinaten
einer niedergedrückten Position einer Berührungstafel einschließt, wobei das System
des weiteren umfaßt:
ein Abstandsstück (5);
einen durchgehenden, ersten Widerstandsfilm (3, 203), der sich in einer ersten und
zweiten Richtung erstreckt, wobei die erste und die zweite Richtung einander senkrecht
kreuzen, und der genannte erste Widerstandsfilm (3, 203) eine äußere Verbindungselektrode
(6, 7, 206, 207) an beiden Enden davon entlang der zweiten Richtung hat;
eine Mehrzahl zweiter Widerstandsfilme (4, 204), wobei die genannten zweiten Widerstandsfilme
(4, 204) jeweils ein länglicher Streifen sind, die sich in eine die zweite Richtung
kreuzende erstrecken und eine äußere Verbindungselektrode (10, 71, 11, 210, 211) an
wenigstens einem Ende davon haben;
worin die genannte Bestimmungseinrichtung für eine niedergedrückte Position fähig
ist, eine der genannten Koordinaten auf der Grundlage der Oberflächenwiderstandswerts
des genannten ersten Widerstandsfilms zwischen einer der äußeren Verbindungselektroden
des ersten Widerstandsfilms und der niedergedrückten Position zu bestimmen, dadurch gekennzeichnet, daß
ein Paar Grundisolierschichten (1, 201, 2, 201) einander gegenüberstehend mit einem
gewissen Abstand dazwischen vorgesehen ist;
das genannte Abstandsstück zwischen den genannten Grundisolierschichten (1, 201, 2,
202) vorgesehen ist, um die Schichten beabstandet zu halten, aber zu gestatten, daß
sich die Schichten (1, 201, 2, 202) einander nähern, wenn eine äußere Kraft auf eine
der Schichten (1, 201, 2, 202) aufgebracht wird;
der genannte erste Widerstandsfilm auf einer inneren Oberfläche (1, 201a) einer der
genannten Schichten (1, 201) vorgesehen ist; die genannte Mehrzahl von Widerstandsfilmen
auf einer inneren Oberfläche (2a, 202a) der anderen der genannten Schichten (2, 202)
vorgesehen ist; und
die genannte Bestimmungseinrichtung für die niedergedrückte Position des weiteren
fähig ist, die andere der genannten Koordinaten auf der Grundlage des Ortes des zweiten
Widerstandsfilm in der genannten Tafel zu bestimmen.
2. Ein Eingabesystem gemäß Anspruch 1, dadurch gekennzeichnet, daß die genannten zweiten Widerstandsfilme (4; 204) eine äußere Verbindungselektrode
(10, 71, 11, 210, 211) an beiden Enden davon haben.
3. Ein Eingabesystem gemäß Anspruch 2, dadurch gekennzeichnet, daß eine erste, äußere Verbindungselektrode (11) an einem Ende der zweiten Widerstandsfilme
(4) vorgesehen ist und eine zweite, äußere Verbindungselektrode (71) an dem anderen
Ende vorgesehen ist, die gemeinsam mit dem Rest der genannten zweiten Widerstandsfilme
(4) benutzt wird.
4. Ein Eingabesystem gemäß Anspruch 2 oder Anspruch 3, dadurch gekennzeichnet, daß sich die genannten zweiten Widerstandsfilme (4, 204) in der ersten Richtung erstrekken.
5. Ein Eingabesystem gemäß Anspruch 2 oder Anspruch 3, dadurch gekennzeichnet, daß die genannten zweiten Widerstandsfilme (4, 204) jeweils einen größeren Widerstand
als der genannte erste Widerstandsfilm (3, 203) haben.
