(19)
(11) EP 0 542 383 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
13.05.1998 Bulletin 1998/20

(21) Application number: 92250157.2

(22) Date of filing: 18.06.1992
(51) International Patent Classification (IPC)6A61H 9/00, A61H 23/04

(54)

Compression device

Kompressionsvorrichtung

Dispositif de compression


(84) Designated Contracting States:
BE DE ES FR GB IT NL

(30) Priority: 12.11.1991 US 790809

(43) Date of publication of application:
19.05.1993 Bulletin 1993/20

(73) Proprietor: TYCO INTERNATIONAL (US) INC.
Exeter, New Hampshire 03833 (US)

(72) Inventor:
  • Dye, John F.
    Bridgewater, MA 02324 (US)

(74) Representative: UEXKÜLL & STOLBERG 
Patentanwälte Beselerstrasse 4
22607 Hamburg
22607 Hamburg (DE)


(56) References cited: : 
EP-A- 0 053 883
EP-A- 0 388 200
US-A- 3 056 575
EP-A- 0 205 817
EP-A- 0 404 965
US-A- 4 396 010
   
  • PATENT ABSTRACTS OF JAPAN vol. 12, no. 308 (E-647) 22 August 1988 & JP-A-63 073 864 (SAGINOMIYA SEISAKUSHO)
   
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description


[0001] The present invention relates to a device for applying compressive pressures against a patient's limb through means of a compression sleeve enclosing the limb, and mare particularly, to a means for automatically adjusting the pressure within the sleeve to maintain a preselected pressure.

[0002] Compression sleeves and devices for controlling them are well known and illustrated in the prior art in such patents as U.S. Patent Nos. 4,013,069 of Hasty; 4,030,488 of Hasty; 4,091,804 of Hasty; 4,029,087 of Dye et al; 3,942,518 of Tenteris et al; and 2,145,932 of Israel, and reference may be had thereto for general background information on structure and utility.

[0003] Flexible compressive sleeves having a plurality of pressure compartments/chambers are wrapped around the limb of a patient and are then pressurized to apply compressive pressure at different parts of the limb. The sleeves are connected to a source of pressurized fluid which is regulated by a controller. The controllers generally operate to form pressure cycles which propel the blood upwards from the ankle towards the thigh.

[0004] Such devices can be misadjusted or drift from proper adjustment so that safe and effective pressure may not be applied to the limbs.

[0005] Prior art such as U.S. Patent No. 4,396,010 of Arkans (on which the preamble of Claim 1 is based), U.S. Patent No. 4,702,232 of Gardner and U.S. Patent No. 4,013,069 of Hasty, manually control the amount of pressure that is to be supplied to a patient's limb. Furthermore, although Arkans provides a method of depressurizing a pressure compartment by use of a pressure release device, Arkans method of controlling the pressure applied to the limb is still provided by a manual control.

[0006] Even though the prior art has accomplished the depressurizing of chambers to reduce injury to a patient's limb, the pressure supplied to the pressure compartments is still manually controlled. Thus, a nurse must remain with the unit constantly until the pressure has come up to a preselected value and then they must frequently check and recheck the pressure unit to make sure the pressure setting remains steady. Additionally, changes in the patient's position may cause changes in the effective volumes of the pressure chambers resulting in undesirable changes in the pressures in the individual pressure chambers which requires further manual adjustment.

[0007] Applicant is not aware of any prior art that discloses or suggests that pressure applied to a patient's limb may be controlled by an automatic means.

[0008] Thus, a need exists for automatic control over application of pressure to the pressure chambers so that a preselected pressure value is maintained, and the time required by a person to watch over a pressure monitor is further reduced. The present invention provides such an automatic control means to control pressure exerted on a patient's limb.

SUMMARY OF THE INVENTION



[0009] The abject of the present invention is to provide a pressure generating device for applying compressive forces against a patient's limb through a flexible pressurizable sleeve which encloses the limb having a means for automataally adjusting pressure supplied to the pressurized sleeve to maintain a preselected pressure value.

[0010] The present invention is a pressure controller as defined in Claim 1. The dependent claims relate to advantageous versions thereof and to a pressure generating device which comprises the pressure controller.

[0011] The device has a pressure transducer and a controller which generates electrical signals in response to signals from the transducer which operate a flow control valve that controls the flow of fluid to a solenoid controlled valve to automatically adjust the pressure in the sleeve.

[0012] Another object is to provide automatic pressure adjustment to eliminate the need for a nurse or similar person from having to continuously monitor the pressure selection to insure it remains at a preselected pressure value.

