TECHNICAL FIELD
[0001] This invention relates to the coating of strip articles with wax-like materials.
More particularly, the invention relates to a coating procedure that is particularly
suited for coating aluminum and aluminum alloy strips, such as those used for automotive
sheet stock, with wax-type lubricants.
BACKGROUND ART
[0002] The use of aluminum and aluminum alloys in the manufacture of vehicle bodies and
other automotive parts is of increasing interest nowadays as manufactures and regulators
strive to reduce fuel consumption and air pollution. This has lead to the use of adhesives
for bonding aluminum parts since welding of aluminum is problematic and inefficient.
However, conventional lubricants used for coating sheet surfaces during sheet manufacture
tend not to be compatible with the adhesives suitable for the bonding process and
new lubricants have been developed to overcome this problem. These new lubricants
usually have the properties of waxes, i.e. they are solid at room temperature but
melt to low viscosity liquids (e.g. liquids of viscosity less than 50 centipoise,
and often less than 30 centipoise) at slightly higher temperatures (e.g. 30 to 100°C,
or more commonly 30-50°C, depending on the identity and formulation of the lubricant).
[0003] At present, a heated roller coater is normally used to apply such lubricants, but
inefficiencies are encountered because the distribution of the coating material across
the strip surface becomes variable due to the tendency of the low viscosity lubricant
to flow in irregular patterns over the metal surface following its initial application.
[0004] Moreover, sufficient heat is transferred to the metal sheet by the coater during
the coating process that solidification of the lubricant is delayed. Unless special
precautions are taken, e.g. the installation of a separate cooling zone downstream
of the coater apparatus, the lubricant may still be in a molten state when the sheet
reaches the coiler apparatus provided for coiling the strip article after coating.
If the lubricant is still molten while the strip is being coiled, the coiling pressure
exerted on the strip surface will cause unacceptable thinning of the lubricant film,
with excess material being forced out through the sides of the coil. Additionally,
the very low strip surface friction can cause the coil to become unstable and to "telescope"
during the coiling operation.
[0005] There is accordingly a need for an improved method of coating metal sheet with wax-like
materials of this kind.
DISCLOSURE OF THE INVENTION
[0006] An object of the invention is to enable metal sheet articles to be coated with wax-like
coating materials, particularly lubricants, in an efficient manner.
[0007] Another object of the invention is to enable wax-like coating materials, particularly
lubricants, to be coated in relatively thick layers onto sheet articles.
[0008] Yet another object of the invention is to make it possible to avoid forced cooling
of a strip article after coating with a wax-like coating materials, particularly lubricant,
prior to coiling without substantial risk of disrupting the coating layer and of destabilizing
the shape of the coil as it is being formed, during coiling.
[0009] According to the present invention, there is provided a process of forming a coating
layer of a solid wax-like coating material on a surface of a heat-conductive strip
article, in which the solid wax-like coating material is heated to form a melt, and
a coating layer is formed on an advancing surface of the strip article by applying
the melt onto the surface and cooling the melt to form a solid coating layer, characterized
in that the melt is flowed onto the advancing surface from an elongated, open-sided
slot of a movable coating head provided with an extended surface adjacent to the slot
orientated at an angle to the strip article to define a coating gap converging in
the direction of advancement of the strip article, and pushing the coating head towards
the surface of the strip article, against opposing hydrodynamic forces exerted by
said coating material on said extended surface in said gap, as said melt is flowed
onto the surface from the slot, to control the coating layer thickness.
[0010] The present invention is based on the unexpected finding that wax-like coating materials,
and particularly wax-like lubricants used in the automotive and related industries,
can be applied by means of a coating apparatus provided with a "floating" coating
head having an elongated open-sided coating slot. The success of this procedure is
surprising because coating apparatus of this kind, while known for other applications,
has not been considered suitable for coating low viscosity liquids since undue leakage
of such liquids takes place and uniform coating layers are not formed. Furthermore,
fluids of low viscosity do not usually generate sufficient hydrodynamic force to prevent
the coating head from undergoing metal-metal contact with the moving strip surface.
However, in the process of the present invention, it seems that partial solidification
of the wax-like coating material takes place in the coating gap in a sufficiently
reliable manner such that effective coating can be achieved despite the initial low
viscosity of the coating material.