6. Ein Eingabesystem gemäß Anspruch 1, wenn die zweiten Widerstandsfilme eine äußere
Verbindungselektrode an einem Ende davon haben,
dadurch gekennzeichnet, daß das System des weiteren umfaßt:
eine Gleichstromversorgungseinrichtung, um dem genannten ersten Widerstandsfilm (203)
ein Gleichspannungspotential (V) durch eine der äußeren Verbindungselekroden (207)
davon zuzuführen;
einen Schalter (312), der in einen ersten Zustand geschaltet wird, um allen äußeren
Verbindungselektroden (211) der genannten zweiten Widerstandsfilme (204) ein Potential
mit Massepegel zuzuführen, und in einen zweiten Zustand, um diese (211) von dem Potential
mit Massepegel freizugeben; und
eine elektrische Potentialmeßeinrichtung (272) zum Messen der Potentiale aller der
äußeren Verbindungselektroden (211) der genannten zweiten Widerstandsfilme (204) sowohl
in dem ersten als auch in dem zweiten Zustand.
7. Ein Eingabesystem gemäß Anspruch 2,
dadurch gekennzeichnet, daß des System des weiteren umfaßt:
eine erste Potentialzuführeinrichtung, um dem genannten ersten Widerstandsfilm (3)
ein Gleichspannungspotential (Vl) durch eine der äußeren Verbindungselektroden (6)
des genannten ersten Widerstandsfilms (13) zu führen;
einen ersten Schalter (41), der elektrisch mit allen äußeren Verbindungselektroden
(10) der genannten zweiten Widerstandsfilme (4) einzeln, abwechselnd für jeden zweiten
genannten Widerstandsfilm verbunden ist;
einen zweiten Schalter (42) der synchron zu dem ersten Schalter (41) geschaltet wird
und elektrisch mit der äußeren Verbindungselektrode (11) verbunden ist, die der äußeren
Verbindungselektrode (10) gegenübersteht, die mit dem ersten Schalter (41) verbunden
ist;
eine zweite Potentialzuführeinrichtung, um dem genannten zweiten Widerstandsfilm (4)
ein Gleichspannungspotential (V2) durch den ersten Schalter (41) zuzuführen; und
eine elektrische Potentialmeßeinrichtung (43) zum Messen der Potentiale der zweiten
Widerstandsfilme (4) durch den zweiten Schalter (42).
8. Ein Eingabesystem gemäß Anspruch 2,
dadurch gekennzeichnet, daß das System des weiteren umfaßt:
eine Gleichspannungspotentialzuführeinrichtung (81, 82) zum Zuführen eines Gleichspannungspotential
einzeln zu dem genannten zweiten Widerstandsfilm (4);
eine Schaltereinrichtung (83), die mit einer wenigstens zweimal so großen Geschwindigkeit
wie die Gleichspannungspotentialzuführeinrichtung (81, 82) schaltet, wobei die genannte
Schaltereinrichtung (83) zum abwechselnden Zuführen eines Gleichspannungspotentials
an die äußeren Verbindungselektroden (6, 7) des genannten ersten Widerstandsfilms
(3) ist; und
eine elektrische Potentialmeßeinrichtung (84) zum Messen des Potential der äußeren
Verbindungselektrode (6, 7) des genannten ersten Widerstandsfilms (3), wobei die Elektrode
(6, 7) der Elektrode (6, 7) gegenübersteht, der das Gleichspannungspotential durch
die Schaltereinrichtung (83) zugeführt wird.
9. Ein Eingabesystem gemäß Anspruch 3,
dadurch gekennzeichnet, daß das System des weiteren umfaßt:
eine erste Potentialzuführeinrichtung zum Zuführen eines Gleichspannungspotentials
(V) durch eine der äußeren Verbindungselektroden (6) des genannten ersten Widerstandsfilms
(3) zu dem genannten ersten Widerstandsfilm (3);
eine zweite Potentialzuführeinrichtung zum Zuführen eines Gleichspannungspotentials
(V) zu der zweiten, äußeren Verbindungselektrode (71) der genannten zweiten Widerstandsfilme
(4);
einen Schalter (72), der elektrisch mit den ersten, äußeren Verbindungselektroden
(11) der genannten zweiten Widerstandsfilme (4) einzeln, abwechselnd für jeden zweiten
genannten Widerstandsfilm (4) verbunden ist; und
eine elektrische Potentialmeßeinrichtung (43) zum Messen der Potentiale der ersten,
äußeren Verbindungselektroden (11) der genannten zweiten Widerstandsfilme (4) durch
den Schalter (72).