[0013] Another object of the present invention is to provide automatic pressure adjustment in response to changes in the effective volumes of the pressure chambers of the sleeve caused by changes in a patient's position.

[0014] Other objects will become more apparent from the following description of the preferred embodiment and claims.

BRIEF DESCRIPTION OF THE DRAWINGS



[0015] 

FIG. 1 is a perspective view of the sequential compressive device as being used to apply compressive forces to the legs of a patient;

FIG. 2 is a schematic diagram, partially in block form, showing the preferred embodiment;

FIG. 3 is a timing diagram of the pressure cycles;

FIG. 4 illustrates the flow control valve used to control the flow of fluid to solenoid valves; and

FIG. 5 is a flow vs. plunger position chart.


DESCRIPTION OF THE PREFERRED EMBODIMENTS



[0016] Referring to FIG. 1 and to briefly describe the compressive device, the compression device 10 is seen as supplying sequential compressive pressures and cooling to legs 12 of a patient 14. The device 10 includes a pressure controller 16 mounted in a case 18. The controller 16, generates controlled pressures timed as illustrated in FIG. 3, at output ports 20A, 20B, 20C and 20D, respectively as will be described in detail hereinafter. The output ports 20A-20D are connected through flexible tubes 22A, 22B, 22C and 22D and are in fluid communication with input ports 24A, 24B, 24C and 24D of a manifold 26. Two sets of input ports are connected to a pair of compression sleeves 28 by a pair of flexible sets of tubes 30.

[0017] The compression sleeves 28 are identical to each other. And as shown in FIG. 1 each is wrapped around one of the patient's legs 12. Each sleeve has an ankle chamber 32A, a calf chamber 32B and a thigh chamber 32C. In addition, each sleeve has one or more ventilation chambers 32D for ventilating the patient's legs 12.

[0018] The sequential compression device described above is per se old and is shown, for example, in U.S. Patent No. 4,396,010 of Arkans, and other patents referenced therein.

[0019] Referring to FIG. 2, the pressure generator 16 functions to repetitively generate pressure pulses to its output ports 20A-20D in the time sequence shown by wave-forms of FIG. 3. As seen by FIG. 3, the pressure cycles commence at time TA when pressure pulse A is applied to port 20A and the ankle chambers 32A are pressurized. At time TB, pressure pulse B is applied to port 20B and the calf chambers 32B are pressurized. At time TC, pressure pulse C is applied to port 20C and the thigh chambers 32C are pressurized. At time TD, pressure pulses A, B and C are terminated, chambers 32A, 32B and 32C are vented to the atmosphere, and cooling pulse D is applied to port 20D and ventilation chambers 32D. At the end of the cooling pulse, the entire sequence is repeated commencing with pressure pulse A.

[0020] Referring to FIG. 2. the pressure controller 16 has a compressor 74 as a generating source of pressurized fluid. In the preferred form of the invention, the pressurized fluid is air generated by an air compressor 74. The compressor 74 is connected through a conduit 70 to fluid junction 90 which is connected to solenoid valve 46D and the inlet opening 110 of flow control valve 44 through conduit 61. The discharge opening 120 of flow control valve 44 is connected through conduit 64 to the solenoid valve manifold 94. The solenoid valves 46A, 46B, 46C and 46D control the input of pressure through conduits 66A, 66B, 66C and 66D to a manifold 62 which has output ports 20A, 20D, 20B and 20C. The pressure transducer 34, of a commercially available type, is in fluid communication with the solenoid manifold 94 through pneumatic connection 68 and fluid junction 96.

[0021] The pressure transducer 34 senses the pressure at output port 20A through conduits 66A and 68; and then converts the pressure sensed into a first electrical signal. The first electrical signal is an analog electrical signal and is communicated to a signal converter 36 through lead 78. This first electrical signal is received by the signal converter 36, of a per se known and commercially available type, which converts the analog electrical signal to a digital electrical signal. The digital electrical signal generated by the signal converter 36 is then communicated to a microprocessor 38 through lead 76. The digital signal is received by the microprocessor 38, also of a per se known and commercially available type, which is programmed to monitor and to compare the digital signal to a preselected pressure value. If there is a difference between the pressure sensed by the transducer 34 and the preselected pressure value, the microprocessor 38 then sends a second electrical signal to a driver circuit 40, of a commercially available type, through lead 76 which in turn sends pulses of current through lead 72 to a motor 42. The motor 42 preferably is a linear stepper motor that is commercially available, and operates the flow control valve 44 which controls the flow of fluid to solenoid valves 46A, 46B and 46C. Thus, the pressure applied to outlet ports 20A-C through solenoid valves 46A-C is dynamically regulated by automatic adjustment of the flow of pressurized fluid through flow control valve 44.

