(19)
(11) EP 0 707 334 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
18.11.1998 Bulletin 1998/47

(21) Application number: 95306635.4

(22) Date of filing: 20.09.1995
(51) International Patent Classification (IPC)6H01J 23/38, H01J 25/04, H01J 23/54

(54)

Electron beam tubes

Elektronenstrahlröhre

Tubes à faisceau d'électrons


(84) Designated Contracting States:
DE FR IT

(30) Priority: 12.10.1994 GB 9420606
25.10.1994 GB 9421440

(43) Date of publication of application:
17.04.1996 Bulletin 1996/16

(73) Proprietor: EEV LIMITED
Chelmsford, Essex CM1 2QX (GB)

(72) Inventor:
  • Sobieradzki, Edward Stanislaw, Dr.
    Chelmsford, Essex CM2 9TZ (GB)

(74) Representative: Cockayne, Gillian 
GEC Patent Department Waterhouse Lane
Chelmsford, Essex CM1 2QX
Chelmsford, Essex CM1 2QX (GB)


(56) References cited: : 
EP-A- 0 632 481
DE-A- 4 107 552
EP-A- 0 652 580
GB-A- 2 277 193
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] This invention relates to electron beam tubes and more particularly to input resonator cavities of such tubes at which high frequency energy is applied.

    [0002] The present invention is particularly applicable to inductive output tetrode devices (hereinafter referred to as "IOT's") such as those referred to by the trade name Klystrode (Registered Trade Mark, Varian Associates Inc.)

    [0003] An IOT device includes an electron gun arranged to produce a linear electron beam and an input resonant cavity at which an r.f. signal to be amplified is applied to produce modulation of the beam at a grid of the electron gun. The resultant interaction between the r.f. energy and the electron beam causes amplification of the high frequency signal which is then extracted from an output resonant cavity.

    [0004] During operation of the tube, electrodes of the electron gun must be operated at relatively high voltages, of the order of tens of kilovolts, and this may cause problems, especially as the input cavity may form an external part of the IOT and therefore be handled during normal usage of the device.

    [0005] DE-A- 4 107552 describes an IOT in which the input cavity includes an outer body portion and inner body portion separated by r.f. chokes, allowing the outer body portion to be maintained at a relatively low voltage.

    [0006] The present invention arose from an attempt to provide an improved IOT input cavity arrangement but is also applicable to other types of linear electron beam devices having input resonant cavities.

    [0007] According to the invention, there is provided a linear electron beam tube comprising: an input cavity which is substantially cylindrical about a longitudinal axis and arranged to receive, in use, a high frequency signal to be amplified;

    an electron gun arranged to produce an electron beam in a substantially longitudinal direction; and

    an output cavity from which the amplified high frequency signal is extracted; wherein

    the input cavity substantially surrounds the electron gun and comprises an inner body portion electrically connected to part of the electron gun and an outer body portion electrically insulated from the inner body portion, the inner body portion being maintained at a relatively high voltage compared to that of the outer body portion, and characterised in that

    the inner and outer body portions each includes an axially extensive first metallic portion and an axially extensive second metallic portion, the first metallic portions being substantially coextensive in an axial direction with ceramic material being located between them to act as a first choke, and the second metallic portions being substantially co-extensive in an axial direction with ceramic material being located between them to act as a second choke.



    [0008] By "high voltage" it is meant of the order of tens of kilovolts.

    [0009] The use of the invention enables parts of a linear electron beam tube which operate at relatively high voltages to be located such that they are not readily accessible during normal operation of the tube. In addition, the arrangement of the metallic portions of the inner and outer body portions and the ceramic material located between them acts as an rf choke. This enables the two body portions to be separated to achieve the desired electrical isolation between them whilst permitting the input cavity to be such that there is low rf leakage from it, thereby affording efficient operation.

    [0010] The use of ceramic material as part of the r.f. choke in accordance with the invention offers a number of important advantages. The ceramic material maintains its shape even at very high temperatures, of the order of 1000°C or more, and remains rigid at these high temperatures. The ceramic material may be readily machined or otherwise fabricated into the desired shape, which in one particularly advantageous embodiment is substantially cylindrical being located coaxially with the longitudinal axis of the tube. The ceramic provides good voltage hold-off over the range of temperatures encountered during operation. The ceramic material also provides a surface onto which the metallic portions can be fixed. These portions may advantageously comprise metallised regions of the ceramic surface but in some embodiments they may be formed as separate components fixed to the ceramic surface. The ability to metallise the ceramic surface allows high accuracies to be achieved in positioning the metallic portions relative to one another. Also, if for any reason it is necessary to remove or replace the ceramic tube during servicing, metallisation of its surfaces enables this to be relatively easily carried out.