10. Ein Eingabesystem gemäß Anspruch 6, dadurch gekennzeichnet, daß das genannte Paar Grundisolierschichten aus einer flexiblen, oberen Grundschicht
(201), auf die eine äußere Kraft angewendet wird, und einer harten, unteren Grundschicht
besteht, die der oberen Grundschicht (202) mit einem Abstandsstück dazwischen gegenüberliegt,
und der genannte erste Widerstandsfilm (203) auf einer unteren Oberfläche (201a) der
oberen Schicht (201) gebildet ist, und die genannten zweiten Widerstandsfilme (204)
auf einer oberen Oberfläche (202a) der unteren Grundschicht (202) gebildet sind.
11. Ein Eingabesystem gemäß Anspruch 1, worin die zweiten Widerstandsfilme eine äußere
Verbindungselektrode an einem Ende davon haben, dadurch gekennzeichnet, daß eine der genannten Grundschichten (201) ein oberer, transparenter Film ist und
die andere der Grundschichten (202) eine untere transparente und harte Platte ist.
12. Eine berührungsempfindliche Widerstandsfilmtafel, umfassend:
einen durchgehenden, ersten Widerstandsfilm (203), der sich zweidimensional erstreckt;
eine Mehrzahl länglicher, streifenförmiger, zweiter Filme (204); und
ein Abstandsstück (205), um den genannten ersten (203) und die zweiten (204) Filme
beabstandet zu halten, wobei aber, wenn eine äußere Kraft auf den genannten ersten
(203) Film ausgeübt wird, ermöglicht ist, daß sich der erste (203) und die zweiten
(204) Filme einander an einer Position berühren, die der entspricht, wo die äußere
Kraft angewendet wird;
dadurch gekennzeichnet, daß der erste Film (203) auf einer unteren Oberfläche (201a) einer flexiblen, oberen
Grundschicht (201) gebildet ist, wobei die genannte Schicht eine obere Oberfläche
hat, auf die die äußere Kraft angewendet wird; und
die zweiten (204) Filme Widerstandsfilme sind und auf einer Oberfläche (202a) einer
unteren Grundschicht (202), der genannten oberen Grundschicht (201) gegenüberstehend
gebildet sind.
13. Ein Eingabesystem, das eine berührungsempfindliche Widerstandsfilmtafel, wie sie im
Anspruch 12 festgelegt ist, und eine Bestimmungseinrichtung für eine niedergedrückte
Position einschließt, um die zweidimensionalen Koordinaten einer niedergedrückten
Position auf der Berührungstafel zu bestimmen, wobei die genannte Bestimmungseinrichtung
für die niedergedrückte Position fähig ist, eine der genannten Koordinaten auf der
Grundlage des Oberflächenwiderstandswerts des genannten ersten Widerstandsfilm zwischen
einer äußeren Verbindungselektrode des ersten Widerstandsfilms und der niedergedrückten
Position zu bestimmen, und die andere der genannten Koordinaten auf der Grundlage
des Ortes der genannten zweiten Filme bei der genannten Tafel zu bestimmen.