[0011] Another consideration is that, since unacceptably long solidification times are required
in conventional coating apparatus used for producing wax-like coatings, it was to
be expected that similar problems would be encountered if slot-type coaters were employed
for this purpose. However, it has surprisingly turned out that "floating head" type
apparatus allows coatings to be formed that solidify quickly, perhaps because the
hot coating head does not directly contact the strip article, and thus does not result
in undue heating of the strip.
[0012] A preferred example of the type of apparatus used for the process of the present
invention suitable for single-sided coating of a strip article is disclosed in U.S.
Patent No. 4,675,230 of June 23, 1987, assigned to the same assignee as the present
application. Moreover, a related apparatus for two-sided coating of sheet material
is disclosed in pending PCT Patent Application Serial No. PCT/CA94/0029, filed May
26, 1994 and published on December 8, 1994 as WO 94/27739, and assigned to the same
assignee as the present application.
[0013] The process of the present invention is effective for coating any strip article made
of a material of sufficiently good thermal conductivity that heat from the wax-like
coating can be rapidly dispersed and the liquid coating thereby rapidly solidified.
While the minimum thermal conductivity that will achieve this result varies according
to a number of factors (e.g. the characteristics and temperature of the coating material,
the speed of advance of the strip article, etc.), common metals, and particularly
aluminum and aluminum alloys, are suitable for coating according to the process of
the present invention.
[0014] Numerous "wax-like coating materials" are suitable for use in the present invention,
but wax-type lubricants are particularly preferred. These materials, while being solid
at room or ambient temperature, form liquids having low viscosities, generally of
less than 50 centipoise, and more commonly less than 30 centipoise, when heated to
temperatures in the range of 30-100°C, or more usually 30-50°C. Waxy materials containing
olefin, e.g. alcohol esters of fatty acids or fatty diamides, are especially suited
for use in the present invention, and particular examples of suitable wax-type lubricants
include the following: glycerol monolaurate, pentaerythritol monostearate, ethylene
glycol monolaurate, glycerol monopalmitate, ethylene glycol monostearate, glycerol
dipalmitate and propylene glycol distearate.
[0015] Since rapid cooling and solidification of the coating material during and immediately
following coating is necessary in the present invention, it is preferable prior to
coating to heat the wax-like coating material only to the lowest temperature possible
without risking premature freezing of the material in the coating apparatus. Temperatures
of 30-100°C and more preferably 30-50°C, are generally suitable.
[0016] As noted above, the coating layer must be solid before the strip article can be coiled,
so the strip should preferably be advanced at a speed that permits solidification
to take place before the coating reaches the coiling apparatus and, for a given strip
article and coating material, this will vary according to the distance between the
coating apparatus and the coiling apparatus. Clearly, the best productivity will be
achieved by advancing the strip at or close to the maximum speed that permits complete
solidification in advance of the coiling apparatus, but lower speeds of advance may
be employed, if desired, provided an even, smooth coating layer can still be produced.
The minimum speed at which suitable coating is still possible depends on such factors
as the size of the coating gap, the nature of the strip article and the identity of
the coating material. Suitable speeds can be determined by simple trial and experiment.
[0017] The strip article itself should preferably be relatively cool when the coating is
applied to ensure rapid solidification of the coating. However, pre-cooling of the
strip article is generally not required since strip at ambient temperature is usually
suitable.
[0018] By applying the wax-like coating material in the manner indicated in the present
invention, rapid and effective coating of wax-like coating materials, and particularly
wax-type lubricants, can be achieved without the disadvantages encountered when using
conventional apparatus.
BRIEF DESCRIPTION OF THE DRAWINGS
[0019]
Fig. 1 is a side elevation, partly in cross-section, of a coating apparatus suitable
for carrying out a preferred embodiment of the present invention;
Fig. 2 is a greatly simplified schematic representation of apparatus for carrying
out two-sided coating according to another preferred embodiment of the invention;
Fig. 3 is a graph showing test results obtained in the manner explained in the Example
1; and
Fig. 4 is a graph showing test results obtained in the manner explained in Example
2.
