(19)
(11) EP 0 632 234 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
04.03.1998 Bulletin 1998/10

(21) Application number: 94304776.1

(22) Date of filing: 30.06.1994
(51) International Patent Classification (IPC)6F24F 11/053, F24F 3/044

(54)

Reactive cooling and heating control system

Reaktives Kühlungs- und Heizungsregelsystem

Système de commande réactive pour une installation de réfrigération et de chauffage


(84) Designated Contracting States:
ES FR GB IT

(30) Priority: 30.06.1993 US 83575
30.06.1993 US 83599

(43) Date of publication of application:
04.01.1995 Bulletin 1995/01

(73) Proprietor: CARRIER CORPORATION
Syracuse New York 13221 (US)

(72) Inventors:
  • Rayburn, Ronald R.
    Huntington, Indiana 46750 (US)
  • Jeffery, Harold L.
    Ft. Wayne, Indiana 46804 (US)

(74) Representative: Tomlinson, Kerry John 
Frank B. Dehn & Co., European Patent Attorneys, 179 Queen Victoria Street
London EC4V 4EL
London EC4V 4EL (GB)


(56) References cited: : 
CH-A- 672 851
US-A- 5 025 638
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] This invention relates to the control of dampers in a variable air volume system wherein each damper defines the volume of chilled or heated air being made available to a zone to be cooled or heated respectively. In particular, this invention relates to the control of these dampers when the chilled air being supplied to the dampers drops below a permissible level,or the heated air rises above a permissible level.

    [0002] Variable air volume (VAV) systems are widely used to supply chilled or heated air from a central source to different zones of a home or office building. An example of a VAV system is disclosed in e.g. CH-A-672851. The typical VAV system furnishes a variable volume of air to a particular zone depending on that zone's needs as measured by a thermostat sensing the temperature of the space or zone. The volume of air to be provided is controlled by at least one damper in a duct supplying the air to the zone. The damper is positioned within the duct in response to the measured needs of the zone. In this regard, when the temperature of the space deviates from a predetermined setpoint, the damper is moved to a more open position so as to allow a greater volume of chilled or heated air to flow into the zoned space. Conversely, as the temperature of the space approaches the setpoint, the damper is moved to a more closed position so as to decrease the volume of chilled or heated air flowing into the space.

    [0003] There may be times when most of the dampers in a multiple zoned system have moved to a closed position as setpoints in their respective zones have been achieved. The remaining zones may suddenly be receiving large amounts of chilled or heated air previously going to the closed damper zones. This problem is normally solved by bleeding off some of the chilled or heated air going to the zones in a bypass configuration. This in turn leads either to the recycling of colder than normal air through the chiller unit and possible a frosting of the coils, or the recycling of hotter than normal air through the heat exchanger and possible overheating of the unit. There is a need under such circumstances to provide as much relief as possible to such frosting or overheating.

    [0004] There may be other conditions occurring in the VAV system that would lead to the aforementioned frosting or overheating. In each case, there is a need to provide as much relief as possible.

    [0005] The invention provides a system and process as recited in claims 1 and 13 respectively. It provides for a reactive control for a VAV system which begins with monitoring the condition of the supplied air in a plurality of zones and sensing when a supply air temperature in any zone passes an undesirable threshold e.g. drops below a threshold in the case of a chilled air system or rises above a threshold in the case of heated air system. When this occurs, a monitor sends a warning flag to each zone control within the VAV system. Each local zone control proceeds to compare its local space temperature with its local setpoint temperature. If the local space temperature is above local setpoint in the case of chilled air, or is below local setpoint in the case of heated air, the local zone control will incrementally add one damper position to the currently commanded damper position. The commanded increment will be followed by a timely inquiry as to whether the warning flag is still in effect. If so, the local zone control will incrementally add another damper position. The local zone control will continue to add damper positions until the monitor stops sending the warning flag, or the zoning stage has added a predefined number of incremental damper positions or the local space temperature drops below (in the case of chilled air) or rises above (in the case of heated air) local setpoint temperature. In this latter case, the local zone control proceeds to inquire as to whether the drop below or rise above local setpoint is less than one degree. If the drop or rise is one degree or less, the local zone control will immediately add damper positions corresponding to the amount by which the drop or rise is below or above setpoint. The local zone control will thereafter hold to the established position until the local space temperature drops (in the case of chilled air) or rises (in the case of heated air) more than one degree below or above setpoint respectively. In this case, the local zone control will immediately delete the added positions.

    [0006] It is to be noted that each local zone control operates completely independent of other zone controls when responding to the monitor's warning. In this manner, each local zone control contributes to the relief of the monitor's detected supply air condition on the basis of that local zone's particular temperature situation. The above is accomplished by a series of communication protocols between the local zone control and the monitor which allows the flag warning to be received and selectively processed by each local zone control. The selective processing includes an ability by each local zone control to process every other warning communication from the monitor.

    [0007] Embodiments of the present invention will now be described, by way of example only, with reference to the accompanying drawings, in which:

    Figure 1 is an overall diagram of a VAV system including a master control and local zone controls of individual dampers associated with respective zones;

    Figure 2 is a diagram of the microprocessor configuration within the master control;

    Figure 3 is a diagram of the microprocessor configuration within one of the zone controls.

    Figures 4A - 4C comprise a flow chart of a software program residing in the microprocessor of Figure 2 which is used in an embodiment in which chilled air is supplied to the zones, and ascertains the lowest supply temperature in the zones and transmits appropriate signals to the zone controls;

    Figures 5A - 5C comprise a flow chart of a software program residing in each of the zone controls which responds to the various commands issued by the software program of Figures 4A-4C so as to provide supply temperatures upon request and to furthermore control the dampers within the respective zones as required; and

    Figures 6A-6C and Figures 7A-7C comprise flow charts corresponding to Figures 4A-4C and Figures 5A-5C, but for use in an embodiment supplying heated air to the zones.



    [0008] Referring to Figure 1, a two stage air conditioning system 10 under the control of a master control 12 provides chilled air to a plurality of zones 14, 16 and 18 via an air supply duct 20. The air in the zones is returned to the two stage air conditioning system 10 for further cooling via the air return duct 22. The air supply duct 20 and the air return duct 22 may have more than the three zones depicted as indicated by the breakline for each duct.

    [0009] A bypass duct 24 including a bypass damper 26 and associated motor 28 allows air in the air supply duct to be selectively returned to the two stage air conditioning system 10. The selective return is dictated by the main control 12 operating the motor 28 so as to open or close the bypass damper 26.

    [0010] Each of the zones 14, 16 and 18 is seen to include a zone control 30, 32, or 34 which controls a motor 36, 38 or 40 that positions a zone damper 42, 44 or 46 within a branch duct associated with the air supply duct 20. The damper positioning is normally a function of the difference in the sensed temperature in each zone and a setpoint temperature for the zone. Each zone control also receives a sensed supply air temperature in the respective branch duct as measured by a supply air sensor 48, 50 or 52. As will be explained in detail hereinafter, these sensed supply air temperatures are made available to the main control 12 via a communication bus 54. Further communication also occurs between the master control 12 and the respective zone controls when any of these sensed supply air temperatures fall below a predetermined level evidencing a condition needing correction. As has been previously noted, one such condition occurs when the bypass duct 24 is opened and cooled air is returned to the air conditioning system 10 due to a change in demand for supply air to the zones. In this instance the supply air temperatures may drop prompting the need for corrective action.

