[0001] The invention relates to abrasive articles comprising a multiplicity of metal sediments
which are located some distance apart and are bound to a porous carrier material such
that at least one part of each metal sediment is exposed on an outer surface of the
carrier material and such that the carrier material is partly embedded in the sediments,
abrasives being embedded in said metal sediments or adhering to the top surfaces of
said metal sediments, said metal sediments being obtained via a known electroplating
technique, such as, for example, electrodeposition, currentless sedimentation or vacuum
deposition. Such an abrasive article is known from EP-A- 0263785.
[0002] An abrasive article of this type is disclosed in British Patent GB 1 534 448. This
patent describes an abrasive article and a method for the production thereof, the
abrasive article comprising an electrically conducting layer with non-metallic abrasives
arranged on the surface thereof, a mask, which lies over the conducting layer and
leaves exposed parts of the layer located some distance apart, an abundance of abrasive
being arranged on said exposed parts and metal sediments being arranged on the electrically
conducting layer at the location of said exposed parts to hold the abrasive in position,
the abrasive and the metal sediments being applied essentially simultaneously via
an essentially static electrodeposition, currentless sedimentation or vacuum deposition
process.
[0003] At the location of the metal sediments, the said electrically conducting layer is,
as a consequence of the metal deposition, completely embedded in said metal sediments.
Said layer thus forms the carrier material for the metal sediments and joins the metal
sediments placed some distance apart to one another in order to form an abrasive article.
[0004] An abrasive article must have a strength suitable for its use and a high flexibility.
The strength of the abrasive article is determined by the adhesion of the metal sediments
to the carrier material and the strength of the carrier material itself.
[0005] The adhesion of the metal sediments to the carrier material is highest in the locations
where the carrier material is fully embedded in a metal sediment. The adhesion of
the metal sediments to the carrier material is lowest at the edges of the metal sediment
where a metal sediment with embedded carrier material is located on one side and carrier
material alone is located on the other side. The strength of the carrier material
itself is lower than the strength of a metal sediment with embedded carrier material.
If the abrasive article is loaded too heavily, this will give way at the location
of the non-embedded carrier material, probably along the edges of one or more metal
sediments.
[0006] The aim of the invention is to provide an abrasive article which has an adhesion
of a metal sediment to a carrier material which is stronger than that adhesion which
is achieved in the abrasive articles disclosed according to the prior art.
[0007] This aim is achieved by the features of the characterizing part of claim 1.
[0008] Prefered embodiments of the abrasive article and a method producing the same can
be found in claims 2 to 9.
[0009] The cavities into which the layer of binder extends after application of the latter
are produced by making use, during electrodeposition, of a cathode which has sections
placed some distance apart on its surface, between which sections an electrically
non-conducting material, for example a resin, has been applied.
[0010] In the course of the electrodeposition procedure, metal is first deposited on the
exposed surface of the protruding sections of the cathode. Moreover, metal is deposited
along the exposed surface of the fibres of the carrier material as soon as at least
a small part of one of the fibres is in contact with the surface of a protruding section
of the cathode, because the carrier material is formed of electrically conducting,
porous material, with the result that the carrier material is also able to act as
a cathode.
[0011] More and more metal is then deposited on previously deposited metal, so that the
deposition of metal extends in all directions perpendicular to the exposed surface
of the cathode - including the parts of the fibres acting as cathode - and of the
metal formed.
[0012] Ultimately, the deposits grow into one another some distance perpendicularly above
the cathode on the side where the carrier material is located. When all of the deposits
have grown together and a further common layer of a certain thickness has then grown
on top of the original, individual deposits, the so-called metal sediments have been
formed. During this procedure, as a consequence of the growth pattern of the original,
individual deposits, cavities have then formed in the section of the metal sediment
which is located between the covered surface of the cathode and the locations where
the original, individual deposits have grown together.
[0013] The growth pattern of the deposits can be controlled as a function of the shape of
the exposed, protruding sections of the cathode, the thickness of the fibres of the
carrier material used and the mutual spacing of said fibres. Depending on the growth
pattern, various shapes of cavities, for example undercut cavities, can form.
[0014] Preferably, the surface area of an exposed, protruding section of the cathode is
smaller by at least a factor of 2 than the surface area of the part of the carrier
material exposed by the mask. Otherwise it would not be possible for more than 1 growth
surface to be present per metal sediment to be formed, as a result of which the intended
growing together of the original, individual deposits would not be able to take place
and it would then not be possible for cavities to be formed.
[0015] The carrier material can be composed of an electrically conducting or non-conducting,
porous material. If an electrically non-conducting material is used, the growth pattern
of the deposits of metal will differ from that according to the case discussed above
in which the carrier material is made up of an electrically conducting material, with
the result that said carrier material also acts as a cathode.