BEST MODES FOR CARRYING OUT THE INVENTION
[0020] Apparatus suitable for carrying out one preferred embodiment of the present invention
is shown in simplified form in Fig. 1. The apparatus 10 consists of a coating head
12 of the type described in U.S. patent 4,675,230, but modified in the manner described
below, that applies a layer of wax type lubricant 13 onto an aluminum strip 14 passed
around an unheated backup drum 16 in the direction of arrow A. The coating head 12,
having a generally open-sided co-extensive longitudinal coating slot 15, extends over
the entire width of the strip at a position, in the path of the strip advance, at
which the strip is held firmly against the surface of the backup drum 16. The end
of the coating head 12 facing the strip 14 has an extended coating surface 18, adjacent
to the outer opening of the slot 15 at least on the downstream side of the slot, provided
with a downstream edge 20. The extended surface 18 is arranged at an angle (normally
in the range of 0.1 to 5°, or more preferably 0.5 to 1°) to the surface of the strip
14 to form a coating gap 19 that narrows in the direction of strip advance.
[0021] The coating head 12 has an interior channel 22 communicating with the coating slot
15. This channel is fed with molten wax-like coating material by a heated pressure
hose 24 communicating with a pressurized reservoir 25. The reservoir contains coating
material 13 that is kept molten by heat input from a surrounding hot water jacket
26, through which hot water is constantly passed via inlet 26a and outlet 26b. The
reservoir is pressurized by compressed air introduced through inlet 27 at the upper
part of the reservoir. The internal channel 22 in the coating head contains an elongated
rod-like electrical heater 28 used to prevent freezing of the coating material within
the coating head. The pressure applied to the coating material within the reservoir
25 is sufficient to express the molten coating material from the slot 15 onto the
surface of the strip 14 where the extended surface 18 of the coating head adjacent
to the slot spreads the coating material and meters its thickness.
[0022] The coating head 12 forms part of, or is attached to, a metal block 32 supported
on a deck 34 having a flat upper surface on which the metal block 32 rests, the block
being thus supported for sliding movement relative to the deck in a generally horizontal
direction, as shown by double headed arrow B. A number of vertically opening slots
36 (only one of which is shown in Fig. 1), elongated horizontally in the direction
of arrow B, are formed in the body of the block 32 rearwardly of the channel 22 at
locations spaced along the length of the block. A number of bolts 38 (only one of
which is shown) respectively extend through these slots and are threaded in the deck
at one end while having enlarged bolt heads 38a at the other end to retain the block
32 on the deck 34. Interference between bolt shanks 38b and the side walls of the
slots 36 prevents lateral movement of the block 32 relative to the deck, but the elongation
of the slots permits the block 32 to move in the direction of arrow B through the
full range of operative head positions.
[0023] The deck 34 is mounted on a feed frame 40 for pivotal movement about a horizontal
axis 42, so as to enable the block 32, with the deck, to be swung upwardly (e.g. by
suitable pneumatic means, not shown) from the position illustrated in Fig. 1 to a
position removed from the path of strip advance. An arm 44, fixedly secured to the
frame 40 and underlying the deck 34, carries a screw 46 that projects upwardly from
the arm and bears against the lower surface of the deck 34, to enable adjustment of
the angular orientation of the head 12 in its operative position.
[0024] The frame 40 is fixed in position relative to the axis of the drum 16, both the frame
and the roll being mounted in a common support structure (not shown) Thus, the axis
42 is fixed in position relative to the axis of the drum 16 and when the deck 34 is
in the operative position shown in Fig. 2, with the screw 46 set to provide a desired
angular orientation, the drum 16 supports the advancing strip 14, opposite the slot
15, at a fixed distance from the deck 34.
[0025] The apparatus further includes means acting between the deck 34 and the head 12 for
continuously exerting a load on the head to urge the head toward the facing surface
of the strip 14. This load-exerting means comprises a number of air cylinders 17 (only
one of which is shown and which may be of generally conventional construction) fixed
securely to the deck 34 rearwardly of the block 32. As shown, the cylinders 17 are
secured to the rearwardly projecting ledge portions 50 of the deck. Actuation of the
cylinders (which may be of a generally conventional character) causes the block 32
and coating head 12 to be pushed towards the surface of the strip 14. This load is
opposed by the fluid pressure (hydrodynamic force) of the molten (or partially solidifying)
coating material 13 acting on the extended surface 18 so that the head 12 "floats"
on the material layer 13. Thereby, a metering orifice is defined between the downstream
edge 20 of the surface 18 and the strip surface, the size of the metering orifice
being determined (for a given coating material) by the magnitude of the load exerted
by the cylinders, which is generally 0.18 - 27 kg/cm (1-150 lbs./linear inch) of strip
width and more preferably 0.9 - 9 kg/cm (5-50 lbs./linear inch). No direct mechanical
contact takes place between the coating head 12 and the strip 14, so heat transfer
to and defacement of the surface of the strip is avoided.