1. Système d'entrée comprenant un écran tactile à film résistif et un dispositif de détection
de position poussée pour détecter des coordonnées à deux dimensions d'une position
poussée d'un écran tactile, le système comprenant en outre :
un espaceur (5) ;
un premier film résistif continu (3, 203) s'étendant dans des première et seconde
directions, les première et seconde directions se croisant perpendiculairement et
ledit premier film résistif (2, 203) ayant une électrode de connexion externe (6,
7, 206, 207) sur ses deux extrémités le long de la second direction ;
une pluralité de seconds films résistifs (4, 204), lesdits seconds films résistifs
(4, 204) étant chacun une bande longitudinale s'étendant dans une direction croisant
la seconde direction et ayant une électrode de connexion externe (10, 71, 11, 210,
211) sur au moins une de ses extrémités ;
dans lequel ledit dispositif de détection de position poussée est adapté pour détecter
une desdites coordonnées basée sur la valeur de résistance de surface dudit premier
film résistif entre une des électrodes de connexion externes du premier film résistif
et la position poussée, caractérisé en ce que
une paire de couches de base isolantes (1, 201, 2, 202) est prévue, opposées l'une
à l'autre avec une certaine distance entre elles ;
ledit espaceur est disposé entre lesdites couches de base isolantes (1, 201, 2, 202)
pour maintenir lesdites couches en éloignement mais pour permettre auxdites couches
(1, 201, 2, 202) de s'approcher l'une de l'autre lorsque une force externe est appliquée
à une des couches (1, 201, 2, 202) ;
ledit premier film résistif est prévu sur une surface interne (la, 201a) de l'une
desdites couches (1, 201) ; ladite pluralité de films résistifs est prévue sur une
surface interne (2a, 202a) de l'autre desdites couches (2, 202) ; et
le dispositif de détection de position poussée est en outre adapté pour détecter l'autre
desdites coordonnées basée sur la position des seconds films résistifs dans ledit
écran.
2. Système d'entrée selon la revendication 1, caractérisé en ce que lesdits seconds films
résistifs (4, 204) ont une électrode de connexion externe (10, 71, 11, 210, 211) aux
deux extrémités.
3. Système d'entrée selon la revendication 2, caractérisé en ce qu'une première électrode
de connexion externe (11) est prévue à une extrémité des seconds films résistifs (4)
et une seconde électrode de connexion externe (71) est prévue à l'autre extrémité
qui est partagée avec le reste desdits seconds films résistifs (4).
4. Système d'entrée selon la revendication 2 ou 3, caractérisé en ce que lesdits seconds
films résistifs (4, 204) s'étendent dans la première direction.
5. Système d'entrée selon la revendication 2 ou 3, caractérisé en ce que lesdits seconds
films résistifs (4, 204) ont chacun une résistance plus grande que ledit premier film
résistif (3, 203).
6. Système d'entrée selon la revendication 1, lorsque les seconds films résistifs ont
une électrode de connexion externe à une de leurs extrémités, caractérisé en ce que
le système comprend en outre :
des moyens d'alimentation de potentiel de courant continu pour alimenter ledit premier
film résistif (203) avec un potentiel de courant continu (V) à travers l'une des électrodes
de connexion externe (207) de celui-ci,
un commutateur (212) commuté vers un premier état pour alimenter toutes les électrodes
de connexion externes (211) desdits seconds films résistifs (204) avec un potentiel
de niveau de masse, et vers un second état pour libérer celles-ci (211) du potentiel
de niveau de masse ; et
des moyens de mesure de potentiel électrique (272) pour mesurer les potentiels de
toutes les électrodes de connexion externes (211) desdits seconds films résistifs
(204) à la fois dans les premier et second états.
7. Système d'entrée selon la revendication 2, caractérisé en ce que le système comprend
en outre :
des premiers moyens d'alimentation de potentiel pour alimenter audit premier film
résistif (3) un potentiel en courant continu (Vl) à travers l'une des électrodes de
connexion externes (6) dudit premier film résistif (3) ;
un premier commutateur (41) connecté électriquement avec toutes les électrodes de
connexion externes (10) desdits seconds films résistifs (4) un par un, alternativement
pour chacun desdits seconds films résistifs ;
un second commutateur (42) commuté en synchronisation avec le premier commutateur
(41) et connecté électriquement à l'électrode de connexion externe (11) qui est opposée
à l'électrode de connexion externe (10) connectée au premier commutateur (41) ;
des seconds moyens d'alimentation de potentiel pour alimenter les seconds films résistifs
(4) avec un potentiel en courant continu (V2) à travers le premier commutateur (41)
; et
des moyens de mesure de potentiel électrique (43) pour mesurer les potentiels des
seconds films résistifs (4) à travers le second commutateur (42).
