BACKGROUND OF THE INVENTION
[0001] The present invention pertains to waste treatment facilities in general, and in particular
to long-term storage of slurries.
[0002] Liquid sludge storage has been used for agricultural applications. Typically, manure
from livestock is stored over a period of time, until conditions are appropriate for
land application or other disposition of the stored material. It has been found convenient
to store the manure in a liquid form in large open top storage tanks. As those skilled
in the art will readily appreciate, the manure, which is fed into the tank in the
form of a liquid/solids slurry, will begin to settle and a surface crust will start
to form in a relatively short time after introduction in the storage tank. After relatively
long storage times, up to six months or more, the contents of the tank must be discharged
for application in a field. Due to the settling, and crust formation on the top of
the tank, preparations must be made several days ahead of time to prepare the tank
contents for discharge using liquid handling devices.
[0003] In waste water treatment facilities, such as municipal waste water treatment plants,
sludge is processed in various liquid forms and then stored in a dried condition.
However, due to environmental considerations, difficulties in handling the sludge
during treatment, and other factors, there is a growing interest in storing the sludge
in a liquid form.
[0004] When liquid sludge storage has been practiced in the past, the contents being stored
have been continuously mixed to maintain the sludge solids in suspension. This facilitates
withdrawal of sludge with relatively little preparation using liquid handling systems.
However, when sludge is stored for a prolonged period of time, on the order of several
months or more, the costs of maintaining sludge in a slurry form can be significant.
Accordingly, there has been a recent emphasis in exploring cost savings by allowing
sludge slurries in long-term storage to settle, and to mix the contents of the storage
tank only prior to tank unloading.
[0005] As those skilled in the art will appreciate, a crust of substantial thickness can
form on the surface of the tank and settling of solid sludge components can be quite
pronounced, requiring appropriately distributed mixing energy to be applied to the
tank contents so as to complete re-suspension of the solid contents of the tank. It
has been found that submerged mixing devices, either of the propeller or gas type,
have not been able to effectively mix tanks of larger diameter size particularly when
re-suspension of solids is necessary. Fixed propeller-type mixers, either those entering
the side or top of the tank provide a substantial mixing energy to the tank contents,
but have been found to leave dead spots in the tank which are not mixed. Also, propeller
mixers have been found effective only at certain specified water levels.
[0006] Diffused aeration systems have been used successfully on some types of mixtures,
but have not been capable of re-suspending solids which have settled out of a slurry
mixture, and are thus unsuitable for use with long-term sludge storage. United States
Patent No. 3,271,304 provides an example of a diffused aeration system.
[0007] Fixed liquid jets have been installed in storage tanks, and have been found to create
a velocity sufficient to maintain solids in suspension and to resuspend solids in
the flow path. However, in practical applications, portions of the tank, oftentimes
the center of the tank bottom, have been found unmixed. Also, fixed liquid jets as
previously employed, have not been able to break up crusts formed on the tops of the
storage tanks. United States Patent No. 3,586,294 shows an example of fixed liquid
jets. The jets are fed from a header system located at the bottom of the storage tank,
and produce counter-rotating flows. United States Patent No. 4,416,549 discloses an
arrangement for mounting a pump at the bottom of a storage tank, and includes a mounting
arrangement for attachment to the outer wall of the tank.
[0008] Pivoting propeller mixers have been installed along tank sidewalls. In general, pivoting
propeller mixers have been able to generate velocities necessary to re-suspend solids
along the outer portion of the tank, but contents at the center of the tank have not
been re-suspended.
[0009] Certain improvements have been provided by the arrangement of United States Patent
No. 4,332,484 which employs a rotatable liquid jet nozzle located at the center of
a storage tank. A second nozzle is located above the water level of the tank and is
manually directed to break up the top crust which forms on the tank, and to clean
off the tank walls after the tank has been emptied. The centrally located rotatable
nozzle is positioned adjacent the tank floor and applies velocity at a point where
solids are accumulated.