[0026] Surprisingly, it has been found that the wax-like coating material, although of low
viscosity normally in the range of less than 50 centipoise, e.g. 20 to 30 centipoise,
can be successfully coated onto the metal strip using the indicated type of apparatus
in which the coating thickness is controlled by a dynamic load control mechanism.
In principle, while this type of coating apparatus can be used to apply any liquid
to a strip article, in practice the equipment is not effective for liquids of low
viscosity. The coating gap 19 between the extruder head and the strip article for
a particular coating material is selected according to viscosity, speed and the required
coating thickness to ensure that the generated forces are in a practical range for
control. For very low viscosity liquids, low speeds and thick coating layers, the
required gap width becomes too wide to be practical. However, we have surprisingly
found that the equipment is suitable for applying low viscosity molten wax-like materials.
It is theorized that, because no part of the heated extruder head 12 directly touches
the strip article 14, the strip article does not become unduly heated above ambient
temperature before it receives the layer of molten wax-like material and, because
of the high thermal conductivity of the metal sheet article (particularly when it
is made of aluminum or aluminum alloy) and the relative thinness of the layer of coating
material, the coating material commences to freeze immediately it contacts the strip
article within the coating gap between the article surface and the coating head. This
increases the effective viscosity of the coating sufficiently to make the coating
equipment effective and to allow relatively thick layers of the low viscosity lubricant
(e.g. thicknesses with the range of 1-100 microns, and more preferably 2-25 microns)
to be applied at relatively low coating speeds (e.g. about 15 m/min (50 ft/min)).
In practice the lubricant is usually found to be completely solid within a few feet
of the coating head.
[0027] By heating each of the reservoir 25, the pressure hose 24 and the coating head 12
(by heater 28), the coating material 13 can be kept in molten condition within the
viscosity range indicated above until applied as a coating to the strip 14.
[0028] Beyond the drum 16, the strip can cool the molten wax-like material rapidly below
its freezing point since it has not been unduly heated by the coating procedure so
the strip can be coiled in the conventional manner without the need for a separate
cooling step.
[0029] Although the illustrated apparatus is designed for single-sided coating, the invention
may also be utilized for two-sided coating using apparatus of the type disclosed in
the application mentioned above, modified to be fed with molten wax-like coating material
as in the apparatus described for single-sided coating.
[0030] An example of an apparatus suitable for double-sided coating is shown in Fig. 2.
Metal strip 14 to be coated is continuously advanced, in a direction longitudinally
parallel to its long dimension, from a coil 200 along a path represented by arrows
A extending successively around spaced guide rollers 201, 202, 203 rotatably supported
(by structure not shown) in axially fixed positions. The rollers 201 and 202 cooperatively
define a rectilinear portion 205 of the path, in which portion the major surfaces
of the advancing strip are substantially planar. At a locality in this path portion
205, coating material is applied to both major surfaces 206 and 207 of the strip 14
from two coating heads 12, 12' (disposed in register with each other and respectively
facing the two major surfaces of the strip article) to establish on each of the strip
surfaces a continuous layer or coating of the wax-like material. After passing roll
203, the coated strip is coiled again, e.g. on a driven rewind reel 208 which constitutes
the means for advancing the strip through the coating line.
[0031] The coating devices 12 and 12' may each be the same as the coating head 12 described
for the previous embodiment fed with coating material and pushed towards the strip
surfaces in the same way.
[0032] In this embodiment, molten coating material is applied simultaneously to both sides
of the strip at about the same point, but nevertheless freezing of the applied coating
takes place within the coating gaps and thick layers of lubricant can be applied to
both sides of the strip 14.
[0033] As a final point, it should be pointed out that the process of the invention is not
limited to the coating of wax-type lubricants onto automotive strip stock, but may
be used for similar applications in which a wax-like material is coated onto a strip
article, e.g. the coating of aluminum can end stock with protective layers.
[0034] The invention is illustrated further by the following Examples, which are not intended
to limit the scope of the invention.
