(19)
(11) EP 0 710 515 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
18.11.1998 Bulletin 1998/47

(21) Application number: 95830240.8

(22) Date of filing: 08.06.1995
(51) International Patent Classification (IPC)6B21K 1/00, B21K 1/38

(54)

Thixotropic forming process for wheels fashioned in rheocast metal alloy

Verfahren zur thixotropischen Verformung von Felgen aus Rheocast Metallegierungen

Procédé thixotropique pour la fabrication de roues en alliage à l'état de mélange liquide-solide


(84) Designated Contracting States:
AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE

(30) Priority: 07.11.1994 IT BO940484

(43) Date of publication of application:
08.05.1996 Bulletin 1996/19

(73) Proprietor: REYNOLDS WHEELS INTERNATIONAL LTD.
CH-6900 Lugano (CH)

(72) Inventors:
  • Baldi, Valter
    I-40139 Bologna (IT)
  • Benni, Gianni
    I-40012 Calderara di Reno (Bologna) (IT)
  • Muneratti, Giorgio
    I-45038 Polesella (Rovigo) (IT)

(74) Representative: Lanzoni, Luciano 
c/o BUGNION S.p.A. Via dei Mille, 19
40121 Bologna
40121 Bologna (IT)


(56) References cited: : 
EP-A- 0 379 453
GB-A- 2 026 363
EP-A- 0 489 503
US-A- 4 579 604
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] The present invention relates to a thixotropic forming process suitable for wheels fashioned from rheocast metal alloy in the semisolid state, and in particular for the manufacture of aluminium alloy road wheels fitted ultimately with pneumatic tyres (see also GB-A-2026363).

    [0002] The shaping processes employed conventionally in the manufacture of road wheels for pneumatic tyres are essentially those of forging, and casting in permanent moulds, both of which well known in the wider field of mechanical engineering.

    [0003] Forging is the familiar process by which a metal alloy can be shaped in the solid state. Employed in the particular context of the art field pertinent to the manufacture of wheels for pneumatic tyres, this is a facility which allows the realization of products with superior mechanical properties, but which at the same time gives rise to a number of drawbacks, namely, the need to use alloys suitable for plastic working, the impossibility of producing articles with geometrically complex shapes, and the fact that the end product will be arrived at only after implementing a series of consecutive steps, especially a product characterized by significant variations in thickness such as are evident in the typical geometry of a road wheel. The high cost of the forging process represents a further drawback.

    [0004] The process of casting in a permanent mould, where an alloy is worked in the liquid state, allows the realization of a product at low cost in relatively few steps, and in this instance even with complex geometries. By contrast, the mechanical quality of the cast product is inferior to that of the forged product, and, moreover, with casting no less than with forging, there is the need to utilize alloys having particular intrinsic properties specifically suited to the technological process in question.

    [0005] More especially, the lower mechanical quality of the cast wheel is attributable to the structural characteristics of casting alloys, as well as to the porosity and discontinuity which are generated within the fabric of the wheel and derive from the particular type of casting process.

    [0006] In addition, both of the processes mentioned above are characterized in that the forged or cast piece requires generous allowances of material, dictating the need for extensive additional machining steps before the piece can be considered an end product.

    [0007] Recent times have seen the development of a new technology, namely the thixotropic forming of metal alloys in the semisolid or semiliquid stated; in this instance, the end product is obtained from an ingot or billet exhibiting a particular structure that appears physically homogeneous on macroscopic inspection, but when viewed microscopically appears as a plurality of solid globular granules immersed in a liquid phase. The ingot can take on different characteristics according to the percentages, by weight, of the solid and liquid fractions: in the case of a semisolid, the material can behave in the manner of a solid, for example when conveyed from a heating station to a work station or thixotropic injection forming station, but in the manner of a liquid when injected under pressure.

    [0008] Given that there are clear advantages and drawbacks alike with both the forging process and the casting process conventionally adopted in the manufacture of road wheels, as intimated above, the object of the present invention is to overcome the drawbacks of each such method while combining the advantages.

    [0009] The stated object is realized, according to the present invention, in a thixotropic forming process by means of which to fashion wheels for pneumatic tyres, using rheocast metal alloy, as characterized in the appended claims.

    [0010] To particular advantage, the process disclosed can be applied in manufacturing metal alloy wheels even of complex geometry, including slender sections and much broader sections alternating substantially in unlimited manner, and thus incorporates a feature characteristic of the permanent mould type casting techniques mentioned above.

