BACKGROUND OF THE INVENTION
a) Field of Industrial Application
[0001] The present invention relates to a delay detection circuit and a low-noise oscillation
circuit using such a delay detection circuit.
b) Description of the Prior Art
[0002] Fig. 4 shows a low-noise oscillation circuit constructed in accordance with the prior
art. Such a low-noise oscillation circuit is also disclosed, for example, in SAKUTA
et. al., "Improvement of Frequency Stability in Oscillator", Electronic Information
Communication Society, Spring National Meeting, Vol. 1, page A-56, March, 1989.
[0003] In such a low-noise oscillation circuit, the oscillation output of a voltage controlled
oscillator (VCO) 10 is supplied to a high frequency mixer 14, on one hand, directly,
and on the other hand, through a delay unit 12. The high frequency mixer 14 multiplies
the oscillation output of the VCO 10 by the output of the delay unit 12, the result
being then supplied to a low-pass filter (LPF) 16. The LPF 16 removes high-frequency
components associated with the multiplication from the output of the high frequency
mixer 14. The LPF 16 then feeds the filtered voltage to the VCO 10 as a control voltage.
The VCO 10 oscillates at a frequency corresponding to the control voltage.
[0004] If the oscillation output voltage of the VCO 10 is represented by

the output voltage VP(t) of the LPF 16 may be represented by

where A, ω and φ(t) are respectively the amplitude, angular frequency and variation
of phase in the oscillation output voltage of the VCO 10 and τ is the delay time of
the delay unit 12. As described in the above literature, the prior art reduces noise
by setting the delay time τ of the delay unit 12 to (2m-1)π/2 (where m is an integer
number) while at the same time using the output voltage VP(t) of the LPF 16 to control
the oscillation frequency of the VCO 10.
[0005] However, the prior art has a disadvantage in that if the delay time τ of the delay
unit 12 varies due to changes of ambient temperature or with age, the noise cannot
be sufficiently reduced. In such an application where the oscillation frequency (angular
frequency ω) of the VCO 10 is suitably changed, as in synthesizers, the delay time
τ of the delay unit 12 may become offset from the optimum operating point, (2m-1)π/2,
in association with the change of the oscillation frequency.
[0006] A technique of overcoming such a problem is disclosed, for example, in Japanese Patent
Laid-Open No. Hei 3-140030. Fig. 5 shows a low-noise oscillation circuit as disclosed
therein.
[0007] In such a low-noise oscillation circuit, the oscillation output voltage V(t) of the
VCO 10 is applied to the high frequency mixer 14, on one hand directly, and on the
other hand, through a voltage controlled delay unit 18. The output voltage of the
high frequency mixer 14 is supplied to the VCO 10 as a control voltage. In this figure,
high frequency components are ignored. In other words, the output of the high frequency
mixer 14 is represented by VP(t). The voltage controlled delay unit 18 is one in which
the delay time τ is controlled by voltage. The control voltage for the voltage controlled
delay unit 18 is obtained by filtering the output VP(t) of the high frequency mixer
14 through the LPF 20. The cut-off frequency of the LPF 20 is set so as to remove
the phase noise components, that is, the second right term of the aforementioned formula
VP(t), from the oscillation output VP(t) of the high frequency mixer 14 so that only
the DC components (first right term) can pass through the LPF 20. Since the DC voltage
contained in the output voltage VP(t) of the high frequency mixer 14 depends on the
delay time τ of the voltage controlled delay unit 18, the delay time τ of the voltage
controlled delay unit can always be maintained at the optimum operating point, (2m-1)π/2
if the sensitivity of the feedback loop containing the LPF 20 is sufficiently high.
[0008] The second prior art of Fig. 5 is superior to the first prior art of Fig. 4 in that
the delay time τ can be always maintained at the optimum operating point (2m-1)π/2.
However, the second prior art requires a feedback loop for feeding the output of the
high frequency mixer 14 back to the voltage controlled delay unit 18. Further, since
sufficient sensitivity cannot normally be provided by only the LPF 20, the feedback
loop requires a DC amplifier. Additionaly, although a voltage controlled electronic
device such as varactor or the like can be used to provide a suitable voltage controlled
delay unit, such a device is not suitable for use in providing integrated circuits.
This becomes an obstacle to integrating and miniaturizing the system.
SUMMARY OF THE INVENTION
[0009] It would therefore be desirable to provide a low-noise oscillation circuit which
does not require the control of delay time and a feedback loop therefor and which
can therefore easily accomplish the integration and miniaturization of the system.
[0010] According to the first aspect of the present invention, there is provided a delay
detection circuit for detecting, with delay processing, the oscillation output of
a voltage controlled oscillator which oscillates at a frequency corresponding to a
control voltage, comprising a first high frequency mixer for multiplying said oscillation
output by a delayed oscillation output obtained by delaying the oscillation output
by a predetermined delay time to generate a first high frequency signal,
characterised in that said delay detection circuit further comprises:
a second high frequency mixer for multiplying said delayed oscillation output by a
phase-shifted oscillation output obtained by phase-shifting said oscillation output
or delayed oscillation output by π/2 radian to generate a second high frequency signal;
a first low frequency mixer for multiplying the DC and phase-noise components contained
in the first high frequency signal by the phase-noise components contained in the
second high frequency signal to generate a first low frequency signal;
a second low frequency mixer for multiplying tne DC and phase-noise components contained
in the second high frequency signal by the phase-noise components contained in the
first high frequency signal to generate a second low frequency signal; and
adder-subtracter means responsive to the second low frequency signal for removing
dependence on the predetermined delay time from primary phase-noise components contained
in the first low frequency signal to generate said control voltage without said dependence.
[0011] According to the second aspect of the present invention, there is provided a low-noise