    [0011] The structural integrity offered by the use of the ceramic material allows the tube to undergo thermal cycling without significant distortion of the choke, offering good lifetimes for the tube as a whole.

    [0012] As the ceramic material maintains its configuration during operation of the tube, even at higher temperatures, it does not require the metallic portions to offer support to hold it in shape. Again, this allows a metallisation layer to be used rather than a separate metal component to define the choke, with the consequent advantages in accuracy of the choke dimensions and fabrication as mentioned previously. In a particularly advantageous embodiment of the invention, the ceramic material is extensive in the axial direction beyond the choke. This may be used for example as a shield against arcing in the tube between parts which are at different electrical potentials.

    [0013] In one advantageous embodiment of the invention, electrically insulating material of a different type covers at least some of the ceramic material. This may be, for example, silicone rubber. This may also be included over at least some of the metallic portions to provide additional shielding. It is supported in position by the ceramic material.

    [0014] The metallic portions of the r.f. choke extend in substantially the same direction and hence are substantially parallel to each other. This is particularly advantageous as it reduces electrical stresses and therefore the tendency of voltage breakdown to occur between the inner and outer body portions, even at high voltages.

    [0015] It is preferred that the metallic portions are substantially cylindrical, as this is a symmetrical configuration which is usually desirable in linear electron beam tubes as it gives good electrical characteristics and results in a mechanically robust arrangement.

    [0016] Preferably, each of the inner and outer body portions includes two metallic portions extensive in an axial direction outwardly from the input cavity, there thus being two pairs of co-extensive metallic portions. Such an arrangement minimizes r.f. losses in the region between the inner and outer body portions. Although the input cavity could alternatively comprise only one such pair, this would tend to result in an r.f. leakage path being present between other parts of the cavity.

    [0017] It is preferred that the inner body portion comprises two sections which are electrically separate from one another. Again, this facilitates manufacture and assembly and advantageously also permits different voltages to be applied to different parts of the electron gun via the inner body portion. In one preferred embodiment of the invention, the inner body portion is electrically connected to a cathode and a grid of the electron gun. Where two sections are included, one of them may be physically and electrically connected to the cathode and the other to the grid.

    [0018] Two pairs of rf chokes are included in the arrangement. The ceramic material may be present as two separate rings, for example, one ring being interposed between one pair of metallic portions and the other between the other pair. Alternatively, and preferably, the electrically insulating material is a unitary member which is extensive between both pairs of metallic portions Advantageously, the inner and outer body portions are physically joined together by the ceramic material.

    [0019] Preferably, the outer body portion is at ground potential.

    [0020] Some ways in which the invention may be performed are now described by way of example with the reference to the accompanying drawings in which:

    Figure 1 is a schematic sectional view of an IOT in accordance with the present invention, some parts of which have been omitted for sake of clarity; and

    Figure 2 schematically illustrates part of another IOT in accordance with the invention.



    [0021] With reference to Figure 1, an IOT comprises an electron gun 1 which includes a cathode 2 and grid 3 arranged to produce an electron beam along the longitudinal axis X-X of the arrangement. The IOT includes drift tubes 4 and 5 via which the electron beam passes before being collected by a collector (not shown). A cylindrical input resonant cavity 6 is arranged coaxially about the electron gun 1 and includes an input coupling 7 at which an r.f. signal to be amplified is applied. An output cavity 8 surrounds the drift tubes 4 and 5 and includes a coupling loop 9 via which an amplified r.f. signal is extracted and coupled into a secondary output cavity 10 and an output coupling 11.

    [0022] During operation of this device, the cathode 2 and grid 3 are maintained at potentials of the order of 30kV, the grid 3 being maintained at a dc bias voltage at about 100 volts less than the cathode potential. The input high frequency signal applied at 7 results in an r.f. voltage of a few hundred volts being produced between the cathode 2 and the grid 3.

