Background of the Invention
(1) Field of the Invention
[0001] The present invention relates to an engine oil composition for automobiles. More
particularly, the invention relates to the long life and fuel-saving engine oil composition
which can suppress the friction loss in the engine to a low level for a long time.
(2) Related Art Statement
[0002] With the progress of the engines, the automobile engine oil compositions (hereinafter
referred to briefly as "engine oil compositions") have been required to possess various
performances such as wear resistance, oxidation stability, and detergent dispersibility.
Recently, in order to suppress the earth from getting warmer due to increase in the
content of CO
2 in the atmosphere, how to improve the mileage of the automobiles is an important
problem. Accordingly, the fuel saving has been also strongly required with respect
to the engine oils.
[0003] Ordinarily, the engine oil composition is composed of a mixture of a base oil purified
from petroleum, added with additives such as a detergent, an antioxidant, an anti-wear
agent, and a viscosity index improver. In order to increase the fuel efficiency (mileage)
of the engine oil, for example, the viscosity of the engine oil is lowered by decreasing
the viscosity of the base oil or changing the viscosity index improver. However, friction
cannot be reduced in the case of the above ordinary engine oil composition in such
an area as a boundary lubricating condition where the viscosity does not contributes
to mitigation of the friction. Consequently, a friction modifier (FM) has recently
come to be added so as to reduce the wearing in the boundary lubricating area. With
respect to the friction modifiers, it is known that organic molybdenum compound such
as molybdenum dithiocarbamate (MoDTC) and oxymolybdenum organo phosphodithioate sulfide
(MoDTP) are highly effective as described in JP-B 3-23595 (EP-A-113045).
[0004] However, as the time passes, each of the above organic molybdenum compounds used
in the engine oil composition is consumed. Therefore, though the fresh engine oil
composition gives a low fuel consumption rate, such a low fuel consumption rate of
the engine oil composition is deteriorated with the lapse of time. In order to lessen
the above drawback, it may be considered that the addition amount of the organic molybdenum
compound in a fresh oil is increased. However, if the addition amount of the organic
molybdenum compound is merely increased, the cost of the product becomes higher, which
is economically unfavorable. Further, among the organic molybdenum compounds, MoDTP
contains phosphorus, so that a phosphorus compound may deposit on the surface of an
exhaust gas catalyst to deteriorate the catalytic activity. Therefore, the addition
amount of the MoDTP cannot be increased beyond a given level.
[0005] On the other hand, since MoDTC contains no phosphorus, increase in its addition amount
does not cause decrease in the catalytic activity. However, since MoDTC has a small
friction-mitigating effect, it may be considered that MoDTC is used in combination
with zinc dithiophosphate (ZnDTP) as an anti-wear agent so as to supplement the wear-mitigating
effect of the former. ZnDTP has been frequently used, as antioxidant and anti-wear
agent, in the engine oil compositions. However, since ZnDTP contains phosphorus and
gives adverse influence upon the exhaust gas catalyst as mentioned above, its addition
amount is limited so that good friction-mitigating effect cannot unfavorably be maintained
for a long time. Further, it is proposed that MoDTC be used in combination with a
sulfur-based extreme pressure additive (See JP-B 5-83599, JP-A-61 127 797). This combination
does not afford adverse effect upon the exhaust gas catalyst, but it encounters a
practically great problem upon the engine oil composition in that wear largely occurs
in the valve train system. WO-A-9 606 904 describes a lubricant composition comprising
a major amount of an oil of lubricating viscosity and a minor amount of additives
comprising oxymolybdenum dithiocarbamate, zinc dialkyldithiophosphate, one or more
additional peroxide decomposing sulfur compounds, an ashless dispersant, and a boron
containing additive which may be the ashless dispersant.
Summary of the Invention
[0006] Under the circumstances, it is an object of the present invention to enable the engine
oil composition to maintain the friction loss at a low level even when the engine
oil composition is used for a long time.
[0007] Furthermore, it is another object of the present invention to enable the engine oil
composition to maintain the friction loss at a low level for a long time, while the
addition amount of the friction modifier is kept at the same level as formerly employed.
[0008] It is still another object of the present invention to enable the engine oil composition
to maintain the friction loss at a low level for a long time without affording adverse
influence upon the catalytic activity for exhaust gases.
[0009] Having made strenuous investigation to accomplish the above-mentioned objects, the
present inventors discovered that the combination of MoDTC and ZnDTP with a polysulfide
compound can remarkably prolong the performance of the low fuel consumption rate,
that is, can maintain the friction-mitigating effect of the engine oil for a long
time without affording adverse influence upon the exhaust gas catalyst. Based on this
discovery, the inventors have accomplished the present invention.
[0010] That is, the present invention relates to the engine oil composition comprising (1)
at least one oil selected from the group consisting of a mineral oil and a synthetic
lubricant as a base oil; (2) a molybdenum dithicarbamate in an amount of 50 to 2000
ppm by weight when calculated as molybdenum (Mo), relative to the total weight of
the engine oil composition; (3) zinc dithiophosphate in an amount of 0.01 to 0.2 wt%
when calculated as phosphorus (P), relative to the total amount of the engine oil
composition; and (4) an ashless organic polysulfide compound in an amount of 0.01
to 0.4 wt% when calculated as sulfur (S), relative to the total amount of the engine
oil composition. This engine oil composition is a long life and low fuel consumption
engine oil composition which can maintain the friction loss at a low level for a long
time.
[0011] These and other objects, features and advantages of the invention will be apparent
from the following description of the invention with the understanding that some modifications,
variations and changes of the same could easily be made by the skilled person in the
art.