oscillation circuit comprising the VCO and the delay detection circuit defined in
the first aspect.
[0012] According to the third aspect of the present invention, there is provided a low-noise
oscillation circuit comprising:
a VCO;
a frequency locked loop including the delay detection circuit defined in the first
aspect and operative to lock the oscillation frequency of the VCO at a target value;
and
a phase locked loop for locking the oscillation phase of the VCO at a target value.
[0013] Embodiments of the present invention use the first and second high frequency mixers.
Either of the first or second high frequency mixer functions to multiply two different
input signals by each other, the result being then outputted therefrom. The first
and second high frequency mixers receive, as the input signals, the oscillation output
of the VCO as well as the signal provided by delaying the oscillation output by a
predetermined (constant) delay time, provided that, one of the signals supplied to
the second high frequency mixer is π/2 radian phase-shifted prior to the supply thereof.
Such a phase-shift i.e. quadrature conversion, provides an orthogonality between the
output of the first high frequency mixer (first high frequency signal) and the output
of the second high frequency mixer (second high frequency signal).
[0014] The first low frequency mixer multiplies the DC and phase noise components contained
in the first high frequency signal by the phase noise components contained in the
second high frequency signal. The second low frequency mixer multiplies the DC and
phase noise components contained in the second high frequency signal by the phase
noise components contained in the first high frequency signal. Therefore, the outputs
of the first and second low frequency mixers (first and second low frequency signals)
will contain the components obtained by multiplying the DC and phase noise components
by each other (primary phase noise components) and the other components obtained by
multiplying the phase noise components by each other (secondary phase noise components).
Since the first and second high frequency signals are orthogonal to each other as
described, the primary phase noise components contained in the first low frequency
signal are also orthogonal to the primary phase noise components contained in the
second low frequency signal.
[0015] Since the primary phase noise components contained in the first and second low frequency
signals are orthogonal to each other, such a relationship can be utilized to remove
a dependence on the delay time in the primary phase noise components. This means that
the primary phase noise components can be provided without dependence on the delay
time in the delay unit and further that the primary phase noise components without
delay-time-dependency can be used as a control voltage for the VCO to eliminate the
need of a voltage controlled delay unit and a feedback loop therefor. As a result,
on one hand, it is not required to feed back the output of the high frequency mixer
for controlling the delay time and therefore the LPF and DC amplifier for forming
the feedback loop are eliminated, and on the other hand, such a device as a varactor
or the like, used to form the voltage controlled delay unit, is not required. This
implies that embodiments of the present invention can accomplish a low-noise oscillation
circuit which is improved, in terms of integration and miniaturization over the prior
art.
[0016] Since both the first and second low frequency signals contain the secondary phase
noise components, the second low frequency signal can be used to remove the secondary
phase noise components from the first low frequency signal. Thus, there is no influence
due to the secondary phase noise components.
[0017] Means for extracting the DC and phase noise components from the first and second
high frequency components may take the form of a low-pass filter which can remove
any harmonic component. A high-pass filter may further be used to remove DC components
from the output of the low-pass filter.
BRIEF DESCRIPTION OF THE DRAWINGS
[0018] Fig. 1 is a block diagram of a first embodiment of a low-noise oscillation circuit
constructed in accordance with the present invention.
[0019] Fig. 2 is a block diagram of a second embodiment of a low-noise oscillation circuit
constructed in accordance with the present invention.
[0020] Fig. 3 is a block diagram of the use of the respective embodiments according to an
embodiment of the present invention.
[0021] Fig. 4 is a block diagram of a low-noise oscillation circuit constructed in accordance
with the prior art.
[0022] Fig. 5 is a block diagram of another low-noise oscillation circuit constructed in
accordance with the prior art.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
[0023] Some preferred embodiments of the present invention will now be described with reference
to the drawings in which parts similar to those of Figs. 4 and 5 are designated by
similar reference numerals and will not further be described.
[0024] Fig. 1 shows a first embodiment of a low-noise oscillation circuit constructed in
accordance with the present invention. In the first embodiment, the oscillation output
voltage V(t) of a VCO 10 is supplied to a delay detection circuit 22 while the output
voltage Vout of the delay detection circuit 22 is supplied back to the VCO 10 as a
control voltage.
[0025] The delay detection circuit 22 comprises two high frequency mixers 14-1 and 14-2.
The oscillation output voltage V(t) of the VCO 10 is supplied to the high frequency
mixer 14-1 as a voltage V1(t) and also to a delay unit 12 and π/2 phase shifter 24.
The delay unit 12 delays the oscillation output voltage V(t) of the VCO 10 by a delay
time τ, the delayed oscillation output voltage being then supplied to the high frequency
mixers 14-1 and 14-2 as a voltage V2(t). The π/2 phase shifter 24 phase-shifts the
oscillation output voltage V(t) of the VCO 10 by π/2 radian, the phase-shifted oscillation
output voltage being then supplied to the high frequency mixer 14-2 as a voltage V3(t).
The high frequency mixer 14-1 multiplies the voltages V1(t) and V2(t) by each other
to form an output voltage VP1(t). The high frequency mixer 14-2 multiplies the voltages
V2(t) and V3(t) by each other to form an output voltage VP2(t).
[0026] If the oscillation output voltage V(t) of the VCO 10 is represented by the aforementioned
formula, the voltages V1(t)-V3(t) supplied to the high frequency mixers 14-1 and 14-2
can be respectively represented by:


and

[0027] Therefore, the output voltage VP1(t) of the high frequency mixer 14-1 can be represented
by:

[0028] Since φ(t) - φ(t-τ) is very small in the above formula,

and

are approximately established. Thus, the above formula VP1(t) can be transformed
into:

[0029] Similarly, the output voltage VP2(t) of the high frequency mixer 14-2 can be represented
by:

[0030] The back stages of the high frequency mixers 14-1 and 14-2 include LPF's 16-1 and
16-2, respectively. Each of the LPF's 16-1 and 16-2 functions to remove high frequency
components from the output voltage VP1(t) or VP2(t) of the high frequency mixer 14-1
or 14-2. Therefore, the output voltages VLF1 and VLF2 of the LPF's 16-1 and 16-2 can
be represented respectively by:

and

[0031] The back stage of each of the LPF's 16-1 and 16-2 includes a high-pass filter (HPF)
26-1 or 26-2 and a low frequency mixer 28-1 or 28-2. HPF 26-1 functions to remove
DC components from the output voltage VLF1 of the LPF 16-1 while HPF 26-2 functions
to remove DC components from the output voltage VLF2 of the LPF 16-2. Thus, the voltages
VHF1 and VHF2 obtained by the HPF's 26-1 and 26-2 can be represented by:

and

[0032] The low frequency mixer 28-1 multiplies the voltages VLF1 and VHF2 by each other
to form a voltage VM01 which is in turn supplied to a subtracter 30. The low frequency
mixer 28-2 multiplies the voltages VLF2 and VHF1 by each other to form a voltage VM02
which is in turn supplied to the subtracter 30. The voltage VM01 can be represented
by:

The voltage VM02 can be represented by:

[0033] The first right term of each of the formulas representing the voltages VM01 and VM02
shows primary components relative to the phase noise components φ(t) - φ(t-τ) (primary
phase noise components) while the second right term thereof shows secondary components
(secondary phase noise components). The primary phase noise components contained in
the voltages VM01 and VM02 depend on the delay time τ of the delay unit 12. Since
the front stage of the high frequency mixer 14-2 includes the π/2 phase shifter 24,
the primary phase noise components of the voltage VM01 are proportional to cos
2ωτ while the primary phase noise components of the voltage VM02 are proportional to
sin
2ωτ.
[0034] Therefore, the subtracter 30 which subtracts the voltage VM02 from the voltage VM01
can counteract not only the secondary phase noise components but also the dependency
on the delay time τ. In other words, the subtracter 30 can provide a voltage Vout:

When such a voltage Vout is supplied to the VCO 10 as a control voltage, a low-noise
oscillation circuit suitable for use in a synthesizer or the like can be realized
without use of any voltage controlled delay unit.
[0035] The high frequency mixers 14-1 and 14-2 of this embodiment may be realized, for example,
by double balanced mixers as in the prior art. The π/2 phase shifter 24 functions
to produce a phase orthogonality between the output voltages VP1(t) and VP2(t) of
the high frequency mixers 14-1 and 14-2. Therefore, the π/2 phase shifter 24 may be
located between the delay unit 12 and the high frequency mixer 14-2 as shown in Fig.
2, with the same advantages as in the circuit of Fig. 1.
[0036] Fig. 3 shows an application of the aforementioned circuit. In such an application,
the oscillation output of the VCO 10 is divided by a frequency divider 32 and then
supplied to a phase comparator 34. The phase comparator 34 also receives a reference
signal from a reference signal source 36. The phase comparator 34 compares the output
of the frequency divider 32 with the output of the reference signal source 36, the
result being then supplied to a combiner 40 through an LPF 38 for stabilizing the
loop. The combiner 40 combines the output of the delay detection circuit 22 (i.e.,
control voltage Vout) with the output of the LPF 38, the combined voltage being then
supplied to the VCO 10. In such an arrangement, the frequency locked loop of the present
invention can be coupled to the phase locked loop of the prior art. Although the subtracter
30 has been described in connection with the previous embodiment, it may be replaced
by an adder when the low frequency mixers 28-1 and 28-2 have a function of reversing
their output polarity.
[0037] As described, embodiments of the present invention can accomplish low-noise oscillation
by using two high frequency mixers, using a phase shifter for phase-shifting the output
of the VCO or delay unit by π/2 radian to provide an orthogonality between the output
of the first and second high frequency mixers, utilizing such an orthogonality to
provide primary phase noise components without dependence of the delay time and using
the primary phase noise components as control voltage for the VCO. Therefore, it is
not required to feed back the outputs of the high frequency mixers to control the
delay time in the delay unit. This enables any LPF and DC amplifier for forming the
feedback loop to be eliminated. On the other hand, embodiments of the present invention
do not require such a device as a varactor or the like which would be required to
form a voltage controlled delay unit. Therefore, the low-noise oscillation circuit
can be more integrated and miniaturized.
1. A delay detection circuit (22) for detecting, with delay processing, the oscillation
output of a voltage controlled oscillator (10) which oscillates at a frequency corresponding
to a control voltage, comprising a first high frequency mixer (14-1) for multiplying
said oscillation output by a delayed oscillation output obtained by delaying the oscillation
output by a predetermined delay time to generate a first high frequency signal,
characterised in that said delay detection circuit (22) further comprises:
a second high frequency mixer (14-2) for multiplying said delayed oscillation output
by a phase-shifted oscillation output obtained by phase-shifting said oscillation