[0022] Referring to FIG. 4, a flow control valve 44 for controlling and automatically adjusting pressure in pressure sleeves is depicted. The valve has a hollow body member 100 which has an inlet opening 110 within which a precision orifice 112 is situated and a discharge opening 120. The body member 100 also has a chamber 130 in communication with the inlet and discharge openings. The chamber 130 has a cylindrical central portion 132. The body member 100 may be made from any type of material such as aluminum, steel, brass, etc., although the preferred material is plastic. The flow valve also has a means for sealing against fluid flow entering the chamber 130, the means including a plunger member 140 having a tapered pin 141 at is leading or distal end for releasably seating into the precision orifice 112 situated within inlet opening 110. The plunger 140 may be made of various materials, such as brass, steel, aluminum, other metals or composites, brass being preferred. Plunger 140 has a trailing or proximal sealing portion 142 in slideable fluid-tight contact with the walls of chamber 130 defining cylindrical portion 132. The taper of the tapered pin 141 preferably is a compound taper which permits plunger 140 to precisely control the flow of fluid through orifice 112. Attached to the hollow body 100 is a means for moving plunger 140. This means is a linear stepper motor 42. The plunger 140 is connected to a shaft 152 of the motor 42 which extends into the hollow body 100. The motor moves the plunger 140 in a linear motion in and out of the orifice 112. The stepper motor 42 provides linear motion in increments of 0.0508 mm (2 thousandths of an inch.) In addition, the motor 42 has a predetermined internal stop (not shown) to prevent the plunger 140 from jamming into the body of the motor. There is also a predetermined internal stop (not shown) to prevent the tapered pin 141 from jamming into the orifice 112. Because the stepper motor 42 is calibrated to move in increments of 2 thousandths of an inch it can move pin 141 precisely into and out of the orifice 112 without causing it to jam. Furthermore, because the pin 141 has a compound taper, the flow of fluid through orifice 112 can be precisely controlled, thereby providing finite adjustments in the flow of fluid to the solenoid valves and therefore to the compression chambers.

[0023] The flow is precisely controlled due to the combination of the incremental movement of plunger 140 and the compound taper of pin 141. As pin 141 is being moved into position for seating in the inlet opening 110 the compound tapered member reduces the area around the inlet opening 110 incrementally until it eventually seats in the orifice 112. This combination permits the finite pressure adjustments. As the tapered member is moved in and out of the inlet opening the area between the taper and the inlet opening diminishes or expands, thus, exact control over the pressure is had, which is necessary to maintain a preselected pressure. This control is illustrated in FIG. 5 wherein a comparison is made of the described compound taper and a standard plunger commonly used within flow control valves. The difference in the slopes of pressure is quite obvious. The slope of the pressure when using the standard plunger dips downward showing a drop in fluid flow has occurred. On the other hand the pressure slope of the present valve is stable and has no substantial pressure drops in its slope. This is important when providing pressure to a pressure sleeve that is being used on the limb's of a patient because any drop in pressure may cause the compressor supplying the pressure to over compensate and provide to much pressure which may possibly cause injury to the patient. By using this new valve there are no pressure drops, thus when automatically adjusting the pressure in the sleeves, an even flow of pressure will be assured and the compressor will not provide unneeded pressure to the sleeves.

[0024] It is unknown in the art to use a linear stepper motor to move a tapered member (plunger) in a linear motion in such a precise manner. Prior art motors were of the constant rotary motion type and would turn the plunger down and up by screwing it into position. This has its disadvantages because if the rotary movement of the motor is not controlled, the rotary motion would exert a substantial force between the inlet and the plunger when seating the plunger so as to cause it to jam and not permit the plunger to be retracted. Although the rotary motion or movement of a rotary motor may be controlled, the cost to do so is prohibitive and thus, economically unsound for use in this art.

[0025] Referring once again to FIG. 1, the generator 16 is mounted to a case 18, the case in its preferred from being shown to have various controls and indicators, as described hereinafter. A Setting LED (light emitting diode) 48 is shown to be provided to indicate the preselected pressure that is to be applied to the chambers 32A, 32C and 32D, of the sleeves. A cycle monitor 50 is also preferably provided to continuously display the status of the controller's compression sequence. The cycle monitor 50 consists of four back lit panels, which when lighted read: ANKLE, CALF, THIGH and VENT. These represent the four major divisions of one complete cycle. During operation, the ANKLE, CALF, THIGH and VENT lights will light, one at a time, to indicate each of the major cycle divisions in turn. In addition, a ten-segment bar graph 52 is also shown to be provided. Each of the ten segments of the bar represents ten percent of a major cycle division and will light in sequence to indicate how much of a major cycle division is complete. The preferred embodiment of this invention will further include a Run LED 54 which indicates that the actual pressure is within 2mmHg of the set pressure.