    [0011] The invention will now be described in detail, by way of example, with the aid of the accompanying

    [0012] drawings, in which:
    • figs 1, 1a, 1b and 1c schematically illustrate the succession of steps making up a complete cycle in the manufacture of wheels for pneumatic tyres utilizing the thixotropic forming process according to the present invention;
    • fig 2 is the schematic illustration of a machine designed to implement the process according to the invention, viewed in plan;
    • fig 3 illustrates the machine of fig 2 partly in section through III-III, seen with certain parts omitted better to reveal others;
    • fig 4 illustrates a detail of fig 3 relative to the injection step of the process according to the invention.


    [0013] With reference to the accompanying drawings, the invention relates to a process for the manufacture of wheels in rheocast metal alloy, typically road wheels fitted subsequently with pneumatic tyres, which utilizes billets of rheocast aluminium alloy obtained in conventional manner by recasting from pigs of raw stock having a dendritic structure. The liquid alloy is directed through a filter and into a casting device equipped with an agitator and a chill, whereupon the cooling material solidifies and is formed into billets exhibiting a rheocast microstructure. The billets are then divided into ingots 1 of predetermined weight, which undergo controlled heating at a temperature within the solidification range of the alloy and are brought to a thixotropic semisolid state characterized by a microstructure (indicated in fig 1a) that comprises a liquid phase 14, resulting from the components of the alloy having a lower melting point, and a mass of substantially rounded solid granules 15 immersed in the liquid.

    [0014] The ingots 1 are uplifted in this same semisolid state, for example by automatic handling means 23 (as indicated in fig 2) and introduced singly into the injection chamber 3 of a thixotropic injection forming machine 4 (figs 1, 2 and 3) operating in conjunction with a closed die or mould 5 by which the wheel 2 is effectively given its shape.

    [0015] As discernible in figs 1 and 3, the die 5 affords a cavity 7 of shape substantially matching that of the wheel 2 and is provided with thermoregulating circuits 6 carrying a hot fluid, oil for example, supplied by a unit not shown in the drawings. The injection chamber accommodates a ram 22 that can be reciprocated at a variable rate by the thixotropic injection forming machine 4 (described more fully in due course).

    [0016] The thermoregulating circuits 6, which run adjacent to the die cavity 7, are mutually independent and arranged in such a way that sections A' of greater width exhibited by the cavity 7 can be cooled, or more exactly heated to a lower temperature, whilst sections B' of lesser width are heated to higher temperature. The term "width" is used to indicate the transverse dimensions of the space afforded by the relative passage of the cavity 7.

    [0017] The features in question are intended to ensure the die 5 is filled completely and uniformly, as will emerge from the specification in due course.

    [0018] Given the typically variable geometry of wheels for pneumatic tyres, and given the alternation between sections B of lesser thickness and sections A of greater and accentuated thickness, the operation of filling the die 5 with the alloy in its semisolid state is a particularly critical one. A complete fill is in fact made possible only by ensuring that the liquid phase of the semisolid alloy (which in any event is proportionally less than the solid) does not solidify within the sections B' of lesser width and thus block the passage afforded to the semisolid material entering the cavity 7, forced in by the ram 22, before the part of the die 5 beyond the blockage has been filled to capacity. In other words, it is essential that the interface between the solidifying alloy and the liquid phase of the injected semisolid mass should progress regularly, advancing internally of the die cavity 7 from the peripheral parts of the wheel 2 back to the areas nearer the injection chamber 3.

    [0019] In accordance with the present invention, wheels for pneumatic tyres are manufactured from rheocast metal alloy employing a thixotropic forming process in which use is made of ingots 1 already preheated to the point of bringing the alloy to the uniform semisolid state described above.

    [0020] Before describing the process further, it should be remarked that the aforesaid sections A of greater thickness exhibited by the typical wheel 2 consist in a central disc 9 incorporating a hub 9a, and a plurality of spoke ribs 10 radiating from the hub in alternation with respective voids 11. The same wheel also presents sections B of lesser thickness consisting in a lateral cylindrical surface 12 or rim composed of an inner portion 13 and an outer portion 16. The two portions are compassed in turn by an inside flange 17 and an outside flange 18.

    [0021] The process comprises a step of injecting the metal alloy ingot 1, in the semisolid thixotropic state, into the cavity 7 of the die 5.