    [0023] The input cavity 6 is defined by an inner body portion 12 and an outer body portion 13 with ceramic material in the form of a cylinder 14 between them, the inner body portion 12 being electrically insulated from the outer body portion 13 by the intervening ceramic material 14. The outer body portion 13 is maintained at substantially ground potential, thus facilitating safe handling of device, whilst the inner body portion 12 is maintained at much higher voltages.

    [0024] The outer body portion includes two annular plates 15 and 16 arranged parallel to one another and transverse to the longitudinal axis X-X with a cylindrical outer section 17. The inner body portion 12 comprises two sections. The first section 20 is mechanically and electrically connected to the cathode 2 and the second section 21 is mechanically and electrically connected to the grid 3. In the embodiment shown, a ceramic cylinder 22 is located between the sections 20 and 21 to give additional mechanical support to the assembly.

    [0025] The ceramic cylinder 14 provides electrical insulation between the inner body portion 12 and the outer body portion 13 and also forms part of rf choke means to substantially prevent leakage of high frequency energy from the cavity 6. The plate 15 of the outer body portion 13 is arranged adjacent a metallised layer 18 on the outer surface of the ceramic cylinder 14 extending around it in the circumferential direction. The section 20 of the inner body portion 12 is arranged adjacent the inner surface of the cylinder 14 and also is in contact with metallisation 19 extending circumferentially within the cylinder 14. The metallisation layers 18 and 19 and the intervening part of the ceramic cylinder 14 together define an rf choke. Similarly, the annular plate 16 of the outer body portion 13 is in contact with metallisation 23 and the section 21 with metallisation 24 to define a second rf choke. The metallisation layer on the outer surface of the ceramic may be longer or shorter in the longitudinal axial direction than the corresponding metallisation layer on the inner surface of the cylinder 14.

    [0026] In other embodiments of the invention, one or more of the metallisation layers may be replaced by a separately formed metal cylinder which is located adjacent the ceramic cylinder 14.

    [0027] A power lead 26 is routed via an aperture in the section 20 to supply the grid 3 with the appropriate bias voltage, the connection being made via the lead 26 to the section 21.

    [0028] Part of another IOT similar to that of Figure 1 is shown in Figure 2. In this embodiment, a single ceramic cylinder 27 similar to that of the Figure 1 embodiment is used and again, metallisation is laid down on the surfaces to define two rf chokes. At one end of the ceramic cylinder 27, a layer of silicone rubber 28 is arranged to cover the end of the cylinder and its inner and outer surfaces and part of the metallisation layers. The inner surface of the silicone rubber 28 includes a plurality of circumferential grooves 29 to improve voltage hold-off ability.


    Claims

    1. A linear electron beam tube comprising:

    an input cavity (6) which is substantially cylindrical about a longitudinal axis and arranged to receive, in use, a high frequency signal to be amplified;

    an electron gun (1) arranged to produce an electron beam in a substantially longitudinal direction; and

    an output cavity (8) from which the amplified high frequency signal is extracted; wherein the input cavity (6) substantially surrounds the electron gun (1) and comprises an inner body portion (12) electrically connected to part of the electron gun (1) and an outer body portion (13) electrically insulated from the inner body portion (12), the inner body portion (12) being maintained at a relatively high voltage compared to that of the outer body portion (13), and characterised in that

    the inner and outer body portions (12, 13) each includes an axially extensive first metallic portion (18, 19) and an axially extensive second metallic portion, the first metallic portions (18, 19) being substantially coextensive in an axial direction with ceramic material (14) being located between them to act as a first choke, and the second metallic portions (23, 24) being substantially co-extensive in an axial direction with ceramic material (14) being located between them to act as a second choke.


     
    2. A tube as claimed in claim 1 wherein the metallic portions (18, 19, 23, 24) are substantially cylindrical.
     
    3. A tube as claimed in claim 1 or 2 wherein at least one of the metallic portions comprises a layer of metallisation (18, 19, 23, 24) on the ceramic material (14).
     
    4. A tube as claimed in claim 1, 2 or 3 wherein each of the inner and outer body portions (12, 13) includes first and second metallic portions (18, 19, 23, 24) extensive in an axial direction outwardly from the input cavity (6).
     