Detailed description of the invention
[0012] The base oil to be used in the engine oil composition according to the present invention
is a mineral oil and/or a synthetic oil. As the base oil, which is used, in the engine
oil composition, as a base component occupying a great part of the engine oil composition,
any base oil may be used. Specifically, as the mineral oil, use may be made of a lubricant
base oil which is producing by obtaining a cut through distilling an ordinary pressure
distillation residue of such as a paraffinic crude oil under reduced pressure, treating
the resulting cut through extraction with a solvent such as furfural, purification
by hydrogenation and dewaxing with a solvent such as MEK/toluene, a lubricant base
oil produced by obtaining a deasphalted oil by deasphalting the above pressure-reduced
distillation residue and treating it by any of the above appropriate processes, a
highly purified base oil obtained through isomerization of slack wax and dewaxing
an appropriate cut of the isomerized oil with a solvent of MEK/toluene, or an appropriate
mixture thereof.
[0013] As the synthetic oil, use may be made of an α-olefin oligomer, a diester synthesized
from a dibasic acid such as an adipic acid and a primary alcohol, a polyol ester synthesized
from a higher alcohol such as neopentyl glycol, trimethylol propane or pentaerithritol
and a monobasic acid, an alkyl benzene or a polyoxyalkylene glycol or an appropriate
mixture thereof. Further, needless to say, a mixed oil obtained by appropriately combining
the mineral oil with the synthetic oil may be used as a base oil for the engine oil
composition according to the present invention.
[0014] The molybdenum dithiocarbamate (MoDTC) to be used as an additive in the present invention
is a compound expressed by the following formula (1)

[0015] In the formula (1), R
1 through R
4 independently denote a straight-chain or branched-chain alkyl group or a straight-chain
or branched-chain alkenyl group having four to eighteen carbons; and X
1 through X
4 independently denote an oxygen atom or a sulfur atom, the ratio between the number
of the oxygen atom or atoms and that of the sulfur atom or atoms with respect to X
1 through X
4 being 1/3 to 3/1. As R
1 through R
4, the alkyl group is preferred. More specifically, butyl group, 2-ethylhexyl group,
isotridecyl group or stearyl group may be recited. These four R
1 through R
4 existing in one molecule may be identical with or different from each other. Further,
two or more MoDTCs differing in terms of R
1 through R
4 may be used in a mixed state.
[0016] MoDTC is used in the addition amount of 50 to 2000 ppm by weight, preferably 300
to 1000 ppm by weight, when calculated as molybdenum (Mo), relative to the total weight
of the engine oil composition. If the addition amount is less than 50 ppm by weight,
the friction-reducing effect is small, whereas if it is more than 2000 ppm by weight,
the friction-reducing effect is saturated and the cost increases.
[0017] The zinc dithiophosphate (ZnDTP) to be used as an additive in the present invention
is a compound expressed by the formula (2):

[0018] In the formula (2), R
5 and R
6 independently denote a straight-chain or branched chain alkyl group or a straight-chain
or branched chain aryl group having three to eighteen carbon atoms. As R
5 and R
6, an alkyl group, particularly, a primary alkyl group is preferred from the standpoint
that the friction-mitigating performance must be maintained for a long time. More
specifically, for example, propyl group, butyl group, pentyl group, hexyl group, octyl
group and lauryl group may be recited. These two R
5 and R
6 existing in one molecule may be identical with or different from each other. Further,
two or more kinds of ZnDTPs differing in terms of R
5 and R
6 may be used in a mixed state.
[0019] ZnDTP is added in an amount of 0.01 to 0.2 wt%, preferably 0.04 to 0.2 wt%, more
preferably 0.04 to 0.1 wt% when calculated as phosphorus (P), relative to the total
amount of the engine oil composition. If the addition amount is less than 0.01 wt%,
the wear-preventing performance of the engine oil composition for the valve train
system is deteriorated. On the other hand, if it is more than 0.2 wt%, influence of
the phosphorus component upon the catalytic activity for the exhaust gas becomes greater.
[0020] The ashless organic polysulfide compound to be used in the present invention includes
organic compounds expressed by the following formulae, such as sulfides of oils or
fats or polyolefins, in which a sulfur atom group having two or more sulfur atoms
adjoining and bonded together is present in a molecular structure.
R
7-Sx-R
8
OHC-R
9-S-S-R
10-CHO
R
7-C(O)O-R
9-S-S-R
10-OC(O)-R
8
R
7-OC(S)-S-S-C(S)O-R
8

[0021] In the above formulae, R
7 and R
8 independently denote a straight-chain, branched-chain, alicyclic or aromatic hydrocarbon
group in which a straight chain, a branched chain, an alicyclic unit and an aromatic
unit may be selectively contained in any combined manner. An unsaturated bond may
be contained, but a saturated hydrocarbon group is preferred. Among them, alkyl group,
aryl group, alkylaryl group, benzyl group, and alkylbenzyl group are preferred. R
9 and R
10 independently denote a straight-chain, branched-chain alicyclic or aromatic hydrocarbon
group which has two bonding sites and in which a straight chain, a branched chain,
an alicyclic unit and an aromatic unit may be selectively contained in any combined
manner. An unsaturated bond may be contained, but a saturated hydrocarbon group is
preferred. Among them, alkylene group is preferred. R
11 and R
12 independently denote a straight-chain or branched-chain hydrocarbon group. "x" and
"y" denote independently an integer of two or more.