    [0011] Referring to Figure 2, the main control 12 is seen to include a programmed microprocessor 56 having a control interface 58 to the two stage air conditioning system 10 of Figure 1. The control interface 58 may be a relay control or other well known interface that selectively activates stages of chilling or cooling in the air conditioning system in response to control signals from the microprocessor 56. The microprocessor 56 furthermore generates a control signal to a motor drive circuit 60 associated with the bypass duct motor 28 of Figure 1. Finally the microprocessor 56 sends and receives information to and from the zone controls 30, 32 and 34 of Figure 1 via the communication bus 54.

    [0012] Referring to Figure 3, the zone control 30 is seen to include a programmed microprocessor 62 which receives and transmits information over the bus 54 to the microprocessor 56 within the master control 12. The microprocessor is furthermore connected to a zone temperature sensor 64 and a zone setpoint device 66 via an analog/digital interface 68. It is to be appreciated that temperature values defined by the sensor 64 and setpoint device 66 are periodically read and stored for use by the microprocessor 62. The microprocessor 62 also periodically stores the supply air temperature read over the line 70 that is connected to the air sensor 48 in Figure 1. In addition to the reading and storing of information, the microprocessor also controls the motor 36 through issuing control signals to a motor drive circuit 72. The motor 36 is preferably a stepper motor which receives predefined numbers of pulses from the motor drive circuit 72 defining a desired incremental movement of the motor 36 and the damper 42 associated therewith. The position of the motor and the damper 42 can always be tracked by first of all driving the motor to a home position corresponding to a closed damper position and thereafter defining additive incremental movements from the home position by digital commands from the microprocessor 62.

    [0013] It is to be appreciated that the zone control of Figure 3 is similarly duplicated in the zone controls 32 and 34 of Figure 1. In this regard, each zone control includes a programmed microprocessor for reading and storing information and communicating with the microprocessor 56 via the bus 54. Each zone control furthermore includes a motor drive circuit under control of the programmed microprocessor for commanding various positions of the motor and associated damper in the local zone.

    [0014] Referring to Figure 4A, the beginning of the program residing in the microprocessor 56 of the master control 12 is illustrated in detail. The program begins with an initialization routine in a step 80 which occurs when the microprocessor 56 is first switched on. The initialization routine includes setting the following program variables equal to zero: "TIMER", "LAT Flag", and supply air temperature, "TS". The term LAT in "LAT Flag" is an abbreviation for "leaving air temperature" which is generally considered to be the temperature of the air leaving the two stage air conditioning system 10 following chilling. Following the initialization routine, the microprocessor 56 proceeds to a main master control loop in a step 82. The main master control loop determines when the microprocessor 56 is to execute a given program that has been stored for execution in the microprocessor. At the appropriate time within the main master control loop, the program which will hereinafter be described is invoked. At this time, the microprocessor will proceed to a step 84 and inquire as to whether TIMER is equal to zero. Since the timer variable is initially set equal to zero in step 80, the microprocessor will proceed to a step 86 and start a timer clock. The timer clock will begin to count down from a predetermined clock value. This value will depend on the particular variable air volume system in which the master control is to operate. In this regard, a sufficient amount of time must elapse for each local zone control in the variable air volume system to at least begin to react to any previous commands by the master control. This will of course depend on the number of zone controls in the system that must respond.

    [0015] For a system including sixty four zone controls, an arbitrary clock value of ten seconds was selected for the timer clock of step 86.

    [0016] Upon starting the timer clock, the microprocessor proceeds to a step 88 and loads the "master bus address minus one" into the outgoing packet buffer associated with the communication bus 54. In the preferred embodiment, the zone controls 30 through 34 will have successively lower addresses from that of the master control 12. In this regard, the first zone control 30 will have an address one lower than the master control address. The microprocessor will proceed to a step 90 and send a request for the identification of the entity addressed by the computed address of step 88. The microprocessor will thereafter await a packet interrupt signal in a step 92. When a packet interrupt is received, the microprocessor will inquire in a step 94 as to whether the identification (ID) that has been received identifies one of the zone controls 30 through 34. If the answer is yes, the microprocessor will proceed to a step 96 and send a request for the local supply air temperature from the identified zone control. The microprocessor 56 will thereafter look for a received packet interrupt in a step 98. When a packet interrupt is received, it will be interpreted to be the local supply air temperature for the particular addressed zone control. This local supply air temperature value is stored as the variable "TL" in a step 100. The microprocessor will next proceed in a step 102 to send the "LAT Flag" value to the addressed zone control. It will be remembered that this value is initially zero in a step 80. The program will now proceed to decrement the address that has been stored in the outgoing packet buffer of the microprocessor 56. This will effectively allow for the addressing of the next zone control that is to be queried. Before making the next inquiry, the microprocessor proceeds to a step 106 and inquires as to whether the supply air temperature "TS" is equal to zero in a step 106. Since this variable is initially equal to zero, the microprocessor will proceed to a step 108 and set the supply air temperature "TS" equal to the stored local supply temperature "TL".

    [0017] The microprocessor will exit from step 108 and return to step 90 wherein a request for the identification of the entity addressed by the decremented address of step 104 will occur. Upon receiving the identification from the thus addressed entity, the microprocessor will inquire in step 94 as to whether the thus addressed entity is a zone control. In the event that another zone control has been addressed, the microprocessor will proceed to request the supply temperature and store the same in the variable "TL" in step 100. Since the "LAT Flag" value is still equal to zero, the microprocessor will send this particular value to the thus addressed zone control in step 102. The addressing in the outgoing packet buffer will again be decremented in a step 104 before inquiry is again made as to whether "TS" is equal to zero in step 106. "TS" will no longer be zero since it will have been set equal to the local supply temperature of the previously addressed zone control. The microprocessor will hence proceed along the "no" path from step 106 to a step 110 and inquire as to whether the supply air temperature "TS" is greater than the currently stored local supply temperature "TL". If the supply air temperature "TS" is greater than the currently stored local air supply air temperature then the microprocessor will proceed to set "TS" equal to the currently stored local supply temperature, "TL".

    [0018] Referring to both steps 110 and 112, the microprocessor will either proceed out of step 110 to step 90 in the event that "TL" is greater than "TS" or it will return to step 90 after setting "TS" equal to "TL" in step 112. In either event, the microprocessor will again send a request for the identification of the entity whose address has been computed in step 104. Upon receiving the packet interrupt signal in step 92 the identification of the addressed entity will be examined in a step 94. As long as the identification continues to be that of a zone control, steps 96 through 112 will be repeated. Inquiry will ultimately be made in each instance in step 110 as to whether the currently stored supply air temperature "TS" is greater than the local supply air temperature of the particularly addressed local zone control. If yes the currently stored supply air temperature "TS" is set equal to the local supply air temperature of the currently addressed zone. In this manner, when the last addressed zone control has been queried, the supply air temperature "TS" will be equal to the lowest local supply air temperature found in all of the queried zone controls.

    [0019] Referring to step 94, when an ID is encountered that does not correspond to a zone control, the microprocessor will proceed to a Master LAT Flag routine in Figure 4C. This will occur when the last zone control has been encountered and appropriately queried as discussed above.