    [0022] In a die designed to produce a first embodiment of the wheel 2, as illustrated in figs 1 and 1c, the width Zi at least of the narrower section B' of the cavity 7, which corresponds to the inner portion 13 of the rim 12, is greater than the width Zd that will determine the definitive or final shape of the inner portion 13. Accordingly, the thickness Si of this same portion 13 on completion of the injection step will be greater than the final thickness Sd to be obtained on completion of the process overall.

    [0023] During the injection step of the process, a step of thermoregulating the die 5 is implemented by way of the relative circuits 6 which, to reiterate, are able to maintain a relatively higher temperature in the cavity 7 at the sections B' of lesser width and at the same time a relatively lower temperature at the sections A' of greater width.

    [0024] Likewise during the injection step, the velocity at which the ingot 1 is forced into the die will be monitored and varied by monitoring and varying the linear velocity of the ram 22, and thus controlling the rate at which the front of metal alloy advances in the semisolid state internally of the cavity 7.

    [0025] The injection rate is a function of the dissimilar flow passages afforded by the wider and narrower sections A' and B' of the cavity 7, and continues to be controlled until the die has filled, thereby allowing a faster advance of the front of semisolid alloy through the wider areas A' of the cavity 7 and a slower advance through the narrower areas B'.

    [0026] Accordingly, the movement of the thixotropic alloy internally of the cavity 7 is made laminar as far as possible.

    [0027] In order to optimize the compaction of the metal alloy within the cavity 7 following the injection step and during solidification, the material is subjected to an additional pressure force, applied through the ram 22 by the thixotropic injection forming machine 4, compounding and therefore much greater than the injection pressure force applied previously. Solidification is followed by the steps of removing the wheel 2 from the die 5 and then hot-drawing the inner portion 13 of the rim 12 by compression. The purpose of the drawing operation is to reduce the inner portion 13 from the initial injection forming thickness Si, indicated in fig 1c by phantom lines, down to the definitive or final thickness Sd. Moreover, this step has the effect of achieving increased mechanical strength, at least across the inner portion 13 of the rim 12, and of compacting the metal alloy still further so as to avoid the eventuality, should the finishing steps of manufacture involve the removal of material by machining, that interstices could then appear in the structure and jeopardize the airtightness of the wheel when fitted ultimately with a pneumatic tyre.

    [0028] In another solution illustrated in figs 1 and 1b; both of the narrow sections B' exhibited by the die cavity 7, which generate the lateral surface 12 of the wheel 2, are proportioned to a width Zi greater than the definitive or final width Zd, as described already with reference to fig 1c. With the wheel 2 removed from the die in this instance, therefore, it is the entire lateral surface 12 that will be hot-drawn by compression to the end of reducing the initial thickness Si to the definitive or final thickness Sd, as in the previous example.

    [0029] In a further solution illustrated in fig 3, the selfsame thixotropic forming process is implemented using a closed die 5 with a cavity 7 of geometry, sectional profile and dimensions identical to the final geometry, sectional profile and dimensions of the wheel 2. In this instance, no drawing operation is performed on the wheel 2 once removed from the die 5.

    [0030] With regard to the step of preheating the alloy, the process allows for the application of a heat treatment whereby the ingots 1, initially in the solid state, are immersed in convectional flows of hot air for a period of time and at a temperature sufficient to bring the alloy to the thixotropic semisolid state.

    [0031] For the reasons mentioned previously, the step of injecting the semisolid ingots 1 is implemented generally at low velocity so that laminar flow can be induced in the thixotropic alloy; in addition, the velocity is varied cyclically so as to ensure a uniform progression of the solidification interface aforementioned.

    [0032] As discernible from fig 3, the ingot 1 is advanced by the ram 22 of the injection forming machine 4 from a first position X of introduction into the injection chamber 3, to a second position Y from which the material is forced into the die 5. In passing from position X to position Y, the ingot 1 is forced at minimal velocity so that air will not be trapped between the ingot 1 and the wall 21 of the chamber 3 and allowed thus to find its way into the die cavity 7 at the next injection.

    [0033] Solidification of the liquid phase in the semisolid alloy represents a critical aspect of the process disclosed, as already explained. Nonetheless, as long the rheocast alloy introduced into the die cavity 7 has a solid content of some 50 or 60%, this ensures advantageously that contractions and thermal shocks will be of a limited order.