[0022] Specifically, for example, mention may be made of sulfurized sperm oil, sulfurized
pinene oil, sulfurized soybean oil, sulfurized polyolefin, dialkyl disulfide, dialkyl
polysulfide, dibenzyl disulfide, di-tertiary butyl disulfide, polyolefin polysulfide,
thiadiazol type compound such as bis-alkyl polysulfanyl thiadiazole, and sulfurized
phenol. Among these compounds, dialkyl polysulfide, dibenzyl disulfide, and thiadiazol
type compound are preferred. Particularly, bis-alkyl polysulfanyl thiadiazole is preferred.
[0023] As the lubricant additive, a metal-containing compound such as Ca phenate having
a polysulfide bond is used. However, since this compound has a large coefficient of
friction, it is not suitable. To the contrary, the above organic polysulfide compound
is an ashless compound containing no metal, and exhibits excellent performance in
maintaining a low coefficient of friction for a long time when used in combination
with MoDTC and ZnDTP.
[0024] The above ashless organic polysulfide compound (hereinafter referred to briefly as
"polysulfide compound") is added in an amount of 0.01 to 0.4 wt%, preferably 0.1-0.3
wt%, more preferably 0.2-0.3 wt%, when calculated as sulfur (S), relative to the total
amount of the engine oil composition. If the addition amount is less than 0.01 wt%,
it is difficult to attain the intended effect, whereas if it is more than 0.4 wt%,
there is a danger that corrosive wear increase. Needless to say, only one kind of
the above polysulfide compound may be used, and two kinds of such polysulfide compounds
may also be used in combination.
[0025] In order to ensure the performance suitable for the intended use, engine oil additives
other than the above may be appropriately added to the engine oil composition according
to the present invention so as to improve the total performance. As such engine oil
additives, mention may be made of so-called metallic detergents such as sulfonate,
phenate and salicylate of alkaline earth metals such as Ca, Mg and Ba and alkali metals
such as Na, ashless dispersants such as alkenyl succinic acid imide, succinic acid
esters and benzylamine, phenolic anti-oxidant such as bisphenol, amine-based anti-oxidant
such as diphenylamine, and viscosity index improvers such as olefin copolymer or polymetacrylate.
Further, other engine oil additives such as a pour point depressant, anti-corrosion
agent and antifoaming agent may be appropriately added, provided that the engine oil
composition does not contain a boron containing additive in the case that the ashless
organic polysulfide compound is not a thiadiazol type compound.
(Experiments)
[0026] The present invention will be explained in more detail with reference to Examples
and Comparative Examples.
[0027] A lubricant in each of Examples and Comparative Examples was prepared by using Mineral
Oils 1 or 2 having the following properties as a base oil.
Table 1
| |
Mineral oil 1 |
Mineral oil 2 |
| Density (15°C)g/cm3 |
0.862 |
0.821 |
| Dynamic viscosity (40°C)mm2/s |
17.7 |
19.7 |
| Dynamic viscosity (100°C)mm2/s |
3.78 |
4.51 |
| Viscosity index |
99 |
147 |
| Flow point (°C) |
-15.0 |
-15.0 |
| Content of saturated component (%) |
76.5 |
98.8 |
[0028] As additives, the following were used.
(1) MoDTC:
[0029] Compound having the above-mentioned formula (1) in which R
1 through R
4 are all 2-ethylhexyl groups.
(2-1) Sulfur-based additive 1
[0030] Sulfur-based additive 1 means an additive containing the polysulfide compound used
in the present invention, and includes a thiadiazole type polysulfide compound having
the following formula. The content of sulfur in the sulfur-based additive is 36 wt%.

[0031] In the formula R
13 and R
14 independently denote the same meanings as R
7 and R
8 do, respectively.
(2-2) Sulfur-based additive 2
[0032] Sulfur-based additive 2 means an additives containing a sulfurized oil and fat type
polysulfide compounds, and the content of sulfur in the sulfur-based additive 2 is
10.5 wt%.
(2-3) Sulfur-based additive 3:
[0033] Sulfur-based additive 3 means an additives containing a dibenzyl disulfide, and the
content of sulfur in the sulfur-based additive 3 is 25.5 wt%.
(3-1) ZnDTP1
[0034] ZnDTP1 is a primary alkyl compound of the above formula (2) in which R
5 and R
6 are 2-ethylhexyl groups.
(3-2) ZnDTP2
[0035] ZnDTP2 means secondary alkyl compounds of the above formula (2) in which R
5 and R
6 are isopropyl groups or isohexyl groups or a mixture of these compounds each having
the respective two above alkyl groups.
(4) Additive package
[0036] Additive package includes metallic detergent, ashless dispersant, phenolic anti-oxidant,
amine-based anti-oxidant, viscosity index improver, anti-corrosion agent and antifoaming
agent.
[0037] The above mentioned base oils and additives were selectively mixed at recipes shown
in Table 3, thereby preparing long life and low fuel consumption engine oil compositions
according to the present invention as Examples 1 through 5. In the same manner, base
oils and additives were selectively mixed at recipes shown in Table 5, thereby preparing
engine oil composition as Comparative Examples 1 through 8. In Tables 3 and 5, figures
for the ingredients are compounding rates based on the unit "wt %" except that the
foaming agent is based on the unit "wt ppm".
[0038] The Engine oil compositions thus prepared as Examples and Comparative Examples were
evaluated with respect to the friction performance and wear characteristic in the
valve train system according to the following methods.