[0016] After all desired metal sediments have been formed, including the intended cavities,
electrodeposition is terminated and the cathode is removed. A layer of binder is then
applied to that side of the carrier material where the cathode was located, or in
other words the side on which the metal sediment has not formed. Preferably, said
binder is composed of a plastic and the latter is applied in liquid form to the desired
side of the carrier material. During said application of the binder, care is taken
that the binder fills the cavities as completely as possible. The binder then sets,
as a result of which a strong and flexible layer is obtained which extends over the
entire surface of the carrier material on the side where the metal sediments are not
located.
[0017] The abrasive article can now be subjected to a heavier load than is possible with
the abrasive articles disclosed in the prior art. The added layer of binder increases
the strength of the abrasive article especially in those locations where the known
abrasive articles have only carrier material, whilst the layer of binder is firmly
anchored to the metal sediments through the cavities filled with binder.
[0018] The invention will be illustrated in more detail below with reference to the appended
drawings in which an illustrative embodiment is shown in detail.
[0019] Figure 1 shows a view of an abrasive article according to the invention obliquely
from below; for the sake of clarity, the layer of binder is not shown.
[0020] Figure 2 shows a cross-sectional view of an abrasive article at the location of a
metal sediment in the case where the metal sediment has just been fully formed.
[0021] Figure 3 shows a cross-sectional view according to Figure 2 of the finished abrasive
article.
[0022] In Figure 1, the finished abrasive article is indicated in its entirety by reference
numeral 1. The abrasive article 1 comprises a carrier material 2, metal sediments
3 and a layer of binder 11. The layer of binder 11 is not shown in Figure 1 but is
located in the manner shown in Figure 3 on that side of the carrier material 2 where
the metal sediments 3 shown are not located.
[0023] At the location where a metal sediment has been formed, each metal sediment 3 is
bound to the carrier material 2 via points of adhesion 4 and growths 5 onto the fibres
of the carrier material. Any metal which is amenable to electrodeposition, currentless
sedimentation or vacuum deposition can be chosen as the metal for the metal sediment
3. By way of example, nickel can be chosen.
[0024] The carrier material 2 can be a gauze material, fabric, sieve material, non-woven
material, 'mesh', 'woven' or a 'non-woven' material. In Figure 1, the carrier material
is shown, merely by way of example, as a gauze material which is characterised by
a regular pattern of fibres and openings between the fibres. The carrier material
2 can be electrically conducting or electrically non-conducting, porous material.
In Figures 1 to 3, the carrier material is shown, merely by way of example, as an
electrically conducting material. The carrier material 2 can be made of any organic
or inorganic material.
[0025] Figure 2 shows the situation at the end of the deposition process. An electrodeposition
process has been assumed here, merely by way of example. The installation for the
production of the metal sediment 3 in a known manner comprises a cathode 6, a mask
9 and a liquid from which the metal is deposited on that side of the cathode 6 where
the mask 9 is located. Neither this liquid nor the other parts of the installation
are shown in Figures 1 to 3 because an installation of this type is fully known and
(at least as far as the missing components are concerned) has nothing to do with the
present invention.
[0026] The cathode 6 has a few protruding sections 7. The space between the various protruding
sections 7 is filled with a filler 8. In the case where electrodeposition is employed,
said filler is an electrically non-conducting material, for example a resin or a plastic.
[0027] The carrier material 2 is laid on the cathode 6 and the mask 9 is laid on the carrier
material 2. In the case where electrodeposition is employed, the mask 9 is made of
an electrically non-conducting material. The mask 9 shields part of the surface of
the carrier material 2 from the electroplating bath. At the point in time when an
electric current is applied between cathode and anode, the metal is able to deposit
only on the surfaces of the carrier material 2 which are not shielded by the mask
9.
[0028] The deposition of metal starts on the exposed surfaces 12 of the protruding sections
7 of the cathode 6. At the end of the electrodeposition process, said initial deposits
will be visible as points of adhesion 4 (Figure 1). The metal deposit then grows on
the metal deposited previously. As can be seen from Figure 2, the metal then grows
further in the horizontal direction, that is to say in a direction parallel to the
surfaces 12 of the protruding sections 7 of the cathode 6, and in the vertical direction,
that is to say perpendicular to the surfaces 12 in the direction of the carrier material
2. Metal also deposits on the fibres of the carrier material 2 as soon as a part thereof
comes into contact with a surface 12 or with a metal deposit which has formed on a
surface 12. Said metal deposits on the fibres of the carrier material 2 are indicated
in Figures 2 and 3 by the reference numeral 5.
[0029] The result of carrying out the electrodeposition process is a collection of metal
sediments 3 in which carrier material 2 is partly embedded, which are joined, at the
location of a metal sediment, to the carrier material by the points of adhesion 4
and the growths 5, during the production of which cavities 10 have formed.