[0026] After start-up, the setting LED 48 will set itself at 45mmHg and display as the set pressure. The setting LED 48 will light indicate that the microprocessor 38 is in the process of adjusting the actual pressure being supplied by the compressor 16. Within four cycles, the setting LED 48 will turn off and the Run LED 54 will come on, indicating that the actual pressure is within 3mmHg of the set pressure. The microprocessor 38 will continue to operate to make small adjustments in order to more perfectly match the set pressure.

[0027] The pressure generating device microprocessor 38 controls pressure to the sleeves by automatic pressure adjustment and not only sets the pressure automatically, but maintains the set pressure no matter how the patient moves or changes position.

[0028] With the advent of the present inventions automatic pressure adjustment, manual control is not required to adjust the pressure to the chambers during the pressure cycle, therefore, all aspects of manual control have been removed.

[0029] The automatic adjustment feature of the present invention provides a significant advancement and a tremendous achievement over the prior art, therefore an advantage over all prior art. Because the present invention automatically adjusts the pressure to pressure chambers in a sleeve, the requirement to have someone constantly watch over a pressure monitor to see the rise in pressure, and then to have them continue to monitor the pressure to make sure the pressure does not exceed a preselected pressure or to make sure that the chambers have not been depressurized during the pressure cycle because of over pressurizing the chambers, has been eliminated. The nurse can start the pressure generating device, which has a preselected pressure and go on to other duties. The controller will monitor the pressure being supplied to the pressure chambers in the sleeve and will automatically adjust the pressure until the required pressure is arrived at. The controller will then continue to monitor the pressure provided throughout a pressure cycle and maintain the preselected pressure without having to manually make adjustments. The time saved by not requiring constant monitoring is substantial and makes it economically sound for use in hospitals or other health care facilities.

[0030] The present invention, even though automatically adjusting the pressure delivered to pressure chambers, also has a means, as does prior art, to depressurize the pressure chambers in the sleeves, either when the last pressure cycle has terminated, as suggested in an earlier paragraph, or in case of an involuntary shut down or overload of the pressure system.

[0031] A description is given of the present invention for clarity and understanding and no limitations are to be considered other than those proposed by the specification and claims thereof.


Claims

1. A pressure controller (16) for automatically controlling the compressive pressure from a generating source (74) of pressurized fluid to a flexible sleeve (28) adapted to enclose the limb of a patient, which sleeve (28) has at least one pressure chamber (32A, 32B, 32C) into which the pressurized fluid is to be introduced for applying compressive pressure to the limb, the pressure controller (16) comprising:

- valve means (46A, 46B, 46C) associated with conduit means (70, 61, 64, 66A, 66B, 66C) adapted to place the pressure controller (16) in fluid communication with the source (74) of pressurized fluid and in fluid communication with the pressure chamber (32A, 32B, 32C) of the sleeve,

- a flow control valve (44) in fluid communication between the source (74) of pressurized fluid and the valve means (46A, 46B, 46C),

- means (34) for sensing the pressure in the chamber (32A), the pressure sensing means (34) including a pressure transducer for generating a first electrical signal in response to the chamber pressure;
the pressure controller (16) being characterized by means responsive to the first electrical signal for automatically adjusting the pressure in the pressure chamber (32A, 32B, 32C) of the sleeve (28) substantially to maintain a preselected pressure, including:

- means (36, 38) for comparing the first electrical signal to a preselected value, the comparing means (36, 38) including a means (38) for generating a second electrical signal,

- means (40) responsive to the second electrical signal for generating pulses of electrical current,

- means (42) responsive to the pulses of current from the generating means (40) for controlling the flow control valve (44) for the fluid;

- the flow control valve (44) being adapted to be controlled by the means (42) responsive to the pulses of current to automatically adjust the chamber pressure substantially to the preselected pressure by regulating fluid flow through the flow control valve (44) to the valve means (46A, 46B, 46C) associated with the conduit means (70, 61, 64, 66A, 66B, 66C) for egress of the pressurized fluid from the pressure controller (16) to the sleeve chamber (32A, 32B, 32C).


 
2. A pressure controller (16) as defined in Claim 1 including means for setting the desired pressure to be applied to the chamber (32A, 32B, 32C).
 