(1) Friction performance
[0039] With respect to fresh lubricants and used ones, the coefficient of friction was measured
under the following conditions by using an SRV tester. As test pieces, a ball made
of SUJ-2 (bearing steel material, Japanese Industrial Standards), and having 10 mm
in diameter and a disc made of SUJ-2 were used.
Table 2
| Test conditions |
| |
Break in conditions |
Actual test conditions |
| Load (N) |
10 |
200 |
| Amplitude (mm) |
1.5 |
1.5 |
| Frequency (Hz) |
50 |
50 |
| Temperature (°C) |
40 |
80 |
| Time (min) |
10 |
30 |
[0040] The coefficient of friction is the average coefficient of friction determined in
the friction test during the final 20 minutes.
[0041] The used oil compositions are oil compositions obtained when the oil was subjected
to running in simulation with an actual car driving. The engine was operated under
an AMA running mode at an oil temperature of 100°C and a water temperature of 100°C,
and the engine oil composition was sampled after the lapse of 160 hours (corresponding
to 4000 km) and 400 hours (corresponding to 10000 km). The thus obtained used oil
compositions were subjected to the above friction test.
(2) Valve train system wearing test
[0042] Each engine oil composition was subjected to the valve train system wear test according
to JASO (Japanese Automobile Standards Organization) M328-91. Then, scuffing of a
rocker arm was evaluated, and a worn amount of a cam nose was measured.
[0043] Evaluation results in Examples 1 through 5 are shown in Table 4, and those in Comparative
Examples 1 through 8 are shown in Table 6. In Tables 4 and 6, scuffing of the rocker
arm was evaluated by using a figure between 1 to 10.0, "1" and "10.0" being the lowest
and the highest, respectively.
Table 3
| |
Example 1 |
Example 2 |
Example 3 |
Example 4 |
Example 5 |
| Mineral oil 1 |
84.5 |
83.1 |
84.3 |
- |
85.0 |
| Mineral oil 2 |
- |
- |
- |
84.5 |
- |
| MoDTC additive |
2.0 |
2.0 |
2.0 |
2.0 |
2.0 |
| Content of Mo in oil composition |
0.08 |
0.08 |
0.08 |
0.08 |
0.08 |
| Sulfur-based additive 1 |
0.6 |
- |
- |
0.6 |
0.6 |
| Sulfur-based additive 2 |
- |
2.0 |
- |
- |
- |
| Sulfur-based additive 3 |
- |
- |
0.8 |
- |
- |
| Content of Sulfur in oil composition |
0.22 |
0.21 |
0.20 |
0.22 |
0.22 |
| ZnDTP 1 |
1.5 |
1.5 |
1.5 |
1.5 |
- |
| ZnDTP 2 |
- |
- |
- |
- |
1.0 |
| Content of P in oil composition |
0.095 |
0.095 |
0.095 |
0.095 |
0.090 |
| Metallic detergent |
2.0 |
2.0 |
2.0 |
2.0 |
2.0 |
| Ash-based dispersant |
4.0 |
4.0 |
4.0 |
4.0 |
4.0 |
| Phenolic anti-oxidant |
0.8 |
0.8 |
0.8 |
0.8 |
0.8 |
| Amine-based anti-oxidant |
0.4 |
0.4 |
0.4 |
0.4 |
0.4 |
| Viscosity index improver |
4.0 |
4.0 |
4.0 |
4.0 |
4.0 |
| Corrosion inhibitor |
0.2 |
0.2 |
0.2 |
0.2 |
0.2 |
| Antifoaming agent (ppm) |
5 |
5 |
5 |
5 |
5 |
Table 4
| |
Example 1 |
Example 2 |
Example 3 |
Example 4 |
Example 5 |
| Dynamic viscosity (40°C)mm2/sec |
53.5 |
54.5 |
52.5 |
51.4 |
54.3 |
| Dynamic viscosity (100°C)mm2/sec |
9.4 |
9.5 |
9.3 |
9.8 |
9.5 |
| Viscosity index |
160 |
159 |
161 |
180 |
160 |
| Coefficient of friction |
fresh oil composition |
0.045 |
0.043 |
0.044 |
0.042 |
0.040 |
| used oil composition (160 hrs) |
0.044 |
0.047 |
0.046 |
0.041 |
0.050 |
| used oil composition (400 hrs) |
0.066 |
0.063 |
0.067 |
0.059 |
0.072 |
| Wear of valve-moving system (rocker arm scuffing): Merit rating |
9.0 |
8.6 |
8.7 |
8.6 |
9.2 |
| Wear of cam nose µm |
3 |
4 |
5 |
4 |
3 |

[0044] Examples 1 through 3 in Table 3 are engine oil compositions which all used Mineral
Oil 1 and also employed a thiadiazole compound, a sulfurized oil and fat type compound
and dibenzyl disulfide as the polysulfide compound, respectively. Example 4 is the
same engine oil composition as in Example 1 except that Mineral Oil 1 was replaced
by more highly purified Mineral Oil 2. In Example 5, a secondary alkyl type was used
as ZnDTP.
[0045] In Table 5, Comparative Example 1 is an engine oil composition containing no polysulfide
compound, and Comparative Example 2 is an engine oil composition containing much ZnDTP.
Comparative Example 3 is an engine oil composition containing no ZnDTP, and Comparative
Example 4 is the same engine oil composition as Comparative Example 1 except that
the base oil was replaced by highly purified Mineral Oil 2. Comparative Example 5
is an engine oil composition containing no MoDTC, and Comparative Example 6 is an
engine oil composition containing neither MoDTC nor polysulfide compound, and Comparative
Example 7 is an engine oil composition containing neither ZnDTP nor polysulfide compound.