[0030] At the end of the electrodeposition process, the cathode 6, the filler 8 and mask
9 are removed and a layer of binder 11 is applied to that side of the carrier material
2 where the metal sediments 3 have not formed. During this operation, the binder 11
flows into the cavities 10. In Figures 2 and 3, the cavities 10 are shown by way of
example as undercut cavities. The layer of binder 11 then extends over the complete
surface of the carrier material 2 on one side thereof. The strength of the abrasive
article 1 is increased by the additional strength which the layer 11 provides, as
well as the stronger adhesion of the metal sediments 3 to the carrier material 2 as
a whole.
1. Abrasive article (1) comprising a multiplicity of metal sediments (3) which are located
some distance apart and are bound to a porous carrier material (2) such that at least
one part of each metal sediment is exposed on an outer surface of the carrier material,
and such that the carrier material is partly embedded in the sediments, abrasives
being embedded in said metal sediments or adhering to the top surfaces of said metal
sediments, said metal sediments being obtained via a known electroplating technique,
such as, for example, electrodeposition, currentless sedimentation or vacuum deposition,
characterized in that the metal sediments (3) penetrate through the carrier material (2) whereby at least
another part (4) of each metal sediment (3) is on the other surface of the carrier
material (2), which other part or parts are provided with cavities (10), on which
other surface of the carrier material a layer of binder (11) is applied which extends
continuously into the cavities (10).
2. Abrasive article according to Claim 1, wherein the binder (11) is a plastic.
3. Abrasive article according to one of the preceding claims, wherein the cavities (10)
are undercut cavities.
4. Abrasive article according to one of the preceding claims, wherein the carrier material
(2) is electrically non-conducting.
5. Abrasive article according to one of Claims 1-3, wherein the carrier material (2)
is electrically conducting.
6. Method for the production of an abrasive article according to any of the preceding
claims, wherein metal sediments (3) are formed on a carrier material (2) through an
electroplating technique by using a mask (9) on one side and a cathode (6) on the
other side of the carrier material (2) such that on one side of the carrier material
(2) at least one part of each metal sediment (3) is exposed and the carrier material
(2) is partly embedded in each metal sediment (3). characterized in that a cathode (6) is applied which is locally isolated such that other parts (4) are
formed on each sediment (3) which penetrate on the other surface of the carrier material
(2), which other parts are formed with cavities, the surface (12) of an exposed section
(7) of the cathode (6) being smaller by at least a factor of 2 than the surface of
the part of the carrier material (2) exposed by the mask (9), and applying a layer
of binder (11) on the other side which layer extends continuously into the cavities.
7. Method according to Claim 6, wherein the binder (11) is applied in liquid form.
8. Method according to Claim 6, wherein the binder (11) is applied in paste form.
9. Method according to one of Claims 6-8 wherein the binder (11) solidifies or is hardened
after application.
1. Schleifartikel (1), der eine Mehrzahl Metallsedimente (3) umfaßt, die sich in einem
gewissen Abstand voneinander befinden und mit einem porösen Trägermaterial (2) verbunden
sind, so daß zumindest ein Teil eines jeden Metallsediments an einer äußeren Oberfläche
des Trägermaterials frei liegt, und das Trägermaterial teilweise in den Sedimenten
eingebettet ist, Schleifmaterial in die genannten Metallsedimente eingebettet ist
oder an der oberen Oberfläche der genannten Metallsedimente anhaftet, wobei die genannten
Metallsedimente durch eine bekannte Elektroplattierungstechnik, wie z.B. galvanische
Metallabscheidung, stromlose Sedimentation oder Vakuumabscheidung erhalten werden,
dadurch gekennzeichnet, daß die Metallsedimente (3) durch das Trägermaterial (2) hindurchdringen, wodurch
wenigstens ein anderer Teil (4) eines jeden Metallsediments (3) auf der anderen Oberfläche
des Trägermaterials (2) ist, wobei der andere Teil oder die anderen Teile mit Hohlräumen
(10) versehen sind, wobei auf die andere Oberfläche des Trägermaterials eine Schicht
aus Bindemittel (11) aufgebracht ist, die sich durchgehend in die Hohlräume (10) erstreckt.
2. Schleifartikel gemäß irgendeinem Anspruch 1, wobei das Bindemittel (11) ein Kunststoff
ist.
3. Schleifartikel gemäß irgendeinem der vorhergehenden Ansprüche, wobei die Hohlräume
(10) hinterschnittene Hohlräume sind.
4. Schleifartikel gemäß irgendeinem der vorhergehenden Ansprüche, wobei das Trägermaterial
(2) elektrisch nichtleitend ist.