3. A pressure controller (16) as defined in Claim 1 wherein the valve means (46A, 46B, 46C) comprises a solenoid valve.
 
4. A pressure controller (16) as defined in Claim 1 wherein the means (42) responsive to the pulses of current is a linear stepper motor (42).
 
5. A pressure controller (16) as defined in Claim 2 wherein the comparing means (36, 38) includes a signal converter (36) for converting the first electrical signal to a digital electrical signal and a microprocessor (38) for sensing the digital signal and comparing the digital signal to the preselected value provided by the setting means.
 
6. A pressure controller (16) as defined in Claim 1 wherein the flow control valve (44) comprises:

- a hollow body member (100) having an inlet opening (110) and a discharge opening (120) therein, and a chamber (130) in communication with said inlet (110) and discharge (120) openings;

- a means (140, 141) for sealing against fluid flow entering said chamber (130), said means (140, 141) including a tapered plunger member (140, 141) for releasably seating into said inlet opening (110); and

- means (42) for moving said tapered member (140, 141), said moving means (42) including a linear stepper motor (42) for moving said tapered member (140, 141) in a linear motion.


 
7. A pressure controller (16) as defined in Claim 6 wherein said linear stepper motor (42) is calibrated to move in a linear motion in increments of on the order of about 0.0508 mm (0.002 inch).
 
8. A pressure controller (16) as defined in Claim 7 wherein said taper (141) of said tapered member (140, 141) is a compound taper (141).
 
9. A pressure generating device (10) comprising, in combination, a flexible pressurizable sleeve (28) having at least one chamber (32A, 32B, 32C) for applying compressive pressure to a limb of a patient, the chamber (32A, 32B, 32C) being in fluid communication with a pressure controller (16) as defined in Claim 1 or Claim 6, whereby to receive pressurized fluid from the controller (16).
 
10. A pressure generating device (10) as defined in Claim 9 wherein the sleeve (28) contains a chamber (32A) for applying compressive pressure to the ankle, a chamber (32B) for applying compressive pressure to the calf and a chamber (32C) for applying compressive pressure to the thigh of a patient, each of the chambers (32A, 32B, 32C) being in fluid communication with the pressure controller (16).
 
11. A pressure generating device (10) having a source (74) of pressurized fluid for applying compressive forces against a patient's limb through means of a flexible sleeve (28), which encloses the limb and has at least one pressure chamber (32A, 32B, 32C) connectable with the source (74), and a pressure controller (16) as defined in Claim 1 or Claim 6 including valve means (46A, 46B, 46C) connected to the source (74) and connectable with the pressure chamber (32A, 32B, 32C) for controlling pressure to the pressure chamber (32A, 32B, 32C).
 
12. The pressure generating device (10) of Claim 11 wherein the means (42) responsible to the pulses of current is a linear stepper motor (42).
 
13. The pressure generating device (10) of Claim 11 wherein the comparing means (36, 38) includes a signal converter (36) for converting the first electrical signal to a digital electrical signal and a microprocessor (38) for sensing the digital signal and comparing the digital signal to the preselected value.
 
14. The pressure generating device (10) of Claim 13 wherein the microprocessor (38) is programmed to monitor and to adjust pressure to a preselected pressure.
 
15. The pressure generating device (10) of Claim 11 wherein said valve means (46A, 46B, 46C) comprises at least one solenoid valve.
 


Ansprüche

1. Drucksteuerung (16) zum automatischen Regeln des Kompressionsdrucks von einer Erzeugungsquelle (74) für Druckfluid zu einer flexiblen Hülle (28), die dazu eingerichtet ist, das Glied eines Patienten zu umschließen, wobei die Hülle (28) wenigstens eine Druckkammer (32A, 32B, 32C) hat, in die das Druckfluid einzuführen ist, um einen Kompressionsdruck an das Glied anzulegen, wobei die Drucksteuerung (16) aufweist:

- mit Leitungseinrichtungen (70, 61, 64, 66A, 66B, 66C) verknüpfte Ventileinrichtungen (46A, 46B, 46C), die dazu eingerichtet sind, die Drucksteuerung (16) in Fluidverbindung mit der Quelle (74) für Druckfluid und in Fluidverbindung mit der Druckkammer (32A, 32B, 32C) der Hülle zu setzen,

- ein Flußsteuerventil (44) in Fluidverbindung zwischen der Quelle (74) für Druckfluid und den Ventileinrichtungen (46A, 46B, 46C),