    5. A tube as claimed in claim 4 wherein the ceramic material is in the form of a single member (14) which is extensive between both pairs of metallic portions (18, 19, 23, 24).
     
    6. A tube as claimed in any preceding claim wherein the ceramic material is a cylinder (14) coaxially arranged about the longitudinal axis.
     
    7. A tube as claimed in claim 6 wherein the cylinder (14) has a substantially uniform wall thickness over its whole length.
     
    8. A tube as claimed in any preceding claim wherein the ceramic material (14) is of greater longitudinal axial extent than the metallic portions.
     
    9. A tube as claimed in any preceding claim wherein the ceramic material (27) is at least partially covered by a different electrically insulating material (28).
     
    10. A tube as claimed in claim 9 wherein the different electrically insulating material comprises silicone rubber (28).
     
    11. A tube as claimed in claim 9 or 10 wherein said electrically insulating material (28) covers at least part of one or more of the metallic portions.
     
    12. A tube as claimed in any one of claims 9 to 11 wherein said electrically insulating material (28) is present in the region between the cathode and anode of the electron gun.
     
    13. A tube as claimed in any one of claims 9 to 12 wherein, where the ceramic material (27) is substantially cylindrical, said electrically insulating material (28) covers inner and outer surfaces of the cylinder and an end surface.
     
    14. A tube as claimed in any one of claims 9 to 13 wherein a surface of said electrically insulating material (28) is undulating (29).
     
    15. A tube as claimed in any preceding claim wherein the inner body portion comprises two sections (20, 21) which are electrically separate from one another.
     
    16. A tube as claimed in any preceding claim wherein the inner body portion is electrically connected to a cathode (2) and a grid (3) of the electron gun (1).
     
    17. A tube as claimed in any preceding claim wherein the inner and outer body portions (12, 13) are physically joined together by the ceramic material (14).
     
    18. A tube as claimed in any preceding claim wherein the outer body portion (13) is at ground potential.
     
    19. A tube as claimed in any preceding claim wherein electrical connection is provided via a lead (26) extensive through part of the inner body portion (12) to an electrode (3) of the electron gun (1).
     


    Ansprüche

    1. Röhre für einen linearen Elektronenstrahl, umfassend:

    einen Eingangshohlraum (6), der um eine Längsachse im wesentlichen zylindrisch ist und so ausgebildet ist, daß er im Gebrauch ein zu verstärkendes Hochfrequenzsignal empfängt,

    eine Elektronenkanone (1), die so ausgebildet ist, daß sie einen Elektronenstrahl in einer im wesentlichen längs verlaufenden Richtung erzeugt, und

    einen Ausgangshohlraum (8), aus dem das verstärkte Hochfrequenzsignal herausgezogen wird, wobei der Eingangshohlraum (6) die Elektronenkanone (1) im wesentlichen umgibt und einen inneren Gehäuseteil (12), der elektrisch mit einem Teil der Elektronenkanone (1) verbunden ist, und einen äußeren Gehäuseteil (13) umfaßt, der elektrisch von dem inneren Gehäuseteil (12) isoliert ist, wobei der innere Gehäuseteil (12) auf einer relativ hohen Spannung im Vergleich mit derjenigen des äußeren Gehäuseteils (13) gehalten wird, und

    dadurch gekennzeichnet, daß

    die inneren und äußeren Gehäuseteile (12, 13) jeweils einen sich axial erstreckenden ersten Metallteil (18, 19) und einen sich axial erstreckenden zweiten Metallteil umfassen, wobei die ersten Metallteile (18, 19) sich im wesentlichen in einer Axialrichtung nebeneinander erstrecken und zwischen diesen Keramikmaterial (14) angeordnet ist, so daß sie als eine erste Drossel wirken, und wobei die zweiten Metallteile (23, 24) sich im wesentlichen in einer Axialrichtung nebeneinander erstrecken und zwischen diesen Keramikmaterial (14) angeordnet ist, so daß sie als eine zweite Drossel wirken.


     
    2. Röhre nach Anspruch 1, wobei die Metallteile (18, 19, 23, 24) im wesentlichen zylindrisch sind.
     
    3. Röhre nach Anspruch 1 oder 2, wobei mindestens einer der Metallteile eine Schicht aus einer Metallisierung (18, 19, 23, 24) auf dem Keramikmaterial (14) umfaßt.
     