5. Schleifartikel gemäß deinem der Ansprüche 1-3, wobei das Trägermaterial (2) elektrischleitend
ist.
6. Verfahren zur Herstellung eines Schleifartikels gemäß irgendeinem der vorhergehenden
Ansprüche, wobei Metallsedimente (3) auf einem Trägermaterial (2) durch eine Elektroplattierungstechnik
unter Verwendung einer Maske (9) auf einer Seite und einer Kathode (6) auf der anderen
Seite des Trägermaterials (2) gebildet werden, so daß auf einer Seite des Trägermaterials
(2) wenigstens ein Teil eines jeden Metallsediments (3) freiliegt und das Trägermaterial
(2) teilweise in jedes Metallsediment (3) eingebettet wird, dadurch gekennzeichnet, daß eine Kathode (6) angewendet wird, die örtlich getrennt ist, so daß andere Teile
(4) auf jedem Sediment (3) gebildet werden, die zu der anderen Oberfläche des Trägermaterials
(2) durchdringen, wobei die anderen Teile mit Hohlräumen geformt werden, die Oberfläche
(12) eines freiliegenden Abschnitts (7) der Kathode (6) um zumindest einen Faktor
2 kleiner als die Oberfläche des Teils des Trägermaterials (2) ist, das durch die
Maske (9) freigelegt wird, und eine Schicht aus Bindemittel (11) auf die andere Seite
aufgebracht wird, wobei sich die Schicht durchgehend in die Hohlräume erstreckt.
7. Verfahren gemäß Anspruch 6, wobei das Bindemittel (11) in flüssiger Form aufgebracht
wird.
8. Verfahren gemäß Anspruch 6, wobei das Bindemittel (11) ih Pastenform aufgebracht wird.
9. Verfahren gemäß einem der Ansprüche 6-8, wobei sich das Bindemittel nach dem Aufbringen
verfestigt oder es gehärtet wird.
1. Article abrasif (1) comprenant une pluralité ce dépôts métalliques (3) qui sont situés
à une certaine distance les uns des autres et liés à un support poreux (2) de sorte
qu'au moins une partie de chaque dépôt métallique est exposée sur une surface externe
du support, et de sorte que le support est en partie enrobe dans les dépots, les abrasifs
étant contenus dans lesdits dépôts métalliques ou adhérant aux surfaces supérieures
desdits dépôts métalliques, lesdits dépôts métalliques étant obtenus par l'intermédiaire
d'une technique de métallisation connue telle que l 'électrodéposition, la déposition
sans courant electrique ou une déposition sous vide, caractérisé en ce que les dépôts
métalliques (3) pénètrent à travers le support (2), afin qu'au moins une autre partie
(4) de chaque dépôt métallique (3) se trouve sur l' autre surface du support (2),
l'autre ou les autres partie(s) étant munie(s) de cavités (10), une couche de liant
(11) étant appliquée sur cette autre surface du support, cette couche s'étendant en
continu dans les cavités (10).
2. Article abrasif selon la revendication 1, dans lequel le liant (11) est un plastique.
3. Article abrasif selon l'une quelconque des revendications précédentes, dans lequel
les cavités (10) sont des cavités évidées.
4. Article abrasif selon l'une quelconque des revendications précédentes, dans lequel
le support (2) est électriquement non conducteur.
5. Article abrasif selon l'une des revendications 1 à 3, dans lequel le support (2) est
électroconducteur.
6. Procédé de fabrication d'un article abrasif selon l'une quelconque des revendications
précédentes, dans lequel les dépôts métalliques (3) sont formés sur un support (2)
par le biais d'une technique d'électrodéposition en utilisant un masque (9) sur un
côté (6) et une cathode (6) sur l'autre côté du support (2) de sorte qu'un côté du
support (2) au moins une partie de chaque dépôt métallique (3) est exposée et que
le support (2) est en partie enrobé par chaque dépôt métallique (3), caractérisé en
ce qu'une cathode (6) est appliquée, celle-ci étant localement isolée de sorte que
d'autres parties (4) sont formées sur chaque dépôt (3) qui pénètrent sur l'autre surface
du support (2), les autres parties étant composées de cavités, la surface (12) d'une
section exposée (7) de la cathode (6) étant plus petite d'au moins un facteur de 2
que la surface de la partie du support (2) exposée par le masque (9), et en appliquant
une couche de liant (11) sur l'autre côté, ladite couche s'étendant en continu dans
les cavités.
7. Procédé selon la revendication 6, dans lequel le liant (11) est appliqué sous forme
liquide.
8. Procédé selon la revendication 6, dans lequel le liant (11) est appliqué sous la forme
d'une pâte.
9. Procédé selon l'une quelconque des revendications 6 à 8, dans lequel le liant (11)
se solidifie ou est durci après application.