    [0020] Referring to the Master LAT Flag routine in Figure 4C, it is seen that this routine begins with an inquiry in a step 114 as to whether "TS" is less than the value of a second stage trip temperature. It will be remembered that the air conditioning system 10 of Figure 1 has two stages of chilling. Each stage of chilling will have a particular trip temperature dictating when the particular stage is to be deactivated. This particular value is stored as the second stage trip temperature for use by the microprocessor 56 in step 114. In the event that the lowest local supply air temperature in the zone controls 30 - 34 is less than this second stage trip temperature, the microprocessor proceeds to a step 116 and sets the "LAT Flag" equal to one. As has been previously noted, the term LAT in LAT Flag is an abbreviation for leaving air temperature. The leaving air temperature generally being referred to is the temperature of the air leaving the two stage air conditioning system 10 following chilling. The microprocessor next proceeds in a step 118 to inquire as to whether the second stage is on. In the event that it is, the second stage is deactivated in a step 120 and a time guard is activated in a step 122. The time guard is a safety feature which will not allow the second stage to be reactivated until a particular period of time has elapsed. Upon setting the time guard for the second stage, the microprocessor proceeds to a step 124 and inquires as to whether the supply air temperature "TS" is also less than the first stage trip temperature. It is to be noted that the first stage trip temperature is lower than the second stage trip temperature and is unlikely to be exceeded by "TS" at the same time that the higher trip temperature is encountered. In this regard the first stage temperature is more likely to be exceeded on subsequent executions of step 124. When "TS" does drop below the first stage trip temperature, the microprocessor proceeds to a step 126 and turns the first stage off. The microprocessor will also set the first stage time guard in a step 128 before exiting to the main control loop in a step 130. Referring to step 124, in the event that the supply air temperature "TS" is not less than the first stage trip temperature, then the microprocessor immediately proceeds to exit to the main control loop in step 130. Referring again to step 114, in the event that the supply air temperature, "TS", is not below the second stage trip temperature, the microprocessor will immediately proceed to a step 132 and set the LAT Flag equal to zero before exiting to the main control loop in step 130.

    [0021] It is hence to be appreciated that the microprocessor 56 will have either set the LAT Flag equal to zero in step 132 or set the LAT Flag equal to one in a step 116 before exiting to the Main Loop Control in step 130. This LAT Flag value will be subsequently sent to each zone control when the Main Loop Control returns to the program of Figures 4A and 4B and step 102 is successively implemented a number of times. In this regard, step 102 causes the LAT Flag value to be sent to each addressed zone control wherein the zone addresses are successively defined in step 104. In this manner, all zone controls will have been alerted when the supply air temperature in any zone falls below the second stage trip temperature.

    [0022] Referring to Figure 5A, the zone control software program residing within each of the microprocessors in the zone controls 30, 32, and 34 is illustrated in detail. This software begins with a step 140 wherein an initialization routine is executed each time the microprocessor within a zone control is switched on and powered up. The initialization routine of step 140 includes setting the following variables equal to zero: "LAT Flag", Scan Counter, and "LAT Added Damper Positions". The zone control microprocessor proceeds to a step 142 and begins a main zone control loop. The main zone control loop will include a number of different programs that are to be executed by the zone control microprocessor including by way of example the monitoring of the zone temperature sensor 64, the zone setpoint device 66, and the supply air temperature sensor such as 48 for the microprocessor 62. As a result of this monitoring, the zone control microprocessors will always have present values of these parameters stored for use. Other examples of programs that are executed in a sequence by the main zone control loop would be the motor command program which would issue commands to the respective motor drive circuit such as 72 in response to any computed change in the motor command by the software of Figures 5A, 5B, and 5C. This computed change would be reflected in the upper half of possibly commanded motor positions which is reserved exclusively for the software of Figures 5A, 5B, and 5C. When the main zone control loop reaches a point within its loop for execution of a "leaving air temperature" program, it exits to a step 144 and inquires as to whether an incoming packet interrupt has occurred. When an interrupt is received, the microprocessor proceeds in a step 146 to note whether the interrupt is a request for the local supply air temperature. In the event that it is a request for supply air temperature, the microprocessor proceeds in a step 148 to load the previously read and stored supply air temperature into its packet buffer. This supply air temperature is subsequently sent to the master microprocessor 56 over the communications bus 54 in a step 150. The microprocessor will thereafter proceed to a checking routine in Figure 5C which will be described in detail hereinafter.

    [0023] Referring again to step 146, in the event that the interrupt is not a request for the local supply air temperature, the microprocessor will proceed to a step 152 and inquire as to whether the interrupt is the control flag byte. In the event that the interrupt is the control flag byte, the zone control microprocessor will proceed to a step 154 and read and store the LAT Flag bit portion of this byte. The value of the thus stored LAT Flag bit will be examined in a step 156 for being equal to one. In the event that it is not, the microprocessor will proceed from step 156 along the "no" path and return to the check routine of Figure 5C. It is to be noted that the same will occur if the control flag byte has not been received in a step 152. Referring again to step 156, in the event that the LAT Flag bit value is one, the microprocessor will proceed to a step 158 and inquire as to whether the "scan counter" is equal to zero. It will be remembered that the "scan counter" is initially set equal to zero which will prompt the zone control microprocessor to proceed to step 160 and increment the "scan counter". The "scan counter" will hence be set equal to one which will indicate that the zone control has thus been queried once by the master control. Referring again to step 158, in the event that the "scan counter" is not equal to zero, the microprocessor will proceed to a step 162 and inquire as to whether the scan counter equals two. Since the scan counter will only equal one on the next time through, the microprocessor will proceed to a step 164 and increment the "scan counter" once again. The microprocessor will proceed to the check routine of Figure 5C at this point. Referring again to step 162, when the scan counter equals two, the program proceeds to a step 166 and clears the "scan counter" back to zero. It is hence to be appreciated that the "scan counter" will be successively incremented from zero to one in step 160 and then to two by step 164 before again being cleared in step 166. The program proceeds to a step 168 when the "scan counter" is either detected as zero in step 158 or two in step 162.

    [0024] Referring to step 168, the microprocessor inquires as to whether the local space temperature that has been read and stored from the local zone temperature sensor is less than the setpoint temperature that has been read and stored from the local zone setpoint device. In the event that the space temperature is equal to or greater than the setpoint, the microprocessor will proceed along the "no" path from step 168 to a step 170 and read the value of "LAT Added Damper Positions". The thus read value will be compared to a maximum allowed value of added damper positions in a step 172. The maximum allowed value will be preferably one half of the total potential damper positions that may be commanded by the zone control microprocessor. In other words, if there are thirty possible incremental damper positions between a closed damper position and a completely open damper position, than the maximum value of "LAT Added Damper Positions" will be fifteen. Referring again to step 172, in the event that the value of added damper positions has not exceeded the maximum allowable, the microprocessor will proceed to a step 174 and add one incremental damper position to the present value of the "LAT Added Damper Position". The new "LAT Added Damper Positions" will subsequently be used by the motor command program that is triggered by the main control loop upon exiting thereto in a step 176. In this regard, the motor command program will execute any change in motor position occurring in the upper half of numerical motor positions. This is due to the upper half of numerical motor positions having been set aside as "LAT Added Damper Positions".

    [0025] It is hence to be appreciated that the "LAT Added Damper Positions" will be used up one at a time to the extent that the space temperature remains above the setpoint temperature. This addition of one damper position will continue to occur until the "LAT Added Damper Positions" equal the maximum. At this point, the microprocessor will without adding any further damper positions exit from step 172 to the main loop control in step 176.