[0010] In order to break up the crust formed at the upper surface of the tank contents,
United States Patent No. 4,512,665 provides an adjustable nozzle mounted at the top
of the tank for discharging a flow downwardly on top of the crust to break up the
crust in preparation for homogenization of the crust pieces by other systems.
SUMMARY OF THE INVENTION
[0011] It is an object according to the present invent ion to provide method and apparatus
for improved mixing of slurries, in particular waste water slurries or manure slurries
in storage tanks, as defined in claims 1 and 10.
[0012] The present invention thus provides a method and apparatus of the above-described
type which provides an improved energy distribution of an agitating flow generating
in a storage tank.
[0013] The present invention enables agitation of the contents of a sludge storage tank
to suspend settled solids, and also to break up crusts which form on the tank contents,
and provides these advantages with a minimum number of submerged flow generating units
without requiring mixing units generating flows outside of the tank contents.
[0014] These and other features according to the present invention, which will become apparent
from studying the appended description and drawings, are provided in apparatus for
storing a slurry having solid and liquid components, comprising a storage tank defining
a volume for holding the liquid and solid slurry components, including a floor of
generally circular configuration and having a centre portion, the storage tank further
including an outer surrounding wall positioned generally at a preselected radial distance
from the centre portion, and at last two flow generating means positioned to be submerged
within the liquid and solid slurry components for generating flow of at least one
of the slurry components along a preselected direction, the flow generating means
being disposed only at distances from the centre portion ranging between approximately
25 percent and 75 percent of the preselected radial distance the flow generating means
creating a substantially volume filling flow of at least one of the slurry components
within the storage tank which mixes the liquid and solid slurry components to form
a substantially homogenous slurry suitable for unloading from the storage tank using
liquid handling devices.
BRIEF DESCRIPTION OF THE DRAWINGS
[0015]
FIG. 1 is a perspective view, shown partly cut away, of apparatus according to principles
of the present invention;
FIG. 2 is a top plan view thereof in schematic form;
FIG. 3 is a fragmentary view taken along the line 3-3 of FIG. 2 shown on an enlarged
scale;
FIG. 4 is a cross-sectional view taken along the line 4-4 of FIG. 3;
FIG. 5 is a diagrammatic view showing the flow pattern within the tank;
FIG. 6 is a diagrammatic perspective view of the flow pattern;
FIG. 7 is a top plan view of an alternative embodiment;
FIG. 8 shows a fragmentary portion of FIG. 7 in elevation, on an enlarged scale;
FIGS. 9 and 10 are top plan views of other alternative embodiments;
FIG. 11 is a diagrammatic plan view of a prior art system;
FIG. 12 is a cross-sectional view taken along the line 12-12 of FIG. 11; and
FIGS. 13-15 are top plan views of prior art systems.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
[0016] Referring now to FIGS. 1-6, a first embodiment of an apparatus 8 according to principles
of the present invention is shown. The apparatus 8 includes a storage tank 10 of generally
cylindrical, open top construction, for holding a wide variety of materials, especially
slurries having liquid and solid components. The present invention has found immediate
commercial acceptance for holding liquid sludge of the manure slurry, and especially
the waste water treatment types. Storage tank 10 has an upstanding wall 12 and a circular
floor 14, preferably of flat, generally horizontal construction. The storage tank
10 is preferably of cylindrical form, but can have other configurations such as sidewalls
having multiple, non-continuous side portions (such as an octagon, for example) and
the floor 14 could be of slightly conical configuration with the tip of the cone pointing
either upward or downward. The storage tank 10 is preferably constructed above ground,
but can also be constructed below grade, if desired.