EXAMPLE 1
[0035] Tests were carried out on 0.09 cm (0.036 inch) gauge autosheet (aluminum alloy) using
a 0.762 m (thirty inch) two side coating apparatus of the type illustrated herein
(provided with five load application cylinders 17) using AL070 wax-type lubricant
(ethylene glycol monolaurate having a melting point of about 35 to 37°C) applied at
a temperature of 44°C. The coating material was supplied to the coating heads at a
pressure of 34.5 kPa (5 pounds per square inch) and the coating heads were pushed
towards the strip surface at an average force of 6.25 kg/cm (35 pounds per lineal
inch) of strip width. The test results are illustrated in the graph of Fig. 3 showing
coating thickness distribution on the top and bottom surfaces of the sheet (when the
sheet is advanced horizontally from the apparatus) across the width of the sheet.
The vertical arrows in the graph show the positions of five loading air cylinders,
which were set respectively at pressures of 0, 138, 138, 138 and 0 kPa (0, 20, 20,
20 and 0 pounds per square inch) of air pressure. The speed of strip movement was
15 m/min (50 ft./min), the metering land width was 0.8 cm (0.3 inches) and the angle
of the coating head was 0.5 degrees. Under these conditions, the film weight calculated
theoretically for a coating liquid having a viscosity of 30 centipoise is about 0.1
gram/square meter. The fact that the actual thickness of the coating ranged from 1
to 3.5 gram/square meter shows that the invention is capable of producing films of
greater than theoretical thickness. The coatings thereby produced are believed to
be of acceptable thickness and uniformity for use in automative applications.
EXAMPLE 2
[0036] Strip coating was carried out on 0.03 cm (0.011 inch) gauge aluminum can stock using
a two sided coating apparatus having a coating head 30 cm (12 inches) in width (the
coating width being 29 cm (11.5 inches)). Again waxy lubricant AL070 was used, but
this time at an application temperature of 51°C. Two load application cylinders were
provided per coating head, one at each end, having a cylinder inside diameter of 3.8
cm (1.5 inch), and each was pressurized with air to a pressure of 310 kPa (45 pounds
per square inch). The average load on each coating head resulting from the cylinders
was 2.5 kg/lineal cm (13.9 pounds/lineal inch) of strip width. Each coating head had
a land width of 0.63 cm (0.25 inches) was set at an angle of 0.5 degrees to the strip
surface. The coating material was supplied to each coating head at 24 kPa (3.5 pounds/sq.
inch pressure) and the strip was advanced at 15 m per minute (50 feet per minute)
. The results are shown in the graph of Fig. 4. The coatings thereby produced are
believed to be of acceptable thickness and uniformity for use in automotive applications.
The coatings thereby produced are believed to be of acceptable thickness and uniformity
for use in automotive applications.
1. A process of forming a coating layer of coating material (13) on a surface of a heat-conductive
strip article (14), in which the coating material is flowed onto an advancing surface
of the article from an elongated, open-sided slot (15) of a movable coating head (12)
provided with an extended surface (18) adjacent to the slot orientated at an angle
to the strip article to define a coating gap (19) converging in the direction of advancement
of the strip article (14), and pushing the coating head (12) towards the surface of
the strip article (14) against opposing hydrodynamic forces exerted by said coating
material (13) on said extended surface in said gaps (19), as the coating material
is flowed onto the surface from the slot (15), to control the coating layer thickness,
characterized in that a solid wax-like coating material (13) is heated to form a melt
having a viscosity of 50 centipoise or less, and said melt is fed to said open-sided
slot (15) as said coating material.
2. A process according to claim 1 characterized by using aluminum or aluminum alloy strip
as said heat-conductive strip article (14).
3. A process according to claim 1 characterized in that said solid wax-like coating material
(13) is a material that melts in a temperature range of 30-50°C to form a melt having
a viscosity of 30 centipoise or less, and in that said solid wax-like coating material
(13) is heated to a temperature within said range.
4. A process according to claim 1 wherein said strip article (14) has a second surface
(207) and a layer of coating material (13) is also formed simultaneously on said second
surface of said strip article (14) by flowing a coating material (13) onto said second
surface (207) from an elongated open-sided slot provided in a second movable coating
head (12') having an extended surface adjacent to the slot orientated at an angle
to the strip article (14) to define a coating gap converging in the direction of advancement
of the strip article (14), and pushing the second coating head (12') towards the second
surface (207) of the strip article (14), against hydrodynamic forces exerted by said
coating material (13) on said extended surface of said second coating head in said
gap, as said coating surface is flowed onto the second surface (207) from the slot,
to control said second coating layer thickness,
characterized in that a solid wax-like coating material (13) is heated to form a melt
having a viscosity of 50 centipoise or less, and said melt is fed to said open-sided
slot of said second coating head as said coating material.