- Einrichtungen (34) zum Erfassen des Druckes in der Kammer (32A), wobei die Druckerfassungseinrichtungen (34) einen Druck-Meßwandler zum Erzeugen eines ersten elektrischen Signals in Antwort auf den Kammerdruck aufweisen;
wobei die Drucksteuerung (16) gekennzeichnet ist durch auf das erste elektrische Signal reagierende Einrichtungen, um den Druck in der Druckkammer (32A, 32B, 32C) der Hülle (28) automatisch einzustellen, um im wesentlichen einen vorgewählten Druck zu halten, mit:

- Einrichtungen (36, 38) zum Vergleichen des ersten elektrischen Signals mit einem vorgewählten Wert, wobei die Vergleichseinrichtungen (36, 38) eine Einrichtung (38) zum Erzeugen eines zweiten elektrischen Signals aufweisen,

- auf das zweite elektrische Signal reagierenden Einrichtungen (40) zum Erzeugen von elektrischen Stromimpulsen,

- auf die Stromimpulse von der Erzeugungseinrichtung (40) zum Steuern des Flußsteuerventils (44) für das Fluid reagierenden Einrichtungen (42);

- wobei das Flußsteuerventil (44) dazu eingerichtet ist, durch die auf die Stromimpulse reagierenden Einrichtungen (42) gesteuert zu werden, um den Kammerdruck durch Regulieren des Fluidflusses durch das Flußsteuerventil (44) zu den mit den Leitungseinrichtungen (70, 61, 64, 66A, 66B, 66C) verknüpften Ventileinrichtungen (46A, 46B, 46C) für den Austritt des Druckfluids von der Drucksteuerung (16) zu der Hüllenkammer (32A, 32B, 32C) im wesentlichen auf einen vorgewählten Druck automatisch einzustellen.


 
2. Drucksteuerung (16) nach Anspruch 1, mit Einrichtungen zum Setzen des gewünschten, an die Kammer (32A, 32B, 32C) anzulegenden Druckes.
 
3. Drucksteuerung (16) nach Anspruch 1, wobei die Ventileinrichtungen (46A, 46B, 46C) ein Magnetventil aufweisen.
 
4. Drucksteuerung (16) nach Anspruch 1, wobei die auf die Stromimpulse reagierenden Einrichtungen (42) ein linearer Schrittmotor (42) sind.
 
5. Drucksteuerung (16) nach Anspruch 2, wobei die Vergleichseinrichtungen (36, 38) einen Signalwandler (36) zum Konvertieren des ersten elektrischen Signals in ein digitales elektrisches Signal und einen Mikroprozessor (38) zum Erfassen des digitalen Signals und zum Vergleichen des digitalen Signals mit dem vorgewählten, von den Setzeinrichtungen bereitgestellten Wert aufweisen.
 
6. Drucksteuerung (16) nach Anspruch 1, wobei das Flußsteuerventil (44) aufweist:

- ein hohles Körperelement (100) mit einer Einlaßöffnung (110) und einer Auslaßöffnung (120) darin und eine Kammer (130) in Verbindung mit der Einlaßöffnung (110) und der Auslaßöffnung (120);

- eine Einrichtung (140, 141) zum Abdichten gegen Fluidfluß, der in die Kammer (130) eintritt, wobei die Einrichtung (140, 141) ein verjüngtes Kolbenelement (140, 141) zum lösbaren Setzen in die Einlaßöffnung (110) aufweist; und

- Einrichtungen (42) zum Bewegen des verjüngten Elements (140, 141), wobei die Bewegungseinrichtungen (42) einen linearen Schrittmotor (42) zum Bewegen des verjüngten Elements (140, 141) in einer linearen Bewegung aufweisen.


 
7. Drucksteuerung (16) nach Anspruch 6, wobei der lineare Schrittmotor (42) dazu kalibriert ist, sich in einer linearen Bewegung in Schritten von der Größenordnung von etwa 0,0508 mm (0,002 Zoll) zu bewegen.
 
8. Drucksteuerung (16) nach Anspruch 7, wobei der Konus (141) des verjüngten Elements (140, 141) ein Verbundkonus (141) ist.
 
9. Druckerzeugungsvorrichtung (10) mit, in Kombination, einer flexiblen, mit Druck beaufschlagbaren Hülle (28) mit wenigstens einer Kammer (32A, 32B, 32C) zum Anlegen von Kompressionsdruck an ein Glied eines Patienten, wobei die Kammer (32A, 32B, 32C) in Fluidverbindung mit einer Drucksteuerung (16), wie in Anspruch 1 oder Anspruch 6 definiert, ist, wodurch Druckfluid von der Steuerung (16) erhalten wird.
 