    [0026] It is to be noted that the above incremental addition of damper positions occurs only when the local space temperature is equal to or greater than local setpoint. When a particular zone control microprocessor determines that the local space temperature is less than the local setpoint, it will proceed from step 168 to a step 178. Referring to step 178, it is seen that the zone control microprocessor subtracts one degree from setpoint value. The programmed microprocessor next proceeds to subtract the adjusted setpoint from the space temperature in a step 180. It is to be appreciated that a positive difference will result from step 180 if the space temperature is less than one degree below the original setpoint reading. This positive difference is noted by the microprocessor in step 182. The microprocessor will thereafter proceed to a step 184 and convert the temperature difference calculated in step 180 to a number of incremental damper positions. This conversion is a function of how far the damper is to be moved for a given calculated difference. In the preferred embodiment, each of the fifteen allowed added damper positions correspond to one tenth of a degree temperature difference. In this regard, the temperature difference of step 180 is divided by one tenth of a degree per damper position to arrive at the number of incremental damper positions. The thus determined number of incremental damper positions are loaded into the "LAT Added Damper Positions" storage location in a step 186. This new number of "LAT Added Damper Positions" replaces any previously stored value of "LAT Added Damper Positions". The new value of "LAT Added Damper Positions" is made available to the motor command program upon exiting to the main loop control in step 176. It is hence to be appreciated that in the event the space temperature in a given zone drops below setpoint by less than one degree, the amount by which the space temperature may be permitted to further drop will be converted to incremental damper positions allowing for an immediate opening of the damper by the motor command program.

    [0027] Referring again to step 182, in the event that the difference between the set point and the space temperature is more than one degree, then the microprocessor proceeds to a step 188 and clears the "LAT Added Damper Positions" that may have been previously defined as a result of either step 174 or step 184. The microprocessor thereafter proceeds from step 188 to exit to the main loop control in step 176. The main loop will invoke the motor command program which will note the need to change commanded damper position due to the cleared "LAT Added Damper Positions". In this regard, the upper half of possible commanded damper positions will now be at zero. The zone control motor and associated damper will be appropriately repositioned.

    [0028] It will be remembered that a check routine is invoked at several points within the software program of Figures 5A and 5B. For instance, the check routine may be invoked out of step 144 when the particular zone control software is entered into from the main zone control loop and no packet interrupt has occurred from the master control 12. The check routine might also be invoked if the master control is merely asking for the local supply air temperature in steps 146, 148 and 150. The check routine is also invoked if the interrupt is not the flag control byte in step 152. The check routine is furthermore invoked if the LAT Flag bit value is zero in step 156 or the "scan counter" is one as detected in steps 158 and 162.

    [0029] Referring to Figure 5C, the check routine begins with a step 190 which inquires as to whether the "LAT Flag Bit" equals one. If this bit value is zero, the microprocessor will proceed to a step 192 and inquire as to whether the "LAT Added Damper Positions" is now zero. If yes, the microprocessor will proceed to exit in a step 194 to the main control loop. If on the other hand the "LAT Flag Bit" equals one or the "LAT Added Damper Positions" does not equal zero, the microprocessor will proceed from either step 190 or 192 to a step 196. Referring to step 196, an inquiry is made as to whether the space temperature in the particular zone is less than the setpoint for that zone. If the answer is no, than the microprocessor proceeds to step 194 and exits to the main control loop. When the space temperature is less than setpoint, the microprocessor proceeds from step 196 to step 198 and subtracts one degree from the setpoint and proceeds to step 200 and subtracts the thus adjusted setpoint from space temperature. The microprocessor next inquires in a step 202 as to whether the difference calculated in step 200 is positive. As has been previously discussed with regard to step 182, in the event that the space temperature is one degree or more below setpoint, then the difference calculated in step 200 will be negative. A negative difference will prompt the microprocessor to proceed to a step 204 and set the "LAT Added Damper Positions" equal to zero. The zone control microprocessor will in this instance exit through step 194 to the main control loop. The main control loop will subsequently invoke the motor command program which will reposition the particular zone damper as a result of the cleared "LAT Added Damper Positions".

    [0030] Referring again to step 202, in the event that a positive difference is detected, the zone control microprocessor will proceed to a step 206. As has been previously discussed with regard to step 182, a positive difference indicates that space temperature is less than one degree lower than the zone setpoint. This positive difference is converted into incremental damper positions in a step 208. The conversion is preferably one damper position for every one tenth of a degree difference in temperature. The thus calculated damper positions become the new "LAT Added Damper Positions" value in step 208. The microprocessor proceeds from step 208 to exit back to the main loop control in step 194. The motor command program will subsequently be invoked and the new "LAT Added Damper Positions" value will be used to reposition the zone damper.

    [0031] It is to be appreciated from the above that the check routine of Figure 5C may update the zone control damper positioning anytime it is invoked during execution of the zone control software of Figures 5A and 5B. In all such instances, the check routine proceeds as has been previously described to possibly change the value of "LAT Added Damper Positions".

    [0032] Referring to Figure 1, it is to be understood that each zone control 30, 32 and 34 having its own respective zone control software can potentially make an adjustment to its damper positioning. This adjustment may occur in response to a communication from the master control 12 indicating that the supply air temperature in at least one zone is below the second stage trip temperature. This adjustment may also occur when each zone control merely invokes its check routine at appropriate times during execution of its zone control software. Each zone control will make its adjustments based upon a comparison of its local space temperature and its setpoint temperature. Incremental additions of one damper position at a time will occur if the space temperature is above setpoint. More than one damper position may be commanded if the local space temperature falls below local setpoint by less than one degree. In this manner, each zone control will contribute as much as it can to the particularly detected supply air condition within the VAV system without unduly impacting the comfort level in any particular zone. This latter objective is of course accomplished by the corrective action being limited in any one zone control to a deviation of less than one degree from setpoint.

    [0033] The invention also extends to systems wherein, for example, the air conditioning system 10 of Fig. 1 supplies heated air to the zones 14, 16 and 18, instead of chilled air. In a corresponding manner to the chilled air embodiment, the bypass duct 24 may be opened to return, in this case, heated air to the air conditioning system 10 due to a change in demand for supply air to the zones. This may cause the supply air temperature to increase, and prompt the need for corrective action.

    [0034] Fig. 6A-6C, and Figs. 7A-7C comprise flow diagrams for use in the system of Fig. 1, when the system is designed to supply heated air to the zones, instead of cooled air. The Figures correspond respectively to Figs. 4A-4C and Figs. 5A-5C, and enable the system to provide corresponding relief. The differences between the flow diagrams of the chilled and heated embodiments are as follows:

    1) In Fig. 6A-6C (the flow chart of the master control), the supply air temperature "Ts" will be set equal to the highest local supply air temperature found in all of the queried zone controls (cf. step 110'). Also, in steps 114' and 124', it is determined whether or not Ts is greater than second and first stage trip temperatures, so as to decide whether or not to turn off the first and second heating stages, respectively, and whether to set the LAT flag equal to one or zero.

    2) In Fig. 7A-7C (the flow chart of each zone control), in step 168', it is determined whether or not the space temperature is greater than the setpoint temperature, and in steps 178' and 180' one degree is added to the setpoint before the space temperature is subtracted from it. Similar differences occur in steps 196', 198' and 200'.