5. A process according to claim 1 characterized in that said coating head (12) is pushed
towards said surface with a force that produces a coating thickness in the range of
1-100 microns.
6. A process according to claim 1 characterized in that said coating head (12) is pushed
towards said surface with a force that produces a coating thickness in the range of
2-25 microns.
7. A process according to claim 1 characterized in that said coating head (12) is pushed
towards said surface wit a force in the range of 0.18-27 Kg/linear cm [1-150 lbs./linear
inch] of width of the strip.
8. A process according to claim 1 characterized in that said coating head (12) is pushed
towards said surface wit a force in the range of 0.9-9 Kg/linear cm [5-50 lbs./linear
inch] of width of the strip.
9. A process according to claim 1 characterized in that said melt is maintained at a
temperature less than about 100°C before being applied to said strip article.
10. A process according to claim 1 characterized in that said melt is maintained at a
temperature less than about 50°C before being applied to said strip article.
11. A process according to claim 1 characterized in that said strip article (14) is maintained
at ambient temperature before said melt is applied.
12. A process according to claim 1 characterized in that a lubricant is selected as said
wax-like coating material.
13. A process according to claim 12 characterized by employing a lubricant selected from
glycerol monolaurate, pentaerythritol monstearate, ethylene glycol monolaurate, glycerol
monopalmitate, ethylene glycol monostearate, glycerol dipalmitate and propylene glycol
distearate.
14. A process according to claim 1 characterized in that said coating head (12) is heated
to avoid solidification of said melt before application to said surface.
1. Verfahren für die Bildung einer Beschichtungslage eines Beschichtungsmaterials (13)
auf einer Oberfläche eines wärmeleitfähigen streifenförmigen Gegenstandes (14), in
dem das Beschichtungsmaterial auf eine vorrückende Oberfläche des Gegenstandes aus
einem länglichen, seitlich offenen Schlitz (15) eines beweglichen Beschichtungskopfes
(12) fließt, der eine ausgedehnte Oberfläche (18) angrenzend an den Schlitz besitzt,
die in einem Winkel zum streifenförmigen Gegenstand zur Definition einer Beschichtungslücke
(19) orientiert ist, die in Vorschubrichtung des streifenförmigen Gegenstandes (14)
zusammenläuft, und der Beschichtungskopf (12) gegen die Oberfläche des streifenförmigen
Gegenstandes (14) gegen entgegengerichtete hydrodynamische Kräfte geschoben wird,
die durch das Beschichtungsmaterial (13) auf die ausgedehnte Oberfläche in der Lücke
(19) ausgeübt werden, wenn das Beschichtungsmaterial aus dem Schlitz (15) auf die
Oberfläche fließt, um die Dicke der Beschichtungsschicht zu steuern, dadurch gekennzeichnet,
daß ein festes wachsartiges Beschichtungsmaterial (13) bis zur Bildung einer Schmelze
mit einer Viskosität von 50 Centipoise oder weniger erhitzt wird und diese Schmelze
in den seitlich offenen Schlitz (15) als das Beschichtungsmaterial eingespeist wird.
2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß Aluminium- oder Aluminiumlegierungsstreifen
als wärmeleitfähiger streifenförmiger Gegenstand (14) verwendet werden.
3. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß das feste wachsartige Beschichtungsmaterial
(13) ein Material ist, das in einem Temperaturbereich von 30-50°C unter Bildung einer
Schmelze mit einer Viskosität von 30 Centipoise oder weniger schmilzt, und daß das
feste wachsartige Beschichtungsmaterial (13) auf eine Temperatur in diesem Bereich
erhitzt wird.