10. Druckerzeugungsvorrichtung (10) nach Anspruch 9, wobei die Hülle (28) eine Kammer (32A) zum Anlegen von Kompressionsdruck an den Knöchel, eine Kammer (32B) zum Anlegen von Kompressionsdruck an den Unterschenkel und eine Kammer (32C) zum Anlegen von Kompressionsdruck an den Oberschenkel eines Patienten enthält, wobei jede der Kammern (32A, 32B, 32C) in Fluidverbindung mit der Drucksteuerung (16) ist.
 
11. Druckerzeugungsvorrichtung (10) mit einer Quelle (74) für Druckfluid zum Aufbringen von Kompressionskräften gegen ein Glied eines Patienten mittels einer flexiblen Hülle (28), die das Glied umschließt und wenigstens eine mit der Quelle (74) verbindbare Druckkammer (32A, 32B, 32C) hat, und einer Drucksteuerung (16), wie in Anspruch 1 oder Anspruch 6 definiert, die Ventileinrichtungen (46A, 46B, 46C), die mit der Quelle (74) verbunden und mit der Druckkammer (32A, 32B, 32C) verbindbar sind, zum Steuern des Druckes an die Druckkammer (32A, 32B, 32C) aufweist.
 
12. Druckerzeugungsvorrichtung (10) nach Anspruch 11, wobei die auf die Stromimpulse reagierenden Einrichtungen (42) ein linearer Schrittmotor (42) sind.
 
13. Druckerzeugungsvorrichtung (10) nach Anspruch 11, wobei die Vergleichseinrichtungen (36, 38) einen Signalwandler (36) zum Konvertieren des ersten elektrischen Signals in ein digitales elektrisches Signal und einen Mikroprozessor (38) zum Erfassen des digitalen Signals und zum Vergleichen des digitalen Signals mit dem vorgewählten Wert aufweisen.
 
14. Druckerzeugungsvorrichtung (10) nach Anspruch 13, wobei der Mikroprozessor (38) dazu programmiert ist, den Druck auf einen vorgewählten Druck zu überwachen und einzustellen.
 
15. Druckerzeugungsvorrichtung (10) nach Anspruch 11, wobei die Ventileinrichtungen (46A, 46B, 46C) wenigstens ein Magnetventil aufweisen.
 


Revendications

1. Dispositif de commande de pression (16) pour commander automatiquement la pression de compression produite par une source (74) de production d'un fluide sous pression et appliquée à un manchon flexible (28) apte à entourer le membre d'un patient, lequel manchon (28) possède au moins une chambre de pression (32A,32B,32C), dans laquelle le fluide sous pression doit être introduit pour appliquer une pression de compression à un membre, le dispositif de commande de pression (16) comprenant :

- des moyens formant soupapes (46A,46B,46C) associés à des moyens en forme de canalisations (70,61,64,66A,66B,66C) adaptés pour placer le dispositif de commande de pression (16) en communication fluidique avec la source (74) de fluide comprimé et en communication fluidique avec la chambre de pression (32A,32B,32C) du manchon,

- une soupape de commande d'écoulement (44) branchée en communication fluidique entre la source (74) du fluide sous pression et les moyens formant soupapes (46A,46B,46C),

- des moyens (34) pour détecter la pression dans la chambre (32A), des moyens de détection de pression (34) comprenant un transducteur de pression servant à produire un premier signal électrique en réponse à la pression régnant dans la chambre;
le dispositif de commande de pression (16) étant caractérisé par des moyens aptes à répondre au premier signal électrique pour régler de façon automatique la pression dans la chambre de pression (32A,32B,32C) du manchon (28) essentiellement pour maintenir une pression préréglée, incluant :

- des moyens (36,38) pour comparer le premier signal électrique à une valeur présélectionnée, les moyens comparateurs (36,38) comprenant des moyens (38) pour produire un second signal électrique,

- des moyens (40) sensibles au second signal électrique pour produire des impulsions de courant électrique,

- des moyens (42) aptes à répondre aux impulsions de courant délivrées par les moyens générateurs (40) pour commander la soupape (44) de commande d'écoulement du fluide;

- la soupape de commande d'écoulement (44) étant adaptée pour être commandée par les moyens (42) en réponse aux impulsions de courant pour régler de façon automatique la pression dans la chambre sensiblement à la pression présélectionnée par régulation de l'écoulement de fluide traversant la soupape de commande d'écoulement (44) et envoyer aux moyens formant soupapes (46A,46B,46C) associés aux moyens formant canalisations (70,61,64,66A,66B,66C) pour refouler le fluide sous pression depuis le dispositif de commande de pression (16) vers la chambre (32A,32B,32C) du manchon.