[0017] Disposed within the storage tank 10 is a plurality of flow generating means comprising
flow devices of the type having directed flow output. The flow devices can have any
form and are positioned within the storage tank 10 to be partly or wholly submerged
in at least one of the liquid and solid components of the slurry. The flow devices
20 direct output flow generally along a line or over a relatively narrow angle of
dispersion, at least at the outputs of the devices. Flow devices of the preferred
embodiments are of the jet nozzle or discharge nozzle type and the propeller mixer
type. FIGS. 1-6 show an embodiment of three jet nozzle or discharge nozzle units 20,
while FIGS. 7 and 8 show flow devices of the propeller mixer type. In the first preferred
embodiment, the jet nozzle units 20 have portions that are rotatable in generally
horizontal planes so as to change the direction of directed flow output from the units,
as will be explained herein. With additional reference to FIGS. 3 and 4, the jet nozzle
units 20 each include a jet nozzle or discharge nozzle, generally indicated at 24,
and include an inlet connection 26, preferably in the form of a housing mounted to
the circular tank floor 14. The inlet connection 26 is coupled through a pipe 28 to
a suitable source 29 of high pressure flow indicated by arrows 30 in FIGS. 3 and 4.
The pipe 28 extends through the wall 12 of the storage tank 10 to facilitate maintenance
or modification of the high pressure source 29. Referring to FIG. 2, one example of
the high pressure source 29 is illustrated as including a plurality of pumps 34, preferably
of a comminuting or chopping type, receiving flow from a center sump 36 located within
the storage tank 10 and coupled to a header 40 by a pipe 42. An optional second or
peripheral sump 44 is coupled to a header 40 by a pipe 46. A pair of valves, respectively
numbered 48 and 50, control flow into the header 40. The header 40 includes an inlet
portion 52 for receiving a flow of makeup water, schematically indicated by arrow
54, which can be used to add water or other fluid to the storage tank 10, as desired.
Each pump 34 has associated with it a valve 58 coupling the pump 34 to an outlet header
60. A valve 62 couples the outlet header 60 to the inlet connections 26 through the
pipes 28. Flows to each of the inlet connections 26 are controlled by respective valves
66.
[0018] Discharge of the slurry components from the storage tank 10 may be accomplished in
a number of different, suitable ways. For example, a valve 70 allows discharge in
the direction of an arrow 72. It may be desirable during such discharge that the valve
62 be closed to route maximum pumping power through the valve 70 so as to direct the
slurry components through piping or to vehicles for further processing or disposition
at a remote location.
[0019] In the preferred embodiment, a closed loop flow-through mode of operation is employed
for mixing and suspending the slurry components with the slurry components being withdrawn
from the storage tank 10 via the center sump 36 and the peripheral sump 44 in the
storage tank 10 and directed through the manifolds and the pumps 34 to be returned
to the storage tank 10 through the jet nozzles 24.
[0020] Referring again to FIG. 1 and to FIGS. 3 and 4, the jet nozzle units 20 further include
devices for changing the direction of flow by positioning the jet nozzles 24, which
are preferably in the form of a gear box 80 mounted atop the inlet connections 26
and driven through transmission shafts 82 by manually operated cranks 84 located outside
of tank 10. The jet nozzle units 20 are preferably of a type disclosed in United States
Patent No. 4,332,484 and commercially available from A.O. Smith, as part of its Slurrystore
sludge storage systems. As indicated in FIG. 3, the jet nozzles 24 may be continuously
rotated and such is helpful for cleaning the storage tank 10 after the contents have
been removed. However, it is generally preferred during operation when contents of
the storage tank 10 are being re-suspended into a homogeneous composition, that the
jet nozzles 24 be directed away from the tank center, being operated throughout an
acute angle
a ranging between 0° and 60° as measured from a line perpendicular to a radius from
the center
C of the storage tank 10, and extending through the flow device 20.