4. Verfahren gemäß Anspruch 1, worin der streifenförmige Gegenstand (14) eine zweite
Oberfläche (207) besitzt und eine Schicht von Beschichtungsmaterial (13) gleichzeitig
auch auf der zweiten Oberfläche dieses streifenförmigen Gegenstandes (14) gebildet
wird, indem ein Beschichtungsmaterial (13) auf diese zweite Oberfläche (207) aus einem
länglichen, seitlich offenen Schlitz fließt, der sich in einem zweiten beweglichen
Beschichtungskopf (12') befindet, der eine ausgedehnte Oberfläche angrenzend an den
Schlitz besitzt, die in einem Winkel zum streifenförmigen Gegenstand (14) zur Definition
einer Beschichtungslücke orientiert ist, die in Vorschubrichtung des streifenförmigen
Gegenstandes (14) zusammenläuft, und der zweite Beschichtungskopf (12') gegen die
zweite Oberfläche (207) des streifenförmigen Gegenstandes (14) entgegen hydrodynamischen
Kräften geschoben wird, die durch das Beschichtungsmaterial (13) auf die ausgedehnte
Oberfläche des zweiten Beschichtungskopfes in der Lücke ausgeübt werden, wenn das
Beschichtungsmaterial aus dem Schlitz auf die zweite Oberfläche (207) fließt, um die
Dicke der zweiten Beschichtungsschicht zu steuern, dadurch gekennzeichnet, daß ein
festes wachsartiges Beschichtungsmaterial (13) zur Bildung einer Schmelze mit einer
Viskosität von 50 Centipoise oder weniger erhitzt wird und diese Schmelze in den seitlich
offenen Schlitz des zweiten Beschichtungskopfes als Beschichtungsmaterial eingespeist
wird.
5. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß der Beschichtungskopf (12)
mit einer Kraft gegen die Oberfläche gedrückt wird, die eine Beschichtungsdicke im
Bereich von 1-100 µm erzeugt.
6. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß der Beschichtungskopf (12)
mit einer Kraft gegen die Oberfläche gedrückt wird, die eine Beschichtungsdicke im
Bereich von 2-25 µm erzeugt.
7. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß der Beschichtungskopf (12)
gegen die Oberfläche mit einer Kraft im Bereich von 0,18-27 kg/cm (1-150 lbs./linear
inch) der Streifenbreite geschoben wird.
8. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß der Beschichtungskopf (12)
gegen die Oberfläche mit einer Kraft im Bereich von 0,9-9 kg/cm (5-50 lbs./linear
inch) der Streifenbreite geschoben wird.
9. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß die Schmelze vor ihrer Aufbringung
auf den streifenförmigen Gegenstand bei einer Temperatur unter 100°C gehalten wird.
10. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß die Schmelze vor ihrer Aufbringung
auf den streifenförmigen Gegenstand bei einer Temperatur unter 50°C gehalten wird.
11. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß der streifenförmige Gegenstand
(14) vor der Aufbringung der Schmelze bei Umgebungstemperatur gehalten wird.
12. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß ein Schmiermittel als das
wachsartige Beschichtungsmaterial ausgewählt ist.
13. Verfahren gemäß Anspruch 12, dadurch gekennzeichnet, daß ein Schmiermittel ausgewählt
aus Glycerinmonolaurat, Pentaerythritolmonostearat, Ethylenglycolmonolaurat, Glycerinmonopalmitat,
Ethylenglycolmonostearat, Glycerindipalmitat und Propylenglycoldistearat verwendet
wird.
14. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß der Beschichtungskopf (12)
geheizt wird, um eine Verfestigung der Schmelze vor ihrer Aufbringung auf die Oberfläche
zu verhindern.
1. Procédé de formation d'une couche de revêtement d'une matière de revêtement (13) sur
une surface d'une bande thermoconductrice (14), dans lequel la matière de revêtement
s'écoule sur une surface qui avance de l'article à partir d'une fente allongée ouverte
des deux côtés (15) d'une tête d'enduction mobile (12) équipée d'une surface prolongée
(18) adjacente à la fente orientée selon un angle avec la bande de façon à définir
un espace d'enduction (19) convergeant dans la direction d'avancement de la bande
(14), et par poussée de la tête d'enduction (12) vers la surface de la bande (14)
contre des forces hydrodynamiques opposées exercées par ladite matière de revêtement
(13) sur ladite surface prolongée dans ledit espace (19), lorsque la matière de revêtement
s'écoule sur la surface depuis la fente (15), de façon à contrôler l'épaisseur de
la couche de revêtement, caractérisé en ce qu'une matière de revêtement céroïde solide
(13) est chauffée pour former une masse en fusion ayant une viscosité de 50 centipoises
ou moins, et ladite masse en fusion est chargée dans ladite fente ouverte des deux
côtés (15) en tant que ladite matière de revêtement.