    [0035] In a similar manner to the chilled air embodiment, therefore, and referring to Fig. 1, it is to be understood that each zone control 30, 32 and 34 having its own respective zone control software can potentially make an adjustment to its damper positioning. This adjustment may occur in response to a communication from the master control 12 indicating that the supply air temperature in at least one zone is above the second stage trip temperature. This adjustment may also occur when each zone control merely invokes its check routine at appropriate times during execution of its zone control software. Each zone control will make its adjustments based upon a comparison of its local space temperature and its setpoint temperature. Incremental additions of one damper position at a time will occur if the space temperature is below setpoint. More than one damper position may be commanded if the local space temperature is above local setpoint by less than one degree. In this manner, each zone control will contribute as much as it can to the particularly detected supply air condition within the VAV system without unduly impacting the comfort level in any particular zone. This latter objective is of course accomplished by the corrective action being limited in any one zone control to a deviation of less than one degree from setpoint.

    [0036] It is finally to be appreciated that only particular embodiments of the invention have been described. Alterations, modifications and improvements thereto will readily occur to those skilled in the art. The forgoing description is by way of example only and the invention is to be limited only by the following claims.


    Claims

    1. A system for controlling the supply of air to a plurality of zones (14,16,18) in a variable air volume system, comprising:

    a plurality of zone control units (30,32,34) for monitoring the temperature (TL) of the air supplied to each zone (14,16,18) and the temperature within each zone (14,16,18), and for controlling the amount of air supplied to each zone (14,16,18); and

    a master control unit (12) connected to the zone control units (30,32,34) for reading the temperature (TL) of the air supplied to each zone (14,16,18) from the zone control units (30,32,34), and for determining when at least one of these read temperatures (TL) passes a predetermined limit for supply air temperature;

    the master control unit (12) being operative to send a signal to each of the zone control units (30,32,34) when the predetermined limit is passed;

    each zone control unit (30,32,34) adjusting the amount of air supplied to its respective zone (14,16,18) on receiving said signal from the master control unit (12) that the predetermined limit has been passed.


     
    2. A system according to claim 1, wherein, on receiving said signal, the zone control units (30,32,34) modify the amount of air being supplied to their respective zones (14,16,18) so as to increase the amount of air entering each zone (14,16,18) in dependence on the conditions prevailing in that zone (14,16,18).
     
    3. A system according to claim 1 or 2, wherein the air supplied to the zones (14,16,18) is chilled, and wherein the master control unit (12) signals the zone control units (30,32,34) when the temperature (TL) of the air supplied to at least one of the zones (14,16,18) is below the predetermined limit.
     
    4. A system according to claim 3, wherein when the temperature of a zone (14,16,18) is above a setpoint temperature, the corresponding zone control unit (30,32,34) increases the amount of air supplied to the zone (14,16,18) in incremental amounts upon receipt of said master control unit signal.
     
    5. A system according to claim 3 or 4, wherein when the temperature of the zone (14,16,18) is less than a setpoint temperature by less than a set amount, the corresponding zone control unit (30,32,34), on receiving said signal from the master control unit (12), increases the amount of air supplied to the zone (14,16,18) by an amount dependent upon the difference between the zone and the setpoint temperatures.
     
    6. A system according to claim 3, 4 or 5, wherein when the zone temperature is less than the setpoint temperature by more than a set amount, the corresponding zone control unit (30,32,34) cancels any amount of air caused to be supplied to the zone (14,16,18) because of a said signal from the master control unit (12).
     
    7. A system according to claim 1 or 2, wherein the air supplied to the zones (14,16,18) is heated, and wherein the master control unit (12) signals the zone control units (30,32,34) when the temperature (TL) of the air supplied to at least one of the zones (14,16,18) is above the predetermined limit.
     
    8. A system according to claim 7, wherein when the temperature of a zone (14,16,18) is below a setpoint temperature, the corresponding zone control unit (30,32,34) increases the amount of air supplied to the zone (14,16,18) in incremental amounts upon receipt of said master control unit signal.
     
    9. A system according to claim 7 or 8, wherein when the temperature of the zone (14,16,18) is more than a setpoint temperature by less than a set amount, the corresponding zone control unit (30,32,34), on receiving said signal from the master control unit (12), increases the amount of air supplied to the zone (14,16,18) by an amount dependent upon the difference between the zone and the setpoint temperatures.
     
    10. A system according to claim 7, 8 or 9, wherein when the zone temperature is more than the setpoint temperature by more than a set amount, the corresponding zone control unit (30,32,34) cancels any amount of air caused to be supplied to the zone (14,16,18) because of a said signal from the master control unit (12).
     
    11. A system according to any preceding claim, wherein the predetermined limit is set as a trip temperature for turning off one of the stages of an air conditioning unit from which the air to the zones is supplied.
     
    12. A system according to any preceding claim, wherein each zone control unit (30,32,34) adjusts the amount of air flowing into a zone (14,16,18) using dampers (42,44,48).
     
    13. A process for controlling the supply of air to a plurality of zones (14,16,18) in a variable air volume system, comprising the steps of:

    reading the temperature (TL) of the air supplied to each zone (14,16,18) using a control unit (30,32,34) in each zone (14,16,18);

    comparing the read temperatures (TL) with a predetermined limit of supply air temperature;

    signalling to the control units (30,32,34) when the sensed temperature (TL) of the air supplied to at least one of the zones (14,16,18) passes a predetermined limit for supplying air temperature; and

    controlling the control units (30,32,34) to adjust the flow of air into their respective zones (14,16,18) when the control units (30,32,34) receive the signal that the predetermined limit has been passed.


     
    14. A process according to claim 13, wherein, on receiving said signal, the zone control units (30, 32, 34) modify the amount of air being supplied to their respective zones (14, 16, 18) so as to increase the amount of air entering each zone (14, 16, 18) in dependence on the conditions prevailing in that zone (14, 16, 18).
     
    15. A process according to claim 13 or 14, wherein the air supplied to the zones (14,16,18) is chilled, and wherein the zone control units (30,32,34) are signalled when the temperature (TL) of the air supplied to at least one of the zones (14,16,18) is below the predetermined limit.
     
    16. A process according to claim 15, wherein when the temperature of a zone (14,16,18) is above a setpoint temperature, the corresponding zone control unit (30,32,34) increases the amount of air supplied to the zone (14,16,18) in incremental amounts upon receipt of said signal that said predetermined limited has been passed.
     
    17. A process according to claim 15 or 16, wherein when the temperature of the zone (14,16,18) is less than a setpoint temperature by less than a set amount, the corresponding zone control unit (30,32,34), on receiving said signal that said predetermined limited has been passed, increases the amount of air supplied to the zone (14,16,18) by an amount dependent upon the difference between the zone and the setpoint temperatures.
     
    18. A process according to claim 15, 16 or 17, wherein when the zone temperature is less than the setpoint temperature by more than a set amount, the corresponding zone control unit (30,32,34) cancels any amount of air caused to be supplied to the zone (14,16,18) because of said signal that said predetermined limited has been passed.
     
    19. A process according to claim 13 or 14, wherein the air supplied to the zones (14,16,18) is heated, and wherein the zone control units (30,32,34) are signalled when the temperature (TL) of the air supplied to at least one of the zones (14,16,18) is above the predetermined limit.
     
    20. A process according to claim 19, wherein when the temperature of a zone (14,16,18) is below a setpoint temperature, the corresponding zone control unit (30,32,34) increases the amount of air supplied to the zone (14,16,18) in incremental amounts upon receipt of said signal that said predetermined limited has been passed.
     