    [0034] As stated at the outset, the ingots 1 utilized are of a predetermined weight. More exactly, the weight of the ingot is selected to ensure a quantity of the alloy greater than can be contained within the die cavity 7, so that on completion of the step in which the ingot 1 is injected into the cavity 7, a residual portion 8 of semisolid material is left to solidify externally of the die 5, between the die and the injection chamber 3 (see fig 3).

    [0035] This deliberately generated residual portion 8 of the ingot is instrumental in achieving homogeneity and quality of the wheel. More exactly, the inlet of the die 5 presents a restricted section 25 to the ingot 1 passing from the injection chamber 3 to the cavity 7, of which the effect is to gather up the skin 20 of the ingot, physically and chemically distressed by the intense oxidizing action of the air especially on the liquid phase of the rheocast material, when forced from the injection chamber 3 (see fig 4).

    [0036] Following the injection and solidification of the alloy, the residual portion 8 of the ingot 1 must be cut off, and accordingly, the process includes a shearing step effected by a blade 19, which will be operated after the injection chamber 3 is distanced from the die 5.

    [0037] A wheel of the type described above can be obtained substantially in a single operation, and, unlike other comparable cast alloy road wheels, betrays no problems of porosity thanks to the viscosity of the semisolid alloy, the variable rate of injection and the advantages of the subsequent hot-drawing step; the wheel described and illustrated also benefits from closer dimensional tolerances due to the fact that solid contractions, affecting only the liquid fraction of the semisolid alloy, are compensated by the application of high pressure forces within the solid-liquid interface, with the result that fewer machining operations are required. In addition, the process disclosed might comprise the further step of heat treating the wheel 2 after its removal from the die 5, and after the step of hot-drawing the rim 12 by compression, if included. This would be a heat treatment designed to induce solid solution in the thixotropic metal alloy from which the wheel is fashioned.

    [0038] Following heat treatment, the wheel 2 will be age hardened to the end of preventing precipitation in the alloy. Thereafter, the wheel can be machined to remove surface material from the rim 12, and more exactly, to remove the machining allowance left by the earlier compression hot-drawing step performed on the inner portion 13, and possibly on the outer portion 16, of the lateral surface 12.

    [0039] A wheel produced by the process according to the present invention possesses the premium mechanical properties typical of the forged product, and is also superior in quality to the cast product, thus further improving the resistance to fatigue and the tenacity of the alloy road wheel, and enhancing its appearance.

    [0040] A further characteristic of any wheel obtained by means of the process disclosed is the especially homogeneous structure of the material from which the wheel itself is fashioned.


    Claims

    1. A thixotropic forming process for wheels fashioned in rheocast metal alloy and fitted with pneumatic tyres, utilizing ingots (1) subjected initially to a preheating step in order to bring the globular metallic microstructure of the rheocast alloy to a semisolid state, uniform throughout the ingot (1), and generating wheels (2) typically with sections of greater thickness (A) consisting in a disc (9), and radiating from the disc, a plurality of spoke ribs (10) alternated with respective voids (11), also sections of lesser thickness (B) consisting in a substantially cylindrical lateral surface (12) or rim appearing as an inner portion (13) and an outer portion (16) compassed by an inside flange (17) and an outside flange (18), characterized in that it comprises the steps of:

    - injecting the metal alloy ingot (1), while in the semisolid thixotropic state, into a closed die (5) of which the cavity (7) bearing the shape of the wheel (2) presents sections of greater width (A') corresponding to the sections of greater thickness (A) exhibited by the wheel (2), and sections of lesser width (B') corresponding to the sections of lesser thickness (B) exhibited by the wheel (2), proportioned such that the width (Zi) at least of the section of lesser width (B') corresponding to the inner portion (13) of the lateral surface (12) is greater than the width (Zd) that will establish the definitive or final thickness of the selfsame inner portion (13);

    - thermoregulating the die (5) by maintaining a relatively higher temperature at the sections of lesser width (B') exhibited by the cavity (7) and at the same time a relatively lower temperature at the sections of greater width (A') exhibited by the cavity (7);

    - simultaneously monitoring and varying the velocity at which the ingot (1) is injected, in such a way as to effect and control a variation of the rate at which the front of metal alloy in the semisolid state advances within the cavity (7) through the dissimilar flow passages afforded by the sections of greater width (A') and the sections of lesser width (B'), until the cavity is completely filled, and in such a way that the semisolid front advances at a faster rate through the sections of greater width (A');

    - thereafter, subjecting the metal alloy solidifying internally of the cavity (7) to a pressure force greater than the injection pressure force, thereby achieving greater compaction of the material within the die;

    - removing the formed wheel (2) from the die (5), and proceeding to hot-draw the inner portion (13) of the lateral surface (12) by compression, thereby reducing the initial thickness (Si) of the selfsame inner portion (13) down to a definitive or final thickness (Sd).