output or delayed oscillation output by π/2 radian to generate a second high frequency
signal;
a first low frequency mixer (28-1) for multiplying the DC and phase-noise components
contained in the first high frequency signal by the phase-noise components contained
in the second high frequency signal to generate a first low frequency signal;
a second low frequency mixer (28-2) for multiplying the DC and phase-noise components
contained in the second high frequency signal by the phase-noise components contained
in the first high frequency signal to generate a second low frequency signal; and
adder-subtracter means (30) responsive to the second low frequency signal for removing
dependence on the predetermined delay time from primary phase-noise components contained
in the first low frequency signal to generate said control voltage without said dependence.
2. A delay detection circuit as defined in claim 1, further comprising:
a delay unit (12) for delaying said oscillation output by the predetermined delay
time to generate the delayed oscillation output; and
a phase shifter (24) for phase-shifting said oscillation output by π/2 radian to generate
the phase-shifted oscillation output.
3. A delay detection circuit as defined in claim 1, further comprising:
a delay unit (12) for delaying said oscillation output by the predetermined delay
time to generate the delayed oscillation output; and
a phase shifter (24) for phase-shifting said delayed oscillation output by π/2 radian
to generate the phase-shifted oscillation output.
4. A delay detection circuit as defined in any one of claims 1 to 3 wherein said adder-subtracter
means (30) is responsive to the second low frequency signal for removing secondary
phase noise components from the first low frequency signal.
5. A delay detection circuit as defined in any one of claims 1 to 4, further comprising
a first low-pass filter (16-1) for removing components corresponding to harmonic components
of said oscillation output from the first high frequency signal prior to the multiplication
of the first and second low frequency mixers (28-1, 28-2).
6. A delay detection circuit as defined in claim 5, further comprising a first high-pass
filter (26-1) for removing DC components from the first high frequency signal passed
through the first low-pass filter (16-1) prior to the multiplication of the second
low frequency mixer (28-2).
7. A delay detection circuit as defined in any cne of claims 1 to 6, further comprising
a second low-pass filter (16-2) for removing components corresponding to harmonic
components of said oscillation output from the second high frequency signal prior
to the multiplication of the first and second low frequency mixers (28-1, 28-2).
8. A delay detection circuit as defined in claim 7, further comprising a second high-pass
filter (26-2) for removing DC components from the second high frequency signal passed
through the second low-pass filter (16-2) prior to the multiplication of the first
low frequency mixer (28-1).
9. A low-noise oscillation circuit comprising:
a voltage controlled oscillator (10); and
the delay detection circuit (22) as defined in any one of claims 1 to 8.
10. A low-noise oscillation circuit comprising:
a voltage controlled oscillator (10);
a frequency locked loop including the delay detection circuit as defined in any one
of claims 1 to 8 and being operative to lock an oscillation frequency of said voltage
controlled oscillator (10) at a target value; and
a phase locked loop for locking an oscillation phase of said voltage controlled oscillator
(10) at a target value.
1. Verzögerungserfassungsschaltung (22) zum Erfassen, mit Verzögerungsverarbeitung, der
Schwingungsausgabe eines spannungsgesteuerten Oszillators (10), der mit einer einer
Steuerungsspannung entsprechenden Frequenz schwingt, umfassend einen ersten Hochfrequenzmischer
(14-1) zum Multiplizieren der Schwingungsausgabe mit einer verzögerten Schwingungsausgabe,
die durch Verzögerung der Schwingungsausgabe um eine vorbestimmte Verzögerungszeit
erhalten ist, um ein erstes Hochfrequenzsignal zu erzeugen,
dadurch gekennzeichnet, daß die Verzögerungserfassungsschaltung (22) ferner umfaßt:
einen zweiten Hochfrequenzmischer (14-2) zum Multiplizieren der verzögerten Schwingungsausgabe
mit einer phasenverschobenen Schwingungsausgabe, die durch Phasenverschieben der Schwingungsausgabe
oder der verzögerten Schwingungsausgabe um Π/2 rad erhalten ist, um ein zweites Hochfrequenzsignal