    21. A process according to claim 19 or 20, wherein when the temperature of the zone (14,16,18) is more than a setpoint temperature by less than a set amount, the corresponding zone control unit (30,32,34), on receiving said signal that said predetermined limited has been passed, increases the amount of air supplied to the zone (14,16,18) by an amount dependent upon the difference between the zone and the setpoint temperatures.
     
    22. A process according to claim 19, 20 or 21, wherein when the zone temperature is more than the setpoint temperature by more than a set amount, the corresponding zone control unit (30,32,34) cancels any amount of air caused to be supplied to the zone (14,16,18) because of said signal that said predetermined limited has been passed.
     
    23. A process according to any of claims 13 to 22, wherein the predetermined limit is set as a trip temperature for turning off one of the stages of an air conditioning unit from which the air to the zones is supplied.
     
    24. A process according to any of claims 13 to 23, wherein each zone control unit (30,32,34) adjusts the amount of air flowing into a zone (14,16,18) using dampers (42,44,48).
     


    Ansprüche

    1. System zum Steuern der Zufuhr von Luft zu mehreren Zonen (14, 16, 18) in einem System mit veränderlicher Luftmenge, das folgendes umfaßt:

    mehrere Zonensteuereinheiten (30, 32, 34) zum Überwachen der Temperatur (TL) der jeder Zone (14, 16, 18) zugeführten Luft und der Temperatur innerhalb jeder Zone (14, 16, 18) und zum Steuern der jeder Zone (14, 16, 18) zugeführten Luftmenge; und

    eine mit den Zonensteuereinheiten (30, 32, 34) verbundene Hauptsteuereinheit (12) zum Ablesen der Temperatur (TL) der von den Zonensteuereinheiten (30, 32, 34) jeder Zone (14, 16, 18) zugeführten Luft und zum Bestimmen des Zeitpunktes, zu dem mindestens eine dieser abgelesenen Temperaturen (TL) einen vorgegebenen Grenzwert für die Zulufttemperatur überschreitet;

    wobei die Hauptsteuereinheit (12) bei Überschreiten des vorgegebenen Grenzwerts an jede der Zonensteuereinheiten (30, 32, 34) ein Signal sendet;

    wobei jede Zonensteuereinheit (30, 32, 34) bei Empfang des Signals von der Hauptsteuereinheit (12), daß der vorgegebene Grenzwert überschritten worden ist, die ihrer jeweiligen Zone (14, 16, 18) zugeführte Luftmenge nachregelt.


     
    2. System nach Anspruch 1, bei dem bei Empfang des Signals die Zonensteuereinheiten (30, 32, 34) die ihren jeweiligen Zonen (14, 16, 18) zugeführte Luftmenge dahingehend modifizieren, daß sie die in jede Zone (14, 16, 18) eintretende Luftmenge in Abhängigkeit von den in dieser Zone (14, 16, 18) vorherrschenden Bedingungen erhöhen.
     
    3. System nach Anspruch 1 oder 2, bei dem die den Zonen (14, 16, 18) zugeführte Luft gekühlt wird und bei dem die Hauptsteuereinheit (12) den Zonensteuereinheiten (30, 32, 34) signalisiert, wenn die Temperatur (TL) der mindestens einer der Zonen (14, 16, 18) zugeführten Luft unter dem vorgegebenen Grenzwert liegt.
     
    4. System nach Anspruch 3, bei dem, wenn die Temperatur einer Zone (14, 16, 18) über einer Solltemperatur liegt, die entsprechende Zonensteuereinheit (30, 32, 34) nach Empfang des Signals von der Hauptsteuereinheit die der Zone (14, 16, 18) zugeführte Luftmenge stufenweise erhöht.
     
    5. System nach Anspruch 3 oder 4, bei dem, wenn die Temperatur der Zone (14, 16, 18) um weniger als einen vorgegebenen Betrag unter einer Solltemperatur liegt, die entsprechende Zonensteuereinheit (30, 32, 34) bei Empfang des Signals von der Hauptsteuereinheit (12) die der Zone (14, 16, 18) zugeführte Luftmenge um einen von der Differenz zwischen der Zonentemperatur und der Solltemperatur abhängigen Betrag erhöht.
     
    6. System nach Anspruch 3, 4 oder 5, bei dem, wenn die Zonentemperatur um mehr als einen vorgegebenen Betrag unter der Solltemperatur liegt, die entsprechende Zonensteuereinheit (30, 32, 34) jede aufgrund des Signals von der Hauptsteuereinheit (12) der Zone (14, 16, 18) zuzuführende Luftmenge annulliert.
     
    7. System nach Anspruch 1 oder 2, bei dem die den Zonen (14, 16, 18) zugeführte Luft erwärmt wird und bei dem die Hauptsteuereinheit (12) den Zonensteuereinheiten (30, 32, 34) signalisiert, wenn die Temperatur (TL) der mindestens einer der Zonen (14, 16, 18) zugeführten Luft über dem vorgegebenen Grenzwert liegt.
     
    8. System nach Anspruch 7, bei dem, wenn die Temperatur einer Zone (14, 16, 18) unter einer Solltemperatur liegt, die entsprechende Zonensteuereinheit (30, 32, 34) nach Empfang des Signals von der Hauptsteuereinheit die der Zone (14, 16, 18) zugeführte Luftmenge stufenweise erhöht.
     
    9. System nach Anspruch 7 oder 8, bei dem, wenn die Temperatur der Zone (14, 16, 18) um weniger als einen vorgegebenen Betrag über einer Solltemperatur liegt, die entsprechende Zonensteuereinheit (30, 32, 34) bei Empfang des Signals von der Hauptsteuereinheit (12) die der Zone (14, 16, 18) zugeführte Luftmenge um einen von der Differenz zwischen der Zonentemperatur und der Solltemperatur abhängigen Betrag erhöht.
     
    10. System nach Anspruch 7, 8 oder 9, bei dem, wenn die Zonentemperatur um mehr als einen vorgegebenen Betrag über der Solltemperatur liegt, die entsprechende Zonensteuereinheit (30, 32, 34) jede aufgrund des Signals von der Hauptsteuereinheit (12) der Zone (14, 16, 18) zuzuführende Luftmenge annulliert.
     
    11. System nach einem der vorhergehenden Ansprüche, bei dem der vorgegebene Grenzwert als Auslösetemperatur zum Ausschalten einer der Stufen einer Klimaanlageneinheit eingestellt wird, von der aus die Luft den Zonen zugeführt wird.
     
    12. System nach einem der vorhergehenden Ansprüche, bei dem jede Zonensteuereinheit (30, 32, 34) die in eine Zone (14, 16, 18) strömende Luftmenge unter Verwendung von Klappen (42, 44, 48) nachregelt.
     