     
    2. A process as in claim 1, wherein the ingot (1) is of volume and mass greater than the volume and mass of the quantity of alloy that can be accommodated within the die cavity (7), so that the injection step terminates before the entire mass of the ingot can enter the cavity, and a residual portion (8) containing the skin (20) of the ingot (1), gathered and retained internally of a chamber (3) from which the material is injected, is left to solidify in an intermediate position between the inlet (25) of the die (5) and the injection chamber (3), whereupon the solidified residual portion (8) is cut off in a further step of the process effected prior to the step of removing the formed wheel from the cavity (7) of the die (5).
     
    3. A process as in claim 1, utilizing a closed die (5) of which the cavity (7) is proportioned such that the width (Zi) of the sections of lesser width (B') corresponding to the lateral surface (12) of the wheel (2) is greater than the width (Zd) that will establish the definitive or final thickness of both the inner portion (13) and the outer portion (16) of the selfsame lateral surface (12), wherein the step of removing the formed wheel (2) from the die is followed by the step of hot-drawing the lateral surface (12) by compression in such a way that the inner portion (13) and the outer portion (16) are reduced from their initial thickness (Si) down to the respective definitive or final thickness (Sd).
     
    4. A process as in claim 1, wherein the ingot (1) is injected into a die (5) of which the cavity (7) exhibits geometry, sectional profile and dimensions identical to the definitive geometry, sectional profile and dimensions of the wheel (2), thereby dispensing with the step of hot-drawing the lateral surface (12) by compression.
     
    5. A process as in claim 1, wherein the step of thermo regulating the die (5) is implemented by means of a heating fluid circulated within a plurality of mutually independent thermoregulating circuits (6) disposed peripherally in relation both to the die cavity (7) and to an injection chamber (3) from which the ingots (1) are forced into the cavity.
     
    6. A process as in claim 1, wherein the preheating step consists in a heat treatment whereby metal alloy ingots (1) in the solid state are exposed to convectional flows of hot air for a period of time and at a temperature sufficient to bring the alloy to the thixotropic semisolid state.
     
    7. A process as in claim 1, wherein the thixotropic metal alloy ingots (1) are composed, when in the semisolid state, of a solid phase proportioned to constitute between 50 and 60% and a liquid phase proportioned to constitute the remaining 50 to 40%.
     
    8. A process as in claim 1, wherein the step of hot drawing at least the inner portion (13) of the lateral surface (12) by compression is followed by a step of heat treating the wheel (2) to the end of inducing a solid solution in the thixotropic alloy.
     
    9. A process as in claim 8, wherein the solution heat treatment step is followed by a hardening step.
     
    10. A process as in claim 8 or 9, wherein the step of hot drawing at least the inner portion (13) of the lateral surface (12) is followed by a machining step serving to eliminate the removable allowance left in the previous forming steps of the process.
     


    Ansprüche

    1. Verfahren zum thixotropischen Formen von Felgen, hergestellt aus einer Rheocast-Metallegierung und vorgesehen für Luftreifen, wobei Barren (1) verwendet werden, die anfänglich einer Vorheizphase unterzogen sind, um die gesamte metallene Mikrostruktur der Rheocast-Legierung in einen halbfesten Zustand zu bringen, und zwar gleichmässig über den ganzen Barren (1) verteilt, und Felgen (2) herzustellen, typischerweise mit Abschnitten von grösserer Stärke (A), bestehend aus einer Scheibe (9), und sich radial von der Scheibe aus erstreckend eine Anzahl von Speichen (10), die sich mit einer entsprechenden Anzahl von Leerräumen (11) abwechseln, sowie auch mit Abschnitten geringerer Stärke (B), bestehend aus einer im wesentlichen zylindrischen seitlichen Oberfläche (12) oder Felgenkranz, der einen inneren Abschnitt (13) und einen äusseren Abschnitt (16) aufweist, eingefasst von einem innenliegenden Flansch (17) und einem aussenliegenden Flansch (18), dadurch gekennzeichnet, dass es die folgenden Phasen enthält:

    - Einspritzen des Barrens (1) aus Metallegierung während des halbfesten thixotropischen Zustandes in eine geschlossene Form (5), deren Hohlraum (7) das Profil der Felge (2) enthält und Abschnitte von grösserer Weite (A') aufweist, die den von den Felgen (2) aufgewiesenen Abschnitten von grösserer Stärke (A) entsprechen, sowie Abschnitte von geringerer Weite (B'), die den von den Felgen (2) aufgewiesenen Abschnitten von geringerer Stärke (B) entsprechen, und zwar auf solche Weise proportioniert, dass die Weite (Zi) wenigstens von dein Abschnitt von geringerer Weite (B'), welcher dein inneren Abschnitt (13) der seitlichen Oberfläche (12) entspricht, grösser ist als die Weite (Zd), welche die endgültige Stärke desselben inneren Abschnittes (13) festlegt;

    - Thermoregulierung der Form (5), wobei eine verhältnismässig höhere Temperatur an den Abschnitten der geringeren Weite (B') beibehalten wird, die von dein Hohlraum (7) aufgewiesen werden, und gleichzeitig eine verhältnismässig niedrigere Temperature an den Abschnitten von grösserer Weite (A'), ebenfalls aufgewiesen von dem Hohlraum (7);

    - gleichzeitiges Überwachen und Verändern der Geschwindigkeit, mit welcher der Barren (1) eingespritzt wird, und zwar auf solche Weise, dass eine Veränderung der Geschwindigkeit vorgenommen und gesteuert werden kann, mit welcher sich die Front der Metallegierung im halbfesten Zustand durch die unterschiedlichen Flussdurchlässe, die von den Abschnitten von grösserer Weite (A') und den Abschnitten von geringerer Weite (B') aufgewiesen sind, in den Hohlraum (7) ergiesst, bis der Hohlraum vollständig gefüllt ist, und auf solche Weise, dass die Front im halbfesten Zustand mit schnellerer Geschwindigkeit durch die Abschnitte von grösserer Weite (A') vorläuft;

    - anschliessendes Ausüben auf die sich im Inneren des Hohlraumes (7) verfestigenden Metallegierung einer Druckkraft, welche stärker ist als die Einspritzdruckkraft, um so eine grössere Verdichtung des sich in der Form befindlichen Materials zu erhalten;

    - Herausnehmen der geformten Felge (2) aus der Form (5) und anschliessendem Warmziehen des inneren Abschnittes (13) der seitlichen Oberfläche (12), wobei die anfängliche Stärke (Si) des inneren Abschnittes (13) selbst bis auf eine endgültige Stärke (Sd) herabgesetzt wird.


     
    2. Verfahren nach Patentanspruch 1, bei welchem der Barren (1) von einem grösseren Umfang und Masse ist als der Umfang und die Masse der Legierung, die im Inneren des Hohlraums (7) aufgenommen werden kann, so dass die Einspritzphase beendet ist, bevor die gesamte Masse des Barrens in den Hohlraum eintreten kann, und ein die Hautschicht (20) des Barrens (1) enthaltender Restabschnitt (8), angesammelt und gehalten im Inneren einer Kammer (3), von welcher aus das Material eingespritzt wird, ist zum Erhärten in einer Zwischenposition zwischen dem Einlass (25) der Form (5) und der Einspritzkammer (3) gelassen, woraufhin der erhärtete Restabschnitt (8) in einer weiteren Phase des Verfahrens abgetrennt wird, ausgeführt noch vor der Phase des Herausnehmens der geformten Felge aus dein Hohlraum (7) der Form (5).
     
    3. Verfahren nach Patentanspruch 1, bei welchem eine geschlossene Form (5) verwendet wird, deren Hohlraum (7) auf solche Weise proportioniert ist, dass die Weite (Zi) der Abschnitte von geringerer Weite (B'), welche dem inneren Abschnitt (13) der seitlichen Oberfläche (12) der Felge (2) entspricht, grösser ist als die Weite (Zd), welche die endgültige Stärke sei es des inneren Abschnittes (13) wie auch des äusseren Abschnittes (16) derselben seitlichen Oberfläche (12) festlegt, wobei auf die Phase des Herausnehmens der geformten Felge (2) aus der Form die Phase des Warmziehens der seitlichen Oberfläche (12) folgt, und zwar durch Druck auf solche Weise, dass der innere Abschnitt (13) und der äussere Abschnitt (16) von ihrer anfänglichen Stärke (Si) auf die jeweilige endgültige Stärke (Sd) reduziert werden.
     