zu erzeugen;
einen ersten Niederfrequenzmischer (28-1) zum Multiplizieren der Gleichanteil- und
Phasenrauschkomponenten, die in dem ersten Hochfrequenzsignal enthalten sind, mit
den Phasenrauschkomponenten, die im zweiten Hochfrequenzsignal enthalten sind, um
ein erstes Niederfrequenzsignal zu erzeugen;
einen zweiten Niederfrequenzmischer (28-2) zum Multiplizieren der Gleichanteil- und
Phasenrauschkomponenten, die im zweiten Hochfrequenzsignal enthalten sind, mit den
Phasenrauschkomponenten, die im ersten Hochfrequenzsignal enthalten sind, um ein zweites
Niederfrequenzsignal zu erzeugen; und
Additions-Substraktions-Mittel (30), die auf das zweite Niederfrequenzsignal ansprechen,
zum Entfernen der Abhängigkeit von der vorbestimmten Verzögerungszeit aus in dem ersten
Niederfrequenzsignal enthaltenen primären Phasenrauschkomponenten, um die Steuerungsspannung
ohne diese Abhängigkeit zu erzeugen.
2. Verzögerungserfassungsschaitung nach Anspruch 1, ferner umfassend:
eine Verzögerungseinheit (12) zum Verzögern der Schwingungsausgabe um die vorbestimmte
Verzögerungszeit, um die verzögerte Schwingungsausgabe zu erzeugen; und
einen Phasenschieber (24) zum Verschieben der Phase der Schwingungsausgabe um π/2
rad, um die phasenverschobene Schwingungsausgabe zu erzeugen.
3. Verzögerungserfassungsschaltung nach Anspruch 1, ferner umfassend:
eine Verzögerungseinheit (12) zum Verzögern der Schwingungsausgabe um eine vorbestimmte
Verzögerungszeit, um die verzögerte Schwingungsausgabe zu erzeugen; und
einen Phasenschieber (24) zum Verschieben der Phase der verzögerten Schwingungsausgabe
um π/2 rad, um die phasenverschobene Schwingungsausgabe zu erzeugen.
4. Verzögerungserfassungsschaltung nach einem der Ansprüche 1 bis 3, bei der das Additions-Substraktions-Mittel
(30) auf das zweite Niederfrequenzsignal anspricht, um sekundäre Phasenrauschkomponenten
aus dem ersten Niederfrequenzsignal zu entfernen.
5. Verzögerungserfassungsschaltung nach einem der Ansprüche 1 bis 4, ferner umfassend
einen ersten Tiefpaßfilter (16-1) zum Entfernen von harmonischen Komponenten der Schwingungsausgabe
entsprechenden Komponenten aus dem ersten Hochfrequenzsignal vor der Multiplikation
des ersten und zweiten Niederfrequenzmischers (28-1, 28-2).
6. Verzögerungserfassungsschaltung nach Anspruch 5, ferner umfassend einen ersten Hochpaßfilter
(26-1) zum Entfernen von Gleichanteilkomponenten aus dem durch den ersten Tiefpaßfilter
(16-1) durchgegangenen ersten Hochfrequenzsignal vor der Multiplikation des zweiten
Niederfrequenzmischers (28-2).
7. Verzögerungserfassungsschaltung nach einem der Ansprüche 1 bis 6, ferner umfassend
einen zweiten Tiefpaßfilter (16-2) zum Entfernen von harmonischen Komponenten der
Schwingungsausgabe entsprechenden Komponenten aus dem zweiten Hochfrequenzsignal vor
der Multiplikation des ersten und des zweiten Niederfrequenzmischers (28-1, 28-2).
8. Verzögerungserfassungsschaltung nach Anspruch 7, ferner umfassend einen zweiten Hochpaßfilter
(26-2) zum Entfernen von Gleichanteilkomponenten aus dem durch den zweiten Tiefpaßfilter
(16-2) durchgegangenen zweiten Hochfrequenzsignal vor der Multiplikation des ersten
Niederfrequenzmischers (28-1).
9. Rauscharme Schwingschaltung umfassend:
einen spannungsgesteuerten Oszillator (10); und
die Verzögerungserfassungsschaltung (22), wie in einem der Ansprüche 1 bis 8 definiert.
10. Rauscharme Schwingschaltung umfassend:
einen spannungsgesteuerten Oszillator (10);
eine frequenzeingerastete Schleife, die die in einem der Ansprüche 1 bis 8 definierte
Verzögerungsertassungsschaltung umfaßt und wirksam ist, eine Schwingungsfrequenz des
spannungsgesteuerten Oszillators (10) auf einen Zielwert einzurasten; und
eine phaseneingerastete Schleife zum Einrasten einer Schwingungsphase des spannungsgesteuerten
Oszillators (10) auf einen Zielwert.
1. Circuit (22) de détection à retard destiné à détecter, avec un traitement de retardement,
la sortie d'oscillation d'un oscillateur commandé en tension (10) qui oscille à une
fréquence correspondant à une tension de commande, comprenant un premier mélangeur
à haute fréquence (14-1) destiné à multiplier ladite sortie d'oscillation par une
sortie d'oscillation retardée, obtenue en retardant la sortie d'oscillation d'un temps
de retard prédéterminé, pour produire un premier signal à haute fréquence,