[0021] As indicated in FIGS. 1 and 2, for example, it is generally preferred that all jet
nozzles 24 of a system are all directed in the same rotational sense. For example,
as can be seen in FIG. 2, an overhead plan view, the jet nozzles 24 are all directed
in a clockwise direction. FIG. 2 shows the jet nozzles 24 all directed along tangent
lines, although as mentioned above, the jet nozzles 24 can be angled slightly outwardly
away from the tank center
C and as will be seen herein, a surprising improvement in mixing the center of the
storage tank 10 is achieved even though the jet nozzles 24 are angled away from, rather
than toward, the tank center
C.
[0022] As can be seen in FIG. 2, the jet nozzles 24 are located at equal radial lengths
from the tank center line
C. According to an important aspect of the present invention, the jet nozzles 24 are
located within an annular band ranging between 25 percent and 75 percent, and more
preferably between 30 percent and 70 percent of the radial distance from the tank
center
C to the tank wall 12. Multiple "rings" of jet nozzles 24 can be employed within the
annular band, or less preferably, the jet nozzles 24 can be located at varying distances
from the tank center
C. Although the preferred tank configuration is cylindrical, the present invention
may also be adapted for use with slightly out-of-round tanks, as well as with octagonal
and other multi-sided tanks, in which case the aforementioned annular band is measured
with respect to a "radius" corresponding to the average distance between the center
of the tank and the tank wall sides.
[0023] As shown in the figures, the flow devices, whether of the propeller type or jet nozzle
type, are all located at equal radial lengths, although the flow devices of any one
particular system could be located at different radii falling within the aforementioned
annular band. Further, the figures show the flow devices all point in the same direction
with respect to tangents to the flow device radius, although the flow devices could
point in different directions, and such may be desirable for certain tank sizes and
aspect ratios. However, it is preferred that the flow devices have directed outputs
ranging within the limits of angle
a, as described above. Further, the flow devices illustrated in the figures are all
equally spaced and, while such is the preferred arrangement, the flow devices could
be unequally spaced for tanks of certain size and aspect ratios. For example, flow
devices may be grouped in pairs of differently directed devices, and such is contemplated
by the present invention. Other alternative arrangements will become apparent upon
studying the description and drawings.
[0024] Referring now to FIGS. 5 and 6, arrangements of submerged flow devices within the
annular band described above, have been found to produce surprising results including
substantially volume-filling flow which has been found to maintain suspension and
even more surprisingly, remix into homogeneous suspension substantially the entire
contents of the tank. Notably, the present invention has been found to thoroughly
maintain in suspension and if necessary, remix contents located at the center line
C of the storage tank 10. As illustrated in FIG. 5, flow is directed along the outside
wall 12 of the storage tank 10, across the surface of the slurry components in the
storage tank 10 and downwardly along the tank center
C. The flow then sweeps across the tank floor 14, especially at the point where the
vertical center line
C intersects the tank floor 14. Further, flow produced according to principles of the
present invention is believed to be substantially helical, sweeping out an annular
volume having a negligible central radius and an outer radius corresponding to that
of the tank wall 12, as illustrated in FIG. 6. The flow lines of FIG. 6 include flow
components 14
a travelling across the tank floor 14, and flow components 12
a sweeping along the tank wall 12, and returning downwardly at the center
C of the storage tank 10. The resulting flow patterns create an intensive mixing at
the center of tank by creating vortex-like characteristics therein. In some cases
a true vortex is created at the tank center, depending upon the viscosity of the slurry
and/or its components.
[0025] As mentioned, the present invention, with submerged flow devices located in the annular
band defined above, provides surprisingly thorough mixing of tank contents, even slurry
compositions which have heretofore been difficult to handle. Examples of such slurry
compositions contemplated by the present invention are manure solutions, waste water
and waste slurries for industrial plants. The slurries also comprise those processed
by water treatment plants, including municipal water treatment plants and municipal
and/or industrial waste water treatment plants. Quite surprisingly, the present invention
dramatically reduces the time required to remix i.e., re-suspend slurries which have
settled over prolonged storage periods, on the order of several months or more. As
those skilled in the art will appreciate, it has been difficult, heretofore, to completely
mix manure storage tanks which have been allowed to settle over prolonged periods
of time, using only submerged flow devices. Difficulties have been encountered in
suspending solids which have accumulated on the tank floor, especially near the center
of the tank floor. The present invention provides an energy distribution which accomplishes
resuspension of solids at the center of the tank floor, in a surprisingly short time.