    13. Verfahren zum Steuern der Luftzufuhr zu mehreren Zonen (14, 16, 18) in einem System mit veränderlicher Luftmenge, das folgende Schritte umfaßt:

    Ablesen der Temperatur (TL) der jeder Zone (14, 16, 18) zugeführten Luft unter Verwendung einer Steuereinheit (30, 32, 34) in jeder Zone (14, 16, 18);

    Vergleichen der abgelesenen Temperaturen (TL) mit einem vorgegebenen Grenzwert der Zulufttemperatur;

    den Steuereinheiten (30, 32, 34) signalisieren, wenn die gemessene Temperatur (TL) der mindestens einer der Zonen (14, 16, 18) zugeführten Luft einen vorgegebenen Grenzwert für die Zulufttemperatur überschreitet; und

    der Steuereinheiten (30, 32, 34) dahingehend steuern, daß sie den Luftstrom in ihre jeweiligen Zonen (14, 16, 18) nachregeln, wenn die Steuereinheiten (30, 32, 34) das Signal empfangen, daß der vorgegebene Grenzwert überschritten worden ist.


     
    14. Verfahren nach Anspruch 13, bei dem bei Empfang des Signals die Zonensteuereinheiten (30, 32, 34) die ihren jeweiligen Zonen (14, 16, 18) zugeführte Luftmenge dahingehend modifizieren, daß sie die in jede Zone (14, 16, 18) eintretende Luftmenge in Abhängigkeit von den in dieser Zone (14, 16, 18) vorherrschenden Bedingungen erhöhen.
     
    15. Verfahren nach Anspruch 13 oder 14, bei dem die den Zonen (14, 16, 18) zugeführte Luft gekühlt wird und bei dem den Zonensteuereinheiten (30, 32, 34) signalisiert wird, wenn die Temperatur (TL) der mindestens einer der Zonen (14, 16, 18) zugeführten Luft unter dem vorgegebenen Grenzwert liegt.
     
    16. Verfahren nach Anspruch 15, bei dem, wenn die Temperatur einer Zone (14, 16, 18) über einer Solltemperatur liegt, die entsprechende Zonensteuereinheit (30, 32, 34) nach Empfang des Signals, daß der vorgegebene Grenzwert überschritten worden ist, die der Zone (14, 16, 18) zugeführte Luftmenge stufenweise erhöht.
     
    17. Verfahren nach Anspruch 15 oder 16, bei dem, wenn die Temperatur der Zone (14, 16, 18) um weniger als einen vorgegebenen Betrag unter einer Solltemperatur liegt, die entsprechende Zonensteuereinheit (30, 32, 34) bei Empfang des Signals, daß der vorgegebene Grenzwert überschritten worden ist, die der Zone (14, 16, 18) zugeführte Luftmenge um einen von der Differenz zwischen der Zonentemperatur und der Solltemperatur abhängigen Betrag erhöht.
     
    18. Verfahren nach Anspruch 15, 16 oder 17, bei dem, wenn die Zonentemperatur um mehr als einen vorgegebenen Betrag unter der Solltemperatur liegt, die entsprechende Zonensteuereinheit (30, 32, 34) jede aufgrund des Signals, daß der vorgegebene Grenzwert überschritten worden ist, der Zone (14, 16, 18) zuzuführende Luftmenge annulliert.
     
    19. Verfahren nach Anspruch 13 oder 14, bei dem die den Zonen (14, 16, 18) zugeführte Luft erwärmt wird und bei dem den Zonensteuereinheiten (30, 32, 34) signalisiert wird, wenn die Temperatur (TL) der mindestens einer der Zonen (14, 16, 18) zugeführten Luft über dem vorgegebenen Grenzwert liegt.
     
    20. Verfahren nach Anspruch 19, bei dem, wenn die Temperatur einer Zone (14, 16, 18) unter einer Solltemperatur liegt, die entsprechende Zonensteuereinheit (30, 32, 34) nach Empfang des Signals, daß der vorgegebene Grenzwert überschritten worden ist, die der Zone (14, 16, 18) zugeführte Luftmenge stufenweise erhöht.
     
    21. Verfahren nach Anspruch 19 oder 20, bei dem, wenn die Temperatur der Zone (14, 16, 18) um weniger als einen vorgegebenen Betrag über einer Solltemperatur liegt, die entsprechende Zonensteuereinheit (30, 32, 34) bei Empfang des Signals, daß der vorgegebene Grenzwert überschritten worden ist, die der Zone (14, 16, 18) zugeführte Luftmenge um einen von der Differenz zwischen der Zonentemperatur und der Solltemperatur abhängigen Betrag erhöht.
     
    22. Verfahren nach Anspruch 19, 20 oder 21, bei dem, wenn die Zonentemperatur um mehr als einen vorgegebenen Betrag über der Solltemperatur liegt, die entsprechende Zonensteuereinheit (30, 32, 34) jede aufgrund des Signals, daß der vorgegebene Grenzwert überschritten worden ist, der Zone (14, 16, 18) zuzuführende Luftmenge annulliert.
     
    23. Verfahren nach einem der Ansprüche 13 bis 22, bei dem der vorgegebene Grenzwert als Auslösetemperatur zum Ausschalten einer der Stufen einer Klimaanlageneinheit eingestellt wird, von der aus die Luft den Zonen zugeführt wird.
     
    24. Verfahren nach einem der Ansprüche 13 bis 23, bei dem jede Zonensteuereinheit (30, 32, 34) die in eine Zone (14, 16, 18) strömende Luftmenge unter Verwendung von Klappen (42, 44, 48) nachregelt.
     


    Revendications

    1. Système de commande de la fourniture d'air à une pluralité de zones (14, 16, 18) dans un système à volume d'air variable, comprenant :

    une pluralité d'unités de commande de zone (30, 32, 34) pour contrôler la température (TL) de l'air fourni à chaque zone (14, 16, 18) et la température dans chaque zone (14, 16, 18) et pour contrôler la quantité d'air fourni à chaque zone (14, 16, 18) ; et

    une unité de commande maître (12) connectée aux unités de commande de zone (30, 32, 34) pour lire la température (TL) de l'air fourni à chaque zone (14, 16, 18) depuis les unités de commande de zone (30, 32, 34) et pour déterminer le moment où au moins une de ces températures lues (TL) franchit une limite prédéterminée pour la température de l'air fourni ;

    l'unité de commande maître (12) servant à envoyer un signal à chacune des unités de commande de zone (30, 32, 34) lorsque la limite prédéterminée est franchie ;

    chaque unité de commande de zone (30, 32, 34) réglant la quantité d'air fourni à sa zone respective (14, 16, 18) lors de la réception dudit signal issu de l'unité de commande maître (12) que la limite prédéterminée a été franchie.


     
    2. Système selon la revendication 1, dans lequel, lors de la réception dudit signal, les unités de commande de zone (30, 32, 34) modifient la quantité d'air fourni à leurs zones respectives (14, 16, 18) afin d'augmenter la quantité d'air entrant dans chaque zone (14, 16, 18) en fonction des conditions régnant dans cette zone (14, 16, 18).
     
    3. Système selon la revendication 1 ou 2, dans lequel l'air fourni aux zones (14, 16, 18) est refroidi et dans lequel l'unité de commande maître (12) avertit les unités de commande de zone (30, 32, 34) lorsque la température (TL) de l'air fourni à au moins une des zones (14, 16, 18) est inférieure à la limite prédéterminée.
     
    4. Système selon la revendication 3, dans lequel, lorsque la température d'une zone (14, 16, 18) est supérieure à une température de consigne, l'unité de commande de zone correspondante (30, 32, 34) augmente la quantité d'air fourni à la zone (14, 16, 18) dans des proportions incrémentielles lors de la réception dudit signal de l'unité de commande maître.
     