caractérisé en ce que ledit circuit (22) de détection à retard comprend en outre :
un second mélangeur à haute fréquence (14-2) destiné à multiplier ladite sortie d'oscillation
retardée par une sortie d'oscillation déphasée, obtenue en déphasant, de π/2 radian,
ladite sortie d'oscillation ou sortie d'oscillation retardée, pour produire un second
signal à haute fréquence;
un premier mélangeur à basse fréquence (28-1) destiné à multiplier les composantes
de courant continu et de bruit de phase contenues dans le premier signal à haute fréquence
par les composantes de bruit de phase contenues dans le second signal à haute fréquence,
pour produire un premier signal à basse fréquence ;
un second mélangeur à basse fréquence (28-2) destiné à multiplier les composantes
de courant continu et de bruit de phase contenues dans le second signal à haute fréquence
par les composantes de bruit de phase contenues dans le premier signal à haute fréquence,
pour produire un second signal à basse fréquence ; et
un moyen (30) d'addition/soustraction, sensible au second signal à basse fréquence,
destiné à supprimer la dépendance du temps de retard prédéterminé par rapport à des
composantes primaires de bruit de phase contenues dans le premier signal à basse fréquence
pour produire ladite tension de commande sans ladite dépendance.
2. Circuit de détection à retard selon la revendication 1, comprenant en outre :
un module (12) de retardement destiné à retarder ladite sortie d'oscillation du temps
de retard prédéterminé pour produire la sortie d'oscillation retardée ; et
un déphaseur (24) destiné à déphaser, de π/2 radian, ladite sortie d'oscillation pour
produire la sortie d'oscillation déphasée.
3. Circuit de détection à retard selon la revendication 1, comprenant en outre :
un module (12) de retardement destiné à retarder ladite sortie d'oscillation du temps
de retard prédéterminé pour produire la sortie d'oscillation retardée ; et
un déphaseur (24) destiné à déphaser, de π/2 radian, ladite sortie d'oscillation retardée
pour produire la sortie d'oscillation déphasée.
4. Circuit de détection à retard selon l'une quelconque des revendications 1 à 3, dans
lequel ledit moyen (30) d'addition/soustraction est sensible au second signal à basse
fréquence pour éliminer, du premier signal à basse fréquence, des composantes secondaires
de bruit de phase.
5. Circuit de détection à retard selon l'une quelconque des revendications 1 à 4, comprenant
en outre un premier filtre passe-bas (16-1) destiné à éliminer, du premier signal
à haute fréquence, des composantes correspondant à des composantes harmoniques de
ladite sortie d'oscillation, avant la multiplication des premier et second mélangeurs
à basse fréquence (28-1, 28-2).
6. Circuit de détection à retard selon la revendications 5, comprenant en outre un premier
filtre passe-haut (26-1) destiné à éliminer, du premier signal à haute fréquence passé
à travers le premier filtre passe-bas (16-1), des composantes de courant continu,
avant la multiplication du second mélangeur à basse fréquence (28-2).
7. Circuit de détection à retard selon l'une quelconque des revendications 1 à 6, comprenant
en outre un second filtre passe-bas (16-2) destiné à éliminer, du second signal à
haute fréquence, des composantes correspondant à des composantes harmoniques de ladite
sortie d'oscillation, avant la multiplication des premier et second mélangeurs à basse
fréquence (28-1, 28-2).
8. Circuit de détection à retard selon la revendications 7, comprenant en outre un second
filtre passe-haut (26-2) destiné à éliminer, du second signal à haute fréquence passé
à travers le second filtre passe-bas (16-2), des composantes de courant continu, avant
la multiplication du premier mélangeur à basse fréquence (28-1).
9. Circuit d'oscillation à faible bruit comprenant :
un oscillateur commandé en tension (10) ; et
un circuit (22) de détection à retard selon l'une quelconque des revendications 1
à 8.
10. Circuit d'oscillation à faible bruit comprenant :
un oscillateur commandé en tension (10) ;
une boucle à fréquence asservie incluant le circuit de détection à retard selon l'une
quelconque des revendications 1 à 8 et servant à asservir, à une valeur cible, une
fréquence d'oscillation dudit oscillateur commandé en tension (10) ; et
une boucle à phase asservie destinée à asservir, à une valeur cible, une phase d'oscillation
dudit oscillateur commandé en tension (10).