8. Système d'entrée selon la revendication 2, caractérisé en ce que le système comprend
en outre :
des moyens d'alimentation de potentiel en courant continu (81, 82) pour alimenter
un potentiel en courant continu auxdits seconds films résistifs (4) un par un ;
des moyens de commutation (83) commutant à une vitesse au moins deux fois supérieure
à celle des moyens d'alimentation de potentiel en courant continu (81, 82), lesdits
moyens de commutation (83) étant destinés à alimenter un potentiel en courant continu
aux électrodes de connexion externes (6, 7) dudit premier film résistif (3) de manière
alternative ; et
des moyens de mesure de potentiel électrique (84) pour mesurer le potentiel de l'électrode
de connexion externe (6, 7) dudit premier film résistif (3), l'électrode (6, 7) étant
opposée à l'électrode (6, 7) alimentée avec le potentiel en courant continu par les
moyens de commutation (83).
9. Système d'entrée selon la revendication 3, caractérisé en ce que le système comprend
en outre :
des premiers moyens d'alimentation de potentiel pour alimenter ledit premier film
résistif (3) avec un potentiel en courant continu (V) à travers une des électrodes
externes (6) dudit premier film résistif (3) ;
des seconds moyens d'alimentation de potentiel pour alimenter un potentiel en courant
continu (V) à la seconde électrode de connexion externe (71) desdits seconds films
résistifs (4) ;
un commutateur (72) connecté électriquement avec les premières électrodes de connexion
externes (11) desdits seconds films résistifs (4) un par un de manière alternative
pour chacun desdits seconds films résistifs (4) ; et
des moyens de mesure de potentiel électrique (43) pour mesurer les potentiels des
premières électrodes de connexion externes (11) des seconds films résistifs (4) à
travers le commutateur (72).
10. Système d'entrée selon la revendication 6, caractérisé en ce que ladite paire de couches
de base isolantes consiste en une couche de base supérieure flexible (201) sur laquelle
une force externe est appliquée et une couche de base inférieure dure opposée à la
couche de base (202) avec un espaceur entre elles, et ledit premier film résistif
(203) est formé sur une surface inférieure (201a) de la couche supérieure (201) et
lesdits seconds films résistifs (204) sont formés sur une surface supérieure (202a)
de la couche de base inférieure (202).
11. Système d'entrée selon la revendication 1, dans lequel lesdits seconds films résistifs
ont une électrode de connexion externe à une de leurs extrémités, caractérisé en ce
qu'une desdites couches de base (201) est un film transparent supérieur et l'autre
desdites couches de base (202) est une plaque inférieure transparente et dure.
12. Ecran tactile à film résistif comprenant :
un premier film résistif continu (203) s'étendant en deux dimensions ;
une pluralité de seconds films (204) similaire à des bandes longitudinales ; et
un espaceur (205) pour maintenir lesdits premiers et seconds films (203, 204) en éloignement
mais, lorsqu'une force externe est appliquée sur ledit premier film (203), permettant
audit premier film (203) et auxdits seconds films (204) de se contacter en une position
correspondant à celle à laquelle la force externe est appliquée ;
caractérisé en ce que le premier film (203) est formé sur une surface inférieure
(201a) d'une couche de base supérieure flexible (201), ladite couche ayant une surface
supérieure à laquelle la force externe est appliquée ; et
les seconds films (204) sont des films résistifs et sont formés sur une surface
(202a) d'une couche de base inférieure (202) opposée à ladite couche de base supérieure
(201).
13. Système d'entrée comprenant un écran tactile à film résistif selon la revendication
12 et un dispositif de détection de position poussée pour détecter les coordonnées
en deux dimensions d'une position poussée sur l'écran tactile, dans lequel ledit dispositif
de détection de position poussée est adapté à détecter une desdites coordonnées basées
sur la valeur de résistance de surface dudit premier film résistif entre une électrode
de connexion externe du premier film résistif et la position poussée, et pour détecter
l'autre desdites coordonnées basée sur la position des seconds films dans ledit écran.