Comparative Example 8 is an engine oil composition containing neither MoDTC nor ZnDTP.
[0046] Comparison between Examples and Comparative Examples in Table 4 and Table 6 reveals
that particularly the coefficients of friction of the engine oil compositions in Examples
are clearly smaller as compared with those in Comparative Examples after deterioration
for 400 hours, though the former do not almost differ from the latter with respect
to the fresh engine oil compositions, i.e., changes in the coefficient of friction
of the engine oil compositions in Examples are smaller than those in Comparative Examples
even after long-term use.
[0047] For example, Comparison between Example 1 and Comparative Example 1, between Example
2 and Comparative Example 2 and between Example 4 and Comparative Example 4 reveals
that when the polysulfide compound was used in combination, the coefficient of friction
particularly after the passage of 400 hours remarkably decreased. Comparison between
Example 3 and Comparative Example 3 reveals that in Comparative Example 3, since no
ZnDTP was used in combination, the coefficient of friction after the passage of 400
hours was not only high, but also the worn amount of the cam nose consipicuously increased.
Comparison between Example 5 and Comparative Examples 5 and 6 reveals that in Comparative
Examples 5 and 6, since no MoDTC was used in combination, the coefficient of friction
was high from the beginning. In Comparative Example 7, since neither ZnDTP nor polysulfide
compound were used in combination, the coefficient of friction with the passage of
400 hours was not only high, but also the worn amount of the cam nose conspicuously
increased. In Comparative Example 8, since neither MoDTC nor ZnDTP were used in combination,
the coefficient of friction was not only high from the beginning, but also the worn
amount of the cam nose was extremely high.
[0048] The engine oil composition of the present invention is characterized in that MoDTC
and ZnDTP are combined with the ashless organic polysulfide compound in the respectively
specified addition amounts, and that a low coefficient of friction can be maintained
in a long-term use even without addition of a large amount of particularly MoDTP or
ZnDTP. Therefore, when the engine oil composition according to the present invention
is charged into and used in the automobile, splendid effects can be exhibited with
respect to fuel consumption saving and environmental maintenance.
1. An engine oil composition comprising:
(1) at least one oil selected from the group consisting of a mineral oil and a synthetic
lubricant as a base oil;
(2)a molybdenum dithiocarbamate (MoDTC) in an amount of 50 to 2000 ppm by weight when
calculated as molybdenum (Mo), relative to the total weight of the engine oil composition;
(3) zinc dithiophosphate (ZnDTP) in an amount of 0.01 to 0.2 wt% when calculated as
phosphorus (P), relative to the total amount of the engine oil composition; and
(4) an ashless organic polysulfide compound in an amount of 0.01 to 0.4 wt% when calculated
as sulfur (S), relative to the total amount of the engine oil composition;
provided that the engine oil composition does not contain a boron containing additive
in the case that the ashless organic polysulfide compound is not a thiadiazol type
compound.
2. The engine oil composition claimed in claim 1, wherein said molybdenum dithiocarbamate
(MoDTC) is a compound expressed by the following formula (1)

in which R
1 through R
4 independently denote a straight-chain or branched-chain alkyl group or a straight-chain
or branched-chain alkenyl group having four to eighteen carbons; and X
1 through X
4 independently denote an oxygen atom or a sulfur atom, the ratio between the number
of the oxygen atom or atoms and that of the sulfur atom or atoms with respect to X
1 through X
4 being 1/3 to 3/1.
3. The engine oil composition claimed in claim 2, wherein said R1 through R4 independently denote the alkyl group.
4. The engine oil composition claimed in claim 2, wherein said R1 through R4 independently denote butyl group, 2-ethylhexyl group, isotridecyl group or stearyl
group.
5. The engine oil composition claimed in any one of claims 1 to 4, wherein said MoDTC
is used in the addition amount of 300 to 1000 ppm by weight, when calculated as molybdenum
(Mo), relative to the total weight of the engine oil composition.
6. The engine oil composition claimed in any one of claims 1 to 5, wherein said zinc
dithiophosphate (ZnDTP) is a compound expressed by the formula (2):

in which R
5 and R
6 independently denote a straight-chain or branched chain alkyl group or a straight-chain
or branched chain aryl group having three to eighteen carbon atoms.
7. The engine oil composition claimed in claim 6, wherein said R5 and R6 independently denote an alkyl group.
8. The engine oil composition claimed in claim 6, wherein said R5 and R6 independently denote a primary alkyl group.
9. The engine oil composition claimed in claim 6, wherein said R5 and R6 independently denote propyl group, butyl group, pentyl group, hexyl group, octyl
group or lauryl group.
10. The engine oil composition claimed in claim 6, wherein said ZnDTP is added in an amount
of 0.04 to 0.2 wt% when calculated as phosporus (P), relative to the total amount
of the engine oil composition.
11. The engine oil composition claimed in any one of claims 1 to 10, wherein said ashless
organic polysulfide compound is an organic compound selected from the group consisting
of organic compounds expressed by the following formulae.
R
7-Sx-R
8
OHC-R
9-S-S-R
10-CHO
R
7-C(O)O-R
9-S-S-R
10-OC(O)-R
8
R
7-OC(S)-S-S-C(S)O-R
8

in which R
7 and R
8 independently denote a straight-chain, branched-chain, alicyclic or aromatic hydrocarbon
group in which a straight chain, a branched chain, an alicyclic unit and an aromatic
unit may be selectively contained in any combined manner; R
9 and R
10 independently denote a straight-chain, branched-chain alicyclic or aromatic hydrocarbon
group which has two bonding sites and in which a straight chain, a branched chain,
an alicyclic unit and an aromatic unit may be selectively contained in any combined
manner; R
11 and R
12 independently denote a straight-chain or branched-chain hydrocarbon group; and "x"
and "y" denote independently an integer of two or more.