[0026] Further, those skilled in the art readily appreciate that waste water tanks and manure
slurry storage tanks form crusts of substantial thickness and mechanical strength
when tank contents are allowed to settle, without continuous agitation over prolonged
periods of time. The formation of such crusts, along with difficulties in remixing
solids at the tank floor have heretofore prevented manure and waste water storage
systems which do not require energy input during prolonged storage periods. With the
present invention, crusts even those of substantial thickness associated with prolonged
storage periods, are broken up and suspended into a substantially homogeneous slurry
in a surprisingly short time. With the present invention, the crusts formed on such
tanks, even over prolonged periods on the order of 6 months, (e.g., crusts having
a thickness of six inches or more) are completely resuspended into a homogeneous slurry
in times as short as two days, with flow rates as low as 91 to 152cm (3 to 5 lineal
feet) per second. In the prior art, minimum energy levels of 37.3 to 55.95kW per 3785.4001
(50 to 75 brake horsepower per 1,000,000 gallons) of tank volume were required to
turn over the contents of the tank volume. In the present invention, the same results
can be achieved using as little as 18.65 to 22.38kW per 3735.4001 (25 to 30 brake
horsepower per 1,000,000 gallons) of tank volume.
[0027] Referring now to FIGS. 7 and 8, an alternative embodiment is shown using a different
type of flow device, preferably comprising conventional propeller mixers 98 of the
type commercially available from Flygt Corporation and others. The preferred propeller
mixers 98 are of the submerged motor type, and include drive motors 100 and transmissions
102 driving a propeller blade 104 mounted about an axis of rotation generally aligned
with the direction of flow output indicated by arrow 106 in FIG. 8. The propeller
mixers 93 preferably include a pivoting mounting 108 extending in a generally vertical
direction so that the propeller directed output tray be swung about a horizontal plane.
The propeller mixers 93 further include a gear box 112 driven by transmission shaft
82. Because of the electrical connections to the drive motors 100, it is generally
preferred that the propeller mixer's rotation be limited to avoid the need for rotatable
wiping contacts for the electrical connections. As with the preceding embodiment,
it is preferred that the propeller mixers 98 be rotatable away from the tank center
over an acute angle
a ranging between 0° and 60° as measured with respect to a line normal to the radius
passing through the propeller mixer device. As with the jet nozzle units described
above, the propeller mixers produce a directed flow, or pressurized output stream
directed along an axis line, at least in areas located at the mixer output. It is
generally preferred that the outputs of the flow devices have a relatively small dispersion
angle so as to provide the defined flow paths described above with reference to FIGS.
5 and 6, for example. Propellers driven by motors located outside of the slurry may
also be used. If desired, the flow devices used with the present invention can be
fixed, i.e., not rotatable.
[0028] Referring now to FIG. 9, a further alternative embodiment according to principles
of the present invention will be described. Thus far, the mixing arrangements have
consisted of groupings of three flow devices. In FIG. 9, four flow devices are employed
to produce the flow patterns described above with reference to FIGS. 5 and 6, for
example. The flow devices illustrated in FIG. 9 are of the jet nozzle type, but also
could be of the propeller mixer type, if desired. The jet nozzles 24 are located along
a common radius, are pointed with the same rotational sense and are spaced equidistant
from one another although, as mentioned above, other arrangements differing from that
illustrated are also possible. FIG. 9 indicates the aforementioned annular band within
which the flow devices are located. In FIG. 9, the annular band has an inner limit
r
1 and an outer limit r
2 ranging between 25 percent and 75 percent, and more preferably between 30 percent
and 70 percent of the radial distance to tank wall 12.