    4. Verfahren nach Patentanspruch 1, bei welchem der Barren (1) in eine Form (5) eingespritzt wird, deren Hohlraum (7) die gleiche Geometrie, das Querschnittprofil und die Abmessungen aufweist wie die endgültige Geometrie, das Querschnittprofil und die Abmessungen der Felge (2), wodurch die Phase des Warmziehens der seitlichen Oberfläche (12) durch Druck ausfällt.
     
    5. Verfahren nach Patentanspruch 1, bei welchem die Phase der Thermoregulierung der Form (5) durch eine Heizflüssigkeit verbessert wird, die innerhalb einer Anzahl von voneinander unabhängigen Thermoregelkreisen (6) zirkuliert, umlaufend angeordnet im Verhältnis sei es zu dem Hohlraum (7) der Form wie auch zu einer Einspritzkammer (3), von welcher aus die Barren (1) in den Hohlraum gepresst werden.
     
    6. Verfahren nach Patentanspruch 1, bei welchem die Phase des Vorheizens aus einer Wärmebehandlung besteht, bei der Barren (1) aus Metallegierung in festem Zustand Konvektionsströmungen aus heisser Luft für eine Dauer und bei einer Temperatur ausgesetzt werden, die ausreichen, um die Legierung in den thixotropischen halbfesten Zustand zu bringen.
     
    7. Verfahren nach Patentanspruch 1, bei welchem die Barren (1) aus thixotropischer Metallegierung, wenig sie sich in dein halbfesten Zustand befinden, aus einer festen Phase zu einem Anteil zwischen 50 und 60% bestehen, und aus einer flüssigen Phase, die aus dein verbleibenden Anteil zwischen 50 und 40% besteht.
     
    8. Verfahren nach Patentanspruch 1, bei welchem auf die Phase des Warmziehens von wenigstens dem inneren Abschnitt (13) der seitlichen Oberfläche (12) durch Druck eine Phase der Wärmebehandlung der Felge (2) folgt, mit dem Zweck, eine feste Lösung in die thixotropische Legierung zu induzieren.
     
    9. Verfahren nach Patentanspruch 8, bei welchem auf die Phase der Lösungs-Wärmebehandlung eine Erhärtungsphase folgt.
     
    10. Verfahren nach Patentanspruch 8 oder 9, bei welchem auf die Phase des Warmziehens von wenigstens dem inneren Abschnitt (13) der seitlichen Oberfläche (12) eine Bearbeitungsphase folgt, die dazu dient, die lösbaren Ansätze zu entfernen, die bei den vorherigen Formphasen des Verfahrens verblieben sind.
     


    Revendications

    1. Un procédé de formage thixotropique pour la fabrication de roues en alliage à l'état de mélange liquide-solide et munies de pneumatiques, utilisant des lingots (1) qui sont initialement soumis à une phase de préchauffage de façon à porter la microstructure métallique globulaire de l'alliage, à l'état de mélange liquide-solide, à un état semi-solide uniforme sur tout le lingot (1), et produisant des roues (2) qui présentent typiquement des sections de plus grande épaisseur (A) consistant en un disque (9) et, irradiant de ce disque, en une pluralité de rayons (10) alternés avec des vides respectifs (11), ainsi que des sections de plus petite épaisseur (B) consistant en une surface latérale en substance cylindrique (12) ou jante définie par une portion interne (13) et une portion externe (16) délimitées par un bord interne (17) et un bord externe (18), caractérisé en ce qu'il comprend les phases suivantes :

    - injection du lingot (1) en alliage, à l'état thixotropique semi-solide, dans une matrice fermée (5) dont la cavité (7) de formage de la roue (2) présente des sections de plus grande largeur (A') correspondant aux sections de plus grande épaisseur (A) présentées par la roue (2), et des sections de plus petite largeur (B') correspondant aux sections de plus petite épaisseur (B) présentées par la roue (2), proportionnées de façon à ce qu'au moins la largeur (Zi) de la section de plus petite largeur (B') correspondant à la portion interne (13) de la surface latérale (12) soit supérieure à la largeur (Zd) qui définira l'épaisseur définitive ou finale de cette même portion interne (13) ;

    - thermorégulation de la matrice (5) en maintenant simultanément une température relativement supérieure au niveau des sections de plus petite largeur (B') présentées par la cavité (7) et une température relativement inférieure au niveau des sections de plus grande largeur (A') présentées par la cavité (7) ;