12. The engine oil composition claimed in claim 11, wherein said ashless organic polysulfide
compound is selected from the group consisting of sulfurized sperm oil, sulfurized
pinene oil, sulfurized soybean oil, sulfurized polyolefin, dialkyl disulfide, dialkyl
polysulfide, dibenzyl disulfide, di-tertiary butyl disulfide, polyolefin polysulfide,
thiadiazol type compound, and sulfurized phenol.
13. The engine oil composition claimed in claim 12, wherein said ashless organic polysulfide
compound is the thiadiazol type compound.
14. The engine oil composition claimed in claim 12, wherein said ashless organic polysulfide
compound is dialkyl polysulfide and bidenzyl disulfide are preferred.
15. The engine oil composition claimed in any one of claims 11 to 14, wherein said ashless
organic polysulfide compound is added in an amount of 0.1-0.3 wt% when calculated
as sulfur (S), relative to the total amount of the engine oil composition.
16. The engine oil composition claimed in any one of claims 1 to 15, wherein said molybdenum
dithicarbamate (MoDTC) in an amount of 300 to 1000 ppm by weight when calculated as
molybdenum (Mo), relative to the total weight of the engine oil composition; said
zinc dithiophosphate in an amount of 0.04 to 0.2 wt% when calculated as phosphorus
(P), relative to the total amount of the engine oil composition; and said ashless
organic polysulfide compound in an amount of 0.1 to 0.3 wt% when calculated as sulfur
(S), relative to the total amount of the engine oil composition.
1. Motoröl-Zusammensetzung, umfassend:
(1) mindestens ein Öl, ausgewählt aus der Gruppe, bestehend aus einem Mineralöl und
einem synthetischen Schmieröl, als Basis-Öl,
(2) ein Molybdändithiocarbamat (MoDTC) in einer Menge von 50 bis 2000 ppm, gewichtsbezogen,
berechnet als Molybdän (Mo), bezogen auf das Gesamtgewicht der Motoröl-Zusammensetzung,
(3) Zinkdithiophosphat (ZnDTP) in einer Menge von 0,01 bis 0,2 Gew.%, berechnet als
Phosphor (P), bezogen auf die Gesamtmenge der Motoröl-Zusammensetzung, und
(4) eine aschelose organische Polysulfidverbindung in einer Menge von 0,01 bis 0,4
Gew.%, berechnet als Schwefel (S), bezogen auf die Gesamtmenge der Motoröl-Zusammensetzung,
mit der Maßgabe, daß die Motoröl-Zusammensetzung kein borhaltiges Additiv enthält,
wenn die aschelose organische Polysulfidverbindung keine Verbindung von Thiadiazol-Typ
ist.
2. Motoröl-Zusammensetzung gemäß Anspruch 1, worin das genannte Molybdändithiocarbamat
(MoDTC) eine Verbindung der folgenden Formel (1) ist:

worin R
1 bis R
4, unabhängig voneinander, eine geradkettige oder verzweigte Alkyl- oder Alkenylgruppe
mit 4 bis 18 Kohlenstoffatomen und X
1 bis X
4, unabhängig voneinander, ein Sauerstoff- oder Schwefelatom bedeuten, wobei das Verhältnis
zwischen der Zahl des oder der Sauerstoffatome und derjenigen des oder der Schwefelatome
bezüglich X
1 bis X
4 1/3 bis 3/1 beträgt.
3. Motoröl-Zusammensetzung gemäß Anspruch 2, worin die genannten Reste R1 bis R4, unabhängig voneinander, die Alkylgruppe bedeuten.
4. Motoröl-Zusammensetzung gemäß Anspruch 2, worin die genannten Reste R1 bis R4, unabhängig voneinander, eine Butyl-, 2-Ethylhexyl-, Isotridecyl- oder eine Stearylgruppe
bedeuten.
5. Motoröl-Zusammensetzung gemäß einem der Ansprüche 1 bis 4, worin das genannte MoDTC
in einer Zugabemenge von 300 bis 1000 ppm, gewichtsbezogen, berechnet als Molybdän
(Mo), bezogen auf das Gesamtgewicht der Motoröl-Zusammensetzung, verwendet wird.
6. Motoröl-Zusammensetzung gemäß einem der Ansprüche 1 bis 5, worin das genannte Zinkdithiophosphat
(ZnDTP) eine Verbindung der Formel (2) ist:

worin R
5 und R
6, unabhängig voneinander, eine geradkettige oder verzweigte Alkylgruppe oder eine
gerade oder verzweigte Arylgruppe mit 3 bis 18 Kohlenstoffatomen bedeuten.
7. Motoröl-Zusammensetzung gemäß Anspruch 6, worin die genannten Reste R5 und R6, unabhängig voneinander, eine Alkylgruppe bedeuten.
8. Motoröl-Zusammensetzung gemäß Anspruch 6, worin die genannten Reste R5 und R6, unabhängig voneinander, eine primäre Alkylgruppe bedeuten.
9. Motoröl-Zusammensetzung gemäß Anspruch 6, worin die genannten Reste R5 und R6, unabhängig voneinander, eine Propyl-, Butyl-, Pentyl-, Hexyl-, Octyl- oder eine
Laurylgruppe bedeuten.