 
2. Dispositif de commande de pression (16) selon la revendication 1, comprenant des moyens pour régler la pression désirée devant être appliquée à la chambre (32A,32B,32C).
 
3. Dispositif de commande de pression (16) selon la revendication 1, dans lequel les moyens formant soupapes (46A,46B,46C) comprennent une soupape électromagnétique.
 
4. Dispositif de commande de pression (16) selon la revendication 1, dans lequel les moyens (42) aptes à répondre aux impulsions de courant sont constitués par un moteur pas-à-pas linéaire (42).
 
5. Dispositif de commande de pression (16) selon la revendication 2, dans lequel les moyens comparateurs (36,37) comprennent un convertisseur de signaux (36) servant à convertir le premier signal électrique en un signal électrique numérique, et un microprocesseur (38) pour détecter le signal numérique et comparer le signal numérique à la valeur présélectionnée délivrée par les moyens de réglage.
 
6. Dispositif de commande de pression (16) selon la revendication 1, dans lequel la soupape de commande d'écoulement (44) comprend :

- un élément formant corps creux (100) possédant une ouverture d'entrée (110), une ouverture de décharge (120), et une chambre (130) en communication avec ladite ouverture d'entrée (110) et ladite ouverture de décharge (120);

- des moyens (140,141) pour réaliser une étanchéité vis-à-vis de l'écoulement de fluide pénétrant dans ladite chambre (130), lesdits moyens (140,141) comprenant un élément formant plongeur de forme conique (140,141) destiné à s'appliquer, de façon amovible, dans ladite ouverture d'entrée (110);

- des moyens (42) pour déplacer ledit élément de forme conique (140,141), lesdits moyens de déplacement (42) comprenant un moteur pas-à-pas linéaire (42) pour déplacer ledit élément de forme conique (140,141) selon un déplacement linéaire.


 
7. Dispositif de commande de pression (16) selon la revendication 6, dans lequel ledit moteur pas-à-pas linéaire (42) est étalonné de manière à se déplacer suivant un déplacement linéaire selon des incréments de l'ordre d'environ 0,0508 mm (0,002 pouce).
 
8. Dispositif de commande de pression (16) selon la revendication 7, dans lequel ledit cône (141) dudit élément de forme conique (140,141) est un cône composite (141).
 
9. Dispositif de production de pression (10) comprenant en combinaison un manchon flexible (28) pouvant être mis en pression et comportant une chambre (32A,32B, 32C) pour appliquer une pression de compression à un membre d'un patient, la chambre (32A,32B,32C) étant en communication fluidique avec un dispositif de commande de pression (16) tel que défini dans la revendication 1 ou la revendication 6, ce qui permet la réception d'un fluide sous pression provenant du dispositif de commande (16).
 
10. Dispositif de production de pression (10) selon la revendication 9, dans lequel le manchon (28) contient une chambre (32A) servant à appliquer une compression à la cheville, une chambre (32B) servant à appliquer une pression de compression au mollet et une chambre (32C) pour appliquer une pression de compression à la cuisse d'un patient, chacune des chambres (32A,32B,32C) étant en communication fluidique avec le dispositif de commande de pression (16).
 
11. Dispositif de production de pression (10) comportant une source (74) de fluide sous pression servant à appliquer des forces de compression à un membre d'un patient au moyen d'un manchon flexible (28), qui entoure un membre, et comporte au moins une chambre de pression (32A, 32B,32C) pouvant être raccordée à la source (74), un dispositif de commande de pression (16) tel que défini dans la revendication 1 ou la revendication 6, comprenant des moyens formant soupapes (46A,46B,46C) connectés à la source (74) et pouvant être connectés à la chambre de pression (32A,32B,32C) pour commander la pression appliquée à la chambre de pression (32A,32B,32C).
 
12. Dispositif de production de pression (10) selon la revendication 11, dans lequel les moyens (42) aptes à répondre aux impulsions de commande sont constitués par un moteur pas-à-pas linéaire (42).
 
13. Dispositif de production de pression (10) selon la revendication 11, dans lequel les moyens comparateurs (36,38) incluent un convertisseur de signaux (36) pour convertir le premier signal électrique en un signal électrique numérique, un microprocesseur (38) pour détecter le signal numérique et comparer le signal numérique à la valeur présélectionnée.
 
14. Dispositif de production de pression (10) selon la revendication 13, dans lequel le microprocesseur (38) est formé de manière à contrôler et régler la pression à une valeur présélectionnée.
 
15. Dispositif de production de pression (10) selon la revendication 11, dans lequel lesdits moyens formant soupapes (46A,46B,46C) comprennent au moins une soupape électromagnétique.
 




Drawing