    4. Röhre nach Anspruch 1, 2 oder 3, wobei jeder der inneren und äußeren Gehäuseteile (12, 13) erste und zweite Metallteile (18, 19, 23, 24) umfaßt, die sich in einer Axialrichtung von dem Eingangshohlraum (6) nach außen erstrecken.
     
    5. Röhre nach Anspruch 4, wobei das Keramikmaterial die Form eines einzigen Elements (14) aufweist, das sich zwischen beiden Paaren Metallteilen (18, 19, 23, 24) erstreckt.
     
    6. Röhre nach einem der vorhergehenden Ansprüche, wobei das Keramikmaterial ein Zylinder (14) ist, der koaxial um die Längsachse herum angeordnet ist.
     
    7. Röhre nach Anspruch 6, wobei der Zylinder (14) eine im wesentlichen gleichmäßige Wanddicke über seine gesamte Länge aufweist.
     
    8. Röhre nach einem der vorhergehenden Ansprüche, wobei das Keramikmaterial (14) eine größere Längsachsenausdehnung als die Metallteile aufweist.
     
    9. Röhre nach einem der vorhergehenden Ansprüche, wobei das Keramikmaterial (27) mindestens teilweise von einem unterschiedlichen, elektrisch isolierenden Material (28) bedeckt ist.
     
    10. Röhre nach Anspruch 9, wobei das unterschiedliche, elektrisch isolierende Material Silikongummi (28) umfaßt.
     
    11. Röhre nach Anspruch 9 oder 10, wobei das elektrisch isolierende Material (28) mindestens einen Teil von einem oder mehreren der Metallteile bedeckt.
     
    12. Röhre nach einem der Ansprüche 9 bis 11, wobei das elektrisch isolierende Material (28) in dem Bereich zwischen der Kathode und der Anode der Elektronenkanone vorhanden ist.
     
    13. Röhre nach einem der Ansprüche 9 bis 12, wobei dort, wo das Keramikmaterial (27) im wesentlichen zylindrisch ist, das elektrisch isolierende Material (28) innere und äußere Oberflächen des Zylinders und eine Endfläche bedeckt.
     
    14. Röhre nach einem der Ansprüche 9 bis 13, wobei eine Oberfläche des elektrisch isolierenden Materials (28) gewellt (29) ist.
     
    15. Röhre nach einem der vorhergehenden Ansprüche, wobei der innere Gehäuseteil zwei Abschnitte (20, 21) umfaßt, die elektrisch voneinander getrennt sind.
     
    16. Röhre nach einem der vorhergehenden Ansprüche, wobei der innere Gehäuseteil elektrisch mit einer Kathode (2) und einem Gitter (3) der Elektronenkanone (1) verbunden ist.
     
    17. Röhre nach einem der vorhergehenden Ansprüche, wobei die inneren und äußeren Gehäuseteile (12, 13) durch das Keramikmaterial (14) physikalisch miteinander verbunden sind.
     
    18. Röhre nach einem der vorhergehenden Ansprüche, wobei der äußere Gehäuseteil (13) auf Massepotential liegt.
     
    19. Röhre nach einem der vorhergehenden Ansprüche, wobei die elektrische Verbindung über eine Zuführung (26) hergestellt ist, die sich durch einen Teil des inneren Gehäuseteils (12) zu einer Elektrode (3) der Elektronenkanone (1) erstreckt.
     


    Revendications

    1. Tube à faisceau d'électrons linéaire comprenant :

    - une cavité d'entrée (6) qui est substantiellement cylindrique autour d'un axe longitudinal et conçue pour recevoir, en fonctionnement, un signal à haute fréquence à amplifier ;

    - un canon à électrons (1) conçu pour produire un faisceau d'électrons selon une direction sensiblement longitudinale ; et

    - une cavité de sortie (8) dont le signal à haute fréquence amplifié est extrait;

    - dans lequel la cavité d'entrée (6) entoure substantiellement le canon à électrons (1) et comporte une portion de corps interne (12) connectée électriquement à une partie du canon à électrons (1) et une portion de corps externe (13) isolée électriquement de la portion de corps interne (12), la portion de corps interne (12) étant maintenue à une tension relativement élevée en comparaison avec celle de la portion de corps externe, et caractérisé en ce que :

    - chacune des portions de corps interne et exteme (12, 13) comporte une première portion métallique (18, 19) s'étendant axialement et une seconde portion métallique s'étendant axialement, les premières portions métalliques (18, 19) s'étendant substantiellement selon une même direction axiale, et un matériau céramique (14) étant disposé entre elles de façon à faire office de première bobine, et les secondes portions métalliques (23, 24) s'étendant substantiellement selon une même direction axiale, et un matériau céramique (14) étant disposé entre elles de façon à faire office de seconde bobine.