10. Motoröl-Zusammensetzung gemäß Anspruch 6, worin das genannte ZnDTP in einer Menge
von 0,04 bis 0,2 Gew.% zugefügt wird, berechnet als Phosphor (P), bezogen auf die
Gesamtmenge der Motoröl-Zusammensetzung.
11. Motoröl-Zusammensetzung gemäß einem der Ansprüche 1 bis 10, worin die genannte aschelose
organische Polysulfidverbindung eine organische Verbindung ist, ausgewählt aus der
Gruppe, bestehend aus organischen Verbindungen der folgenden Formel:
R
7-Sx-R
8
OHC-R
9-S-S-R
10-CHO
R
7-C(O)O-R
9-S-S-R
10-OC(O)-R
8
R
7-OC(S)-S-S-C(S)O-R
8

worin R
7 und R
8, unabhängig voneinander, eine geradkettige, verzweigte, alicyclische oder aromatische
Kohlenwasserstoffgruppe, worin eine geradkettigte, eine verzweigte, eine alicyclische
Einheit und eine aromatische Einheit selektiv in jeder kombinierten Weise enthalten
sein können, R
9 und R
10, unabhängig voneinander, eine geradkettige, verzweigte alicyclische oder aromatische
Kohlenwasserstoffgruppe mit 2 Bindungsstellen, worin eine geradkettige, eine verzweigte,
eine alicyclische Einheit und eine aromatische Einheit selektiv in jeder kombinierten
Weise enthalten sein können, R
11 und R
12, unabhängig voneinander, eine geradkettige oder verzweigte Kohlenwasserstoffgruppe
und "x" und "y", unabhängig voneinander, eine ganze Zahl von 2 oder mehr bedeuten.
12. Motoröl-Zusammensetzung gemäß Anspruch 11, worin die genannte aschelose Polysulfidverbindung
aus der Gruppe ausgewählt ist, bestehend aus mit Schwefel behandeltem Potwalöl, mit
Schwefel behandeltem Pinenöl, mit Schwefel behandeltem Sojabohnenöl, mit Schwefel
behandeltem Polyolefin, Dialkyldisulfid, Dialkylpolysulfid, Dibenzyldisulfid, Di-t-butyldisulfid,
Polyolefinpolysulfid, einer Verbindung vom Thiadiazol-Typ und aus mit Schwefel behandeltem
Phenol.
13. Motoröl-Zusammensetzung gemäß Anspruch 12, worin die genannte aschelose Polysulfidverbindung
die Verbindung vom Thiadiazol-Typ ist.
14. Motoröl-Zusammensetzung gemäß Anspruch 12, worin die genannte aschelose organische
Polysulfidverbindung Dialkylpolysulfid und insbesondere Dibenzyldisulfid ist.
15. Motoröl-Zusammensetzung gemäß einem der Ansprüche 11 bis 14, worin die genannte aschelose
organische Polysulfidverbindung in einer Menge von 0,1 bis 0,3 Gew.% zugefügt wird,
berechnet als Schwefel (S), bezogen auf die Gesamtmenge der Motoröl-Zusammensetzung.
16. Motoröl-Zusammensetzung gemäß einem der Ansprüche 1 bis 15, worin das genannte Molybdändithiocarbamat
(MoDTC) in einer Menge von 300 bis 1000 ppm, gewichtsbezogen, berechnet als Molybdän
(Mo), bezogen auf das Gesamtgewicht der Motoröl-Zusammensetzung, das genannte Zinkdithiophosphat
in einer Menge von 0,04 bis 0,2 Gew.%, berechnet als Phosphor (P), bezogen auf die
Gesamtmenge der Motoröl-Zusammensetzung, und die genannte aschelose organische Polysulfidverbindung
in einer Menge von 0,1 bis 0,3 Gew.%, berechnet als Schwefel (S), bezogen auf die
Gesamtmenge der Motoröl-Zusammensetzung, enthalten sind.
1. Composition d'huile pour moteur comprenant :
(1) au moins une huile choisie dans le groupe constitué par une huile minérale et
un lubrifiant synthétique comme huile de base ;
(2) du dithiocarbamate de molybdène (DTCMo) à raison de 50 à 2000 ppm, cette quantité
étant exprimée en poids de molybdène (Mo), par rapport au poids total de la composition
d'huile pour moteur ;
(3) du dithiophosphate de zinc (DTPZn) à raison de 0,01 à 0,2 % en poids, ce pourcentage
étant exprimé en poids de phosphore (P) par rapport au poids total de la composition
d'huile pour moteur ; et
(4) un composé polysulfure organique sans cendres à raison de 0,01 à 0,4 % en poids,
ce pourcentage étant exprimé en poids de soufre (S) par rapport au poids total de
la composition d'huile pour moteur ;
une condition à satisfaire étant que la composition d'huile pour moteur ne doit
pas contenir un additif contenant du bore dans le cas où le composé polysulfure organique
sans cendres n'est pas un composé du type thiadiazole.
2. Composition d'huile pour moteur selon la revendication 1, dans laquelle ledit dithiocarbamate
de molybdène (DTCMo) est un composé exprimé par la formule suivante (I) :

dans laquelle R
1 à R
4 indiquent, de manière indépendante, un groupe alkyle à chaîne droite ou ramifiée
ou un groupe alcényle à chaîne droite ou ramifiée ayant de quatre à dix-huit atomes
de carbone ; et X
1 à X
4 indiquent, de manière indépendante, un atome d'oxygène ou un atome de soufre, le
rapport entre le nombre d'atome ou atomes d'oxygène et le nombre d'atome ou atomes
de soufre dans X
1 à X
4 étant de 1/3 à 3/1.