    - contrôle et modification simultanés de la vitesse à laquelle le lingot (1) est injecté, de façon à établir et à contrôler une variation du débit auquel le front d'alliage à l'état semi-solide avance à l'intérieur de la cavité (7) par les différentes ouvertures de passage présentées par les sections de plus grande largeur (A') et les sections de plus petite largeur (B'), jusqu'au plein remplissage de la cavité, et de façon à ce que le front semi-solide avance à un débit plus rapide par les sections de plus grande largeur (A') ;

    - puis application, sur l'alliage se solidifiant à l'intérieur de la cavité (7), d'une force de pression supérieure à la force de pression d'injection, compressant ainsi encore plus le matériau dans la matrice ;

    - retrait de la roue formée (2) de la matrice (5) et emboutissage à chaud de la portion interne (13) de la surface latérale (12) par compression, réduisant ainsi l'épaisseur initiale (Si) de cette même portion interne (13) pour lui donner une épaisseur définitive ou finale (Sd).


     
    2. Procédé selon la revendication 1, selon lequel le volume et la masse du lingot (1) sont supérieurs au volume et à la masse de la quantité d'alliage pouvant être contenue dans la cavité (7) de la matrice, de sorte que la phase d'injection se termine avant que la masse totale du lingot puisse pénétrer dans la cavité, et qu'une portion résiduelle (8) contenant la dépouille (20) du lingot (1), rassemblée et retenue à l'intérieur d'une chambre (3) à partir de laquelle le matériau est injecté, se solidifie dans une position intermédiaire entre l'entrée (25) de la matrice (5) et la chambre d'injection (3), puis la portion résiduelle solidifiée (8) est coupée avant que la roue formée soit retirée de la cavité (7) de la matrice (5).
     
    3. Procédé selon la revendication 1, utilisant une matrice fermée (5) dont la cavité (7) est proportionnée de façon à ce que la largeur (Zi) des sections de plus petite largeur (B') correspondant à la surface latérale (12) de la roue (2) soit supérieure à la largeur (Zd) qui définira l'épaisseur définitive ou finale des deux portions, interne (13) et externe (16), de cette même surface latérale (12), selon lequel la phase de retrait de la roue formée (2) de la matrice est suivie de la phase d'emboutissage à chaud de la surface latérale (12) par compression de façon à réduire l'épaisseur initiale (Si) de la portion interne (13) et de la portion externe (16) pour leur donner leur épaisseur définitive ou finale (Sd).
     
    4. Procédé selon la revendication 1, selon lequel le lingot (1) est injecté dans une matrice (5) dont la cavité (7) présente une forme, un profil en coupe et des dimensions identiques à la forme, au profil en coupe et aux dimensions qu'aura la roue (2) finie, rendant donc superflue la phase d'emboutissage à chaud de la surface latérale (12) par compression.
     
    5. Procédé selon la revendication 1, selon lequel la phase de thermorégulation de la matrice (5) est effectuée par l'intermédiaire d'un fluide chauffant circulant dans une pluralité de circuits thermorégulateurs (6), réciproquement indépendants, placés périphériquement par rapport à la cavité (7) de la matrice et à une chambre d'injection (3) à partir de laquelle les lingots (1) sont poussés dans la cavité.
     
    6. Procédé selon la revendication 1, selon lequel la phase de préchauffage consiste en un traitement thermique où les lingots en alliage (1) à l'état solide sont soumis à des flux d'air chaud convectifs pendant une période de temps et à une température devant suffire pour porter l'alliage à l'état thixotropique semi-solide.
     
    7. Procédé selon la revendication 1, selon lequel les lingots (1) en alliage thixotropique se composent, quand ils sont à l'état semi-solide, d'une phase solide devant représenter entre 50 et 60 % et d'une phase liquide constituant les 50 ou 40 % restant.
     
    8. Procédé selon la revendication 1, selon lequel la phase d'emboutissage à chaud d'au moins la portion interne (13) de la surface latérale (12) par compression est suivie d'une phase de traitement thermique de la roue (2) pour induire une solution solide dans l'alliage thixotropique.
     
    9. Procédé selon la revendication 8, selon lequel la phase de traitement thermique de la solution est suivie d'une phase de durcissement.
     
    10. Procédé selon la revendication 8 ou 9, selon lequel la phase d'emboutissage à chaud d'au moins la portion interne (13) de la surface latérale (12) est suivie d'une phase d'usinage destinée à éliminer la surépaisseur laissée pendant les phases de formage précédentes du procédé.
     




    Drawing