2. Procédé selon la revendication 1, caractérisé par l'utilisation d'une bande d'aluminium
ou d'alliage d'aluminium en tant que ladite bande thermoconductrice (14).
3. Procédé selon la revendication 1, caractérisé en ce que ladite matière de revêtement
céroïde solide (13) est une matière qui fond dans une gamme de températures de 30-50°C
pour former une masse en fusion ayant une viscosité de 30 centipoises ou moins, et
en ce que ladite matière de revêtement céroïde solide (13) est chauffée à une température
dans ladite gamme.
4. Procédé selon la revendication 1, dans lequel ladite bande (14) possède une seconde
surface (207) et une couche de matière de revêtement (13) est aussi formée simultanément
sur ladite seconde surface de ladite bande (14) par écoulement d'une matière de revêtement
(13) sur ladite seconde surface (207) à partir d'une fente allongée ouverte sur les
côtés placée dans une seconde tête d'enduction mobile (12') ayant une surface prolongée
adjacente à la fente orientée selon un angle avec la bande (14) de façon à définir
un espace d'enduction convergeant dans la direction d'avancement de la bande (14)
et par poussée de la seconde tête d'enduction (12') vers la seconde surface (207)
de la bande (14) contre des forces hydrodynamiques exercées par ladite matière de
revêtement (13) sur ladite surface prolongée de ladite seconde tête d'enduction dans
ledit espace, lorsque ladite matière de revêtement s'écoule sur la seconde surface
(207) depuis la fente, pour contrôler l'épaisseur de ladite seconde couche de revêtement,
caractérisé en ce qu'une matière de revêtement céroïde solide (13) est chauffée pour
former une masse en fusion ayant une viscosité de 50 centipoises ou moins, et ladite
masse en fusion est chargée dans ladite fente ouverte des deux côtés de ladite seconde
tête d'enduction en tant que ladite matière de revêtement.
5. Procédé selon la revendication 1, caractérisé en ce que ladite tête d'enduction (12)
est poussée vers ladite surface avec une force qui produit une épaisseur de revêtement
dans la gamme de 1-100 µm.
6. Procédé selon la revendication 1, caractérisé en ce que ladite tête d'enduction (12)
est poussée vers ladite surface avec une force qui produit une épaisseur de revêtement
dans la gamme de 2-25 µm.
7. Procédé selon la revendication 1, caractérisé en ce que ladite tête d'enduction (12)
est poussée vers ladite surface avec une force dans la gamme de 0,18-27 kg/cm linéaire
(1-150 livres/pouce linéaire) de largeur de bande.
8. Procédé selon la revendication 1, caractérisé en ce que ladite tête d'enduction (12)
est poussée vers ladite surface avec une force dans la gamme de 0,9-9 kg/cm linéaire
(5-50 livres/pouce linéaire) de largeur de bande.
9. Procédé selon la revendication 1, caractérisé en ce que ladite masse en fusion est
maintenue à une température inférieure à environ 100°C avant d'être appliquée sur
ladite bande.
10. Procédé selon la revendication 1, caractérisé en ce que ladite masse en fusion est
maintenue à une température inférieure à environ 50°C avant d'être appliquée sur ladite
bande.
11. Procédé selon la revendication 1, caractérisé en ce que ladite bande (14) est maintenue
à la température ambiante avant que ladite masse en fusion ne soit appliquée.
12. Procédé selon la revendication 1, caractérisé en ce qu'un lubrifiant est choisi en
tant que ladite matière de revêtement céroïde.
13. Procédé selon la revendication 12, caractérisé par l'emploi d'un lubrifiant choisi
parmi le monolaurate de glycérol, le monostéarate de pentaérythritol, le monolaurate
d'éthylèneglycol, le monopalmitate de glycérol, le monostéarate d'éthylèneglycol,
le dipalmitate de glycérol et le distéarate de propylèneglycol.
14. Procédé selon la revendication 1, caractérisé en ce que ladite tête d'enduction (12)
est chauffée pour éviter une solidification de ladite masse en fusion avant l'application
sur ladite surface.