    5. Système selon la revendication 3 ou 4, dans lequel, lorsque la température de la zone (14, 16, 18) est inférieure à une température de consigne de moins d'une valeur fixée, l'unité de commande de zone correspondante (30, 32, 34), lors de la réception dudit signal issu de l'unité de commande maître (12), augmente la quantité d'air fourni à la zone (14, 16, 18) d'une valeur dépendant de la différence entre la température de la zone et la température de consigne.
     
    6. Système selon la revendication 3, 4 ou 5, dans lequel, lorsque la température de zone est inférieure à la température de consigne de plus d'une valeur fixée, l'unité de commande de zone correspondante (30, 32, 34) annule l'envoi de toute quantité d'air dans la zone (14, 16, 18) en raison d'un dit signal issu de l'unité de commande maître (12).
     
    7. Système selon la revendication 1 ou 2, dans lequel l'air fourni aux zones (14, 16, 18) est chauffé et dans lequel l'unité de commande maître (12) avertit les unités de commande de zone (30, 32, 34) lorsque la température (TL) de l'air fourni à au moins une des zones (14, 16, 18) est supérieure à la limite prédéterminée.
     
    8. Système selon la revendication 7, dans lequel, lorsque la température d'une zone (14, 16, 18) est inférieure à une température de consigne, l'unité de commande de zone correspondante (30, 32, 34) augmente la quantité d'air fourni à la zone (14, 16, 18) dans des proportions incrémentielles lors de la réception dudit signal de l'unité de commande maître.
     
    9. Système selon la revendication 7 ou 8, dans lequel, lorsque la température de la zone (14, 16, 18) est supérieure à une température de consigne de moins d'une valeur fixée, l'unité de commande de zone correspondante (30, 32, 34), lors de la réception dudit signal issu de l'unité de commande maître (12), augmente la quantité d'air fourni à la zone (14, 16, 18) d'une valeur dépendant de la différence entre la température de la zone et la température de consigne.
     
    10. Système selon la revendication 7, 8 ou 9, dans lequel, lorsque la température de zone est supérieure à la température de consigne de plus d'une valeur fixée, l'unité de commande de zone correspondante (30, 32, 34) annule l'envoi de toute quantité d'air dans la zone (14, 16, 18) en raison d'un dit signal issu de l'unité de commande maître (12).
     
    11. Système selon l'une quelconque des revendications précédentes, dans lequel la limite prédéterminée est fixée en tant que température de déclenchement pour désactiver un des étages d'une unité de climatisation depuis laquelle l'air est fourni aux zones.
     
    12. Système selon l'une quelconque des revendications précédentes, dans lequel chaque unité de commande de zone (30, 32, 34) règle la quantité d'air circulant dans une zone (14, 16, 18) à l'aide de registres (42, 44, 48).
     
    13. Procédé de commande de l'alimentation en air dans une pluralité de zones (14, 16, 18) dans un système à volume d'air variable, comprenant les étapes consistant à :

    lire la température (TL) de l'air fourni à chaque zone (14, 16, 18) à l'aide de l'unité de commande (30, 32, 34) dans chaque zone (14, 16, 18) ;

    comparer les températures lues (TL) avec une limite prédéterminée de la température de l'air d'alimentation ;

    signaler aux unités de commande (30, 32, 34) le moment où la température détectée (TL) de l'air fourni à au moins une des zones (14, 16, 18) franchit une limite prédéterminée pour la température de l'air d'alimentation ; et

    commander les unités de commande (30, 32, 34) pour régler la circulation d'air dans leurs zones respectives (14, 16, 18) lorsque les unités de commande (30, 32, 34) reçoivent le signal que la limite prédéterminée a été franchie.


     
    14. Procédé selon la revendication 13, dans lequel, lors de la réception dudit signal, les unités de commande de zone (30, 32, 34) modifient la quantité d'air fourni à leurs zones respectives (14, 16, 18) afin d'augmenter la quantité d'air pénétrant dans chaque zone (14, 16, 18) en fonction des conditions régnant dans cette zone (14, 16, 18).
     
    15. Procédé selon la revendication 13 ou 14, dans lequel l'air fourni aux zones (14, 16, 18) est refroidi et dans lequel les unités de commande de zone (30, 32, 34) sont averties lorsque la température (TL) de l'air fourni à au moins une des zones (14, 16, 18) est inférieure à la limite prédéterminée.
     
    16. Procédé selon la revendication 15, dans lequel, lorsque la température d'une zone (14, 16, 18) est supérieure à une température de consigne, l'unité de commande de zone correspondante (30, 32, 34) augmente la quantité d'air fourni à la zone (14, 16, 18) dans des proportions incrémentielles lors de la réception dudit signal que ladite limite prédéterminée a été franchie.
     
    17. Procédé selon la revendication 15 ou 16, dans lequel, lorsque la température de la zone (14, 16, 18) est inférieure à une température de consigne de moins d'une valeur fixée, l'unité de commande de zone correspondante (30, 32, 34), lors de la réception dudit signal que ladite limite prédéterminée a été franchie, augmente la quantité d'air fourni à la zone (14, 16, 18) d'une valeur dépendant de la différence entre la température de la zone et la température de consigne.
     
    18. Procédé selon la revendication 15, 16 ou 17, dans lequel, lorsque la température de zone est inférieure à la température de consigne de plus d'une valeur fixée, l'unité de commande de zone correspondante (30, 32, 34) annule l'envoi de toute quantité d'air dans la zone (14, 16, 18) en raison dudit signal que ladite limite prédéterminée a été franchie.
     
    19. Procédé selon la revendication 13 ou 14, dans lequel l'air fourni aux zones (14, 16, 18) est chauffé et dans lequel les unités de commande de zone (30, 32, 34) sont averties lorsque la température (TL) de l'air fourni à au moins une des zones (14, 16, 18) est supérieure à la limite prédéterminée.
     
    20. Procédé selon la revendication 19, dans lequel, lorsque la température d'une zone (14, 16, 18) est inférieure à une température de consigne, l'unité de commande de zone correspondante (30, 32, 34) augmente la quantité d'air fourni à la zone (14, 16, 18) dans des proportions incrémentielles lors de la réception dudit signal que ladite limite prédéterminée a été franchie.
     
    21. Procédé selon la revendication 19 ou 20, dans lequel, lorsque la température de la zone (14, 16, 18) est supérieure à une température de consigne de moins d'une valeur fixée, l'unité de commande de zone correspondante (30, 32, 34), lors de la réception dudit signal que ladite limite a été franchie, augmente la quantité d'air fourni à la zone (14, 16, 18) d'une valeur dépendant de la différence entre la température de la zone et la température de consigne.
     
    22. Procédé selon la revendication 19, 20 ou 21, dans lequel, lorsque la température de zone est supérieure à la température de consigne de plus d'une valeur fixée, l'unité de commande de zone correspondante (30, 32, 34) annule l'envoi de toute quantité d'air dans la zone (14, 16, 18) en raison dudit signal que ladite limite prédéterminée a été franchie.
     
    23. Procédé selon l'une quelconque des revendications 13 à 22, dans lequel la limite prédéterminée est fixée en tant que température de déclenchement pour désactiver un des étages d'une unité de climatisation depuis laquelle l'air est fourni aux zones.
     
    24. Procédé selon l'une quelconque des revendications 13 à 23, dans lequel chaque unité de commande de zone (30, 32, 34) règle la quantité d'air circulant dans une zone (14, 16, 18) à l'aide de registres (42, 44, 48).
     




    Drawing