     
    2. Tube tel que revendiqué dans la revendication 1, dans lequel les portions métalliques (18, 19, 23, 24) sont substantiellement cylindriques.
     
    3. Tube tel que revendiqué dans la revendication 1 ou 2, dans lequel au moins l'une des portions métalliques se compose d'une couche de métallisation (18, 19, 23, 24) sur le matériau céramique (14).
     
    4. Tube tel que revendiqué dans la revendication 1, 2 ou 3, dans lequel chacune des portions de corps interne et externe (12, 13) comporte une première et une seconde portions métalliques (18, 19, 23, 24) s'étendant selon une direction axiale à l'extérieur de la cavité d'entrée (6).
     
    5. Tube selon la revendication 4, dans lequel le matériau céramique a la forme d'un élément unique (14) qui s'étend entre les deux paires de portions métalliques (18, 19, 23, 24).
     
    6. Tube tel que revendiqué dans l'une quelconque des revendications précédentes, dans lequel le matériau céramique est un cylindre (14) disposé coaxialement autour de l'axe longitudinal.
     
    7. Tube tel que revendiqué dans la revendication 6, dans lequel le cylindre (14) présente une épaisseur de paroi sensiblement uniforme sur la totalité de sa longueur.
     
    8. Tube tel que revendiqué dans l'une quelconque des revendications précédentes, dans lequel le matériau céramique (14) s'étend plus loin, le long de l'axe longitudinal, que les portions métalliques.
     
    9. Tube tel que revendiqué dans l'une quelconque des revendications précédentes, dans lequel le matériau céramique (27) est au moins partiellement recouvert d'un autre matériau électriquement isolant (28).
     
    10. Tube tel que revendiqué dans la revendication 9, dans lequel l'autre matériau électriquement isolant se compose de caoutchouc silicone (28).
     
    11. Tube tel que revendiqué dans la revendication 9 ou 10, dans lequel ledit matériau électriquement insolant (28) recouvre au moins une partie d'une ou de plusieurs des portions métalliques.
     
    12. Tube tel que revendiqué dans l'une quelconque des revendications 9 à 11, dans lequel ledit matériau électriquement isolant (28) est présent dans la région située entre la cathode et l'anode du canon à électrons.
     
    13. Tube tel que revendiqué dans l'une quelconque des revendications 9 à 12, dans lequel, là où le matériau céramique (27) est substantiellement cylindrique, ledit matériau électriquement isolant (28) recouvre les surfaces interne et extérne du cylindre ainsi que sa surface d'extrémité.
     
    14. Tube tel que revendiqué dans l'une quelconque des revendications 9 à 13, dans lequel une surface dudit matériau électriquement isolant (28) est ondulée (29).
     
    15. Tube tel que revendiqué dans l'une quelconque des revendications précédentes, dans lequel la portion de corps interne comporte deux tronçons (20, 21) qui sont séparés électriquement l'un de l'autre.
     
    16. Tube tel que revendiqué dans l'une quelconque des revendications précédentes, dans lequel la portion de corps interne est électriquement connectée à une cathode (2) et à une grille (3) du canon à électrons (1).
     
    17. Tube tel que revendiqué dans l'une quelconque des revendications précédentes, dans lequel les portions de corps interne et externe (12, 13) sont reliées ensemble physiquement par le matériau céramique (14).
     
    18. Tube tel que revendiqué dans l'une quelconque des revendications précédentes, dans lequel la portion de corps externe (13) est au potentiel de la terre.
     
    19. Tube tel que revendiqué dans l'une quelconque des revendications précédentes, dans lequel une connexion électrique est assurée par un conducteur (26) s'étendant à travers une partie de la portion de corps interne (12) jusqu'à une électrode (3) du canon à électrons (1).
     




    Drawing