3. Composition d'huile pour moteur selon la revendication 2, dans laquelle lesdits groupes
R1 à R4 indiquent, de manière indépendante, un groupe alkyle.
4. Composition d'huile pour moteur selon la revendication 2, dans laquelle lesdits groupes
R1 à R4 indiquent, de manière indépendante, un groupe butyle, un groupe 2-éthylhexyle, un
groupe isotridécyle ou un groupe stéaryle.
5. Composition d'huile pour moteur selon l'une quelconque des revendications 1 à 4, dans
laquelle ledit DTCMo est ajouté à raison de 300 à 1000 ppm, cette quantité étant exprimée
en poids de molybdène (Mo) par rapport au poids total de la composition d'huile pour
moteur.
6. Composition d'huile pour moteur selon l'une quelconque des revendications 1 à 5, dans
laquelle ledit dithiophosphate de zinc (DTPZn) est un composé exprimé par la formule
(2) :

dans laquelle R
5 et R
6 indiquent, de manière indépendante, un groupe alkyle à chaîne droite ou ramifiée
ou un groupe aryle à chaîne droite ou ramifiée ayant trois à dix-huit atomes de carbone.
7. Composition d'huile pour moteur selon la revendication 6, dans laquelle lesdits groupes
R5 et R6 indiquent, de manière indépendante, un groupe alkyle.
8. Composition d'huile pour moteur selon la revendication 6, dans laquelle lesdits groupes
R5 et R6 indiquent, de manière indépendante, un groupe alkyle primaire.
9. Composition d'huile pour moteur selon la revendication 6, dans laquelle lesdits groupes
R5 et R6 indiquent, de manière indépendante, un groupe propyle, un groupe butyle, un groupe
pentyle, un groupe hexyle, un groupe octyle ou un groupe lauryle.
10. Composition d'huile pour moteur selon la revendication 6, dans laquelle ledit DTPZn
est ajouté à raison de 0,04 à 0,2 %, ce pourcentage étant exprimé en poids de phosphore
(P), par rapport au poids total de la composition d'huile pour moteur.
11. Composition d'huile pour moteur selon l'une quelconque des revendications 1 à 10,
dans laquelle ledit composé polysulfure organique sans cendres est un composé organique
choisi dans le groupe constitué par les composés organiques exprimés par les formules
suivantes :
R
7-Sx-R
8
OHC-R
9-S-S-R
10-CHO
R
7-C(O)O-R
9-S-S-R
10-CC(O)-R
8
R
7-OC(S)-S-S-C(S)O-R
8

dans lesquelles R
7 et R
8 indiquent, de manière indépendante, un groupe hydrocarbure à chaîne droite, à chaîne
ramifiée, alicyclique ou aromatique, la chaîne droite, la chaîne ramifiée, l'unité
alicyclique et l'unité aromatique pouvant être choisies de manière à être présentes
dans une combinaison quelconque ; R
9 et R
10 indiquent, de manière indépendante, un groupe hydrocarbure à chaîne droite, à chaîne
ramifiée, alicyclique ou aromatique qui a deux sites de liaison, la chaîne droite,
la chaîne ramifiée, l'unité alicyclique et l'unité aromatique pouvant être choisies
de manière à être présentes dans une combinaison quelconque ; R
11 et R
12 indiquent, de manière indépendante, un groupe hydrocarbure à chaîne droite ou à chaîne
ramifiée, « x » et « y » indiquent, d'une manière indépendante, un nombre entier égal
à deux ou plus.
12. Composition d'huile pour moteur selon la revendication 11, dans laquelle ledit composé
polysulfure organique sans cendres est choisi dans le groupe constitué par l'huile
de spermaceti sulfurée, un pinène sulfuré, une huile de soja sulfurée, une polyoléfine
sulfurée, un disulfure de dialkyle, un polysulfure de dialkyle, un disulfure de dibenzyle,
un disulfure de di-tert.-butyle, un polysulfure de polyoléfine, un composé du type
thiadiazol et un phénol sulfuré.
13. Composition d'huile pour moteur selon la revendication 12, dans laquelle ledit composé
polysulfure organique sans cendres est un composé du type thiadiazol.
14. Composition d'huile pour moteur selon la revendication 12, dans laquelle ledit composé
polysulfure organique sans cendres est, de préférence un polysulfure de dialkyle ou
le disulfure de dibenzyle.
15. Composition d'huile pour moteur selon l'une quelconque des revendications 11 à 14,
dans laquelle ledit composé polysulfure organique sans cendres est ajouté à raison
de 0,1 - 0,3 % en poids, ce pourcentage étant exprimé en poids de soufre (S), par
rapport au poids total de la composition d'huile pour moteur.
16. Composition d'huile pour moteur selon l'une quelconque des revendications 1 à 15,
dans laquelle ledit dithiocarbamate de molybdène (DTCMo) est présent à raison 300
à 1000 ppm, cette quantité étant exprimée en poids de molybdène (Mo), par rapport
au poids total de la composition d'huile pour moteur ; ledit dithiophosphate de zinc
est présent à raison de 0,04 à 0,2 % en poids, ce pourcentage étant exprimé en poids
de phosphore (P), par rapport au poids total de la composition d'huile pour moteur
; et ledit composé polysulfure organique sans cendres étant présent à raison de 0,1
à 0,3 % en poids, ce pourcentage étant exprimé en poids de soufre (S), par rapport
au poids total de la composition d'huile pour moteur.