[0029] Referring now to FIG. 10, a further alternative embodiment is illustrated using two
flow devices, such as jet nozzles 24. In FIG. 10, one jet nozzle 24 is located at
the center of the storage tank 10, while the second jet nozzle 24 is located within
the annular band defined by principles of the present invention. FIG. 10 shows a minimum
number of flow devices required to produce the flow patterns described above with
reference to FIGS. 5 and 6, for example. The jet nozzle 24 located in the annular
band may have to be pointed slightly toward the tank center
C as illustrated, for some tanks, although it is generally preferred that it be pointed
away from the tank center for most applications.
[0030] Referring now to FIGS. 11 and 12, a prior art flow pattern is schematically indicated
for tank mixing systems having flow devices located adjacent a tank wall 119. An example
of such an arrangement employs propeller mixers mounted to the tank wall 119 for stabilization
and ready maintenance. One problem encountered with such an arrangement is that the
center of the tank, that area located within the dot-dash inner circle of FIG. 11,
experiences greatly diminished and oftentimes negligible mixing. An increase in the
number and power of the mixing units has not been found effective in overcoming the
observed difficulties in thorough mixing, which alone are provided by systems according
to principles of the present invention.
[0031] FIG. 12 shows a cross-sectional view of flow through the tank in which the unmixed
central core of the tank is evident. Thus, although substantial amounts of flow energy
are imparted to the contents of the tank, the energy is not distributed as in the
present invention and as a result, solids accumulate at the tank center.
[0032] FIG. 13 shows another flow pattern experienced with prior art mixing systems, again
showing a non-uniform energy distribution, and flow patterns which are not substantially
volume-filling as in the present invention. In FIG. 13, the flow patterns are limited
to two lobes separated from one another by a strip of poor or negligible mixing. The
flow pattern of FIG. 13 may result from the dual paddle mixer arrangements schematically
indicated in FIG. 15. In FIG. 15, a pair of paddle assemblies 120 is located on an
overhead suspension member 122, stretching across the top of a storage tank 123. FIG.
14 shows a single paddle mixer which also has been found inadequate to mix tank contents,
particularly at portions of a tank floor adjacent the tank wall 125.
[0033] As can be seen from the above, the present invention employs flow devices, submerged
or not, having submerged directed flow outputs, which are located within an annular
band located between 25 percent and 75 percent and most preferably between 30 percent
and 70 percent of the radial distance from the center of the storage tank to the tank
outer wall. The annular band may also be determined for non-cylindrical tank walls
having multiple sides of uniform construction, such as octagons, hexagons and the
like or out-of-round configurations. The directed flows from the flow devices are
preferably angled within an acute angle directed away from the tank center, the angle
being measured with respect to a tangent to the flow device radius. The acute angle
ranges between 0° (i.e., normal to the tank radius) and 60°, and varies for tanks
of differing sizes and aspect ratios. It is preferred that flows according to principles
of the present invention be set up so as to have downwardly directed components at
the center of the tank, although upwardly directed components at the tank center are
also possible and are contemplated by the present invention.
[0034] It is preferred that the flow devices be located at generally the same height with
respect to the tank floor. However, the various flow devices of a system may be installed
at differing heights, if desired.
[0035] While it is generally preferred that the same type of flow device, preferably either
a propeller mixer or jet nozzle, be employed throughout a given system, the flow device
types can be mixed in a given system if desired, and may be combined in pairs to achieve
desired flow patterns.
1. Apparatus (8) for storing a slurry having solid and liquid components, comprising
a storage tank (10) defining a volume for holding a body of liquid and solid slurry
components, including a floor (14) of generally circular configuration, a centre,
an outer surrounding wall (12) positioned generally at a radial distance from the
centre portion, at least two flow generating means (20) positioned to be submerged
within the liquid and solid slurry components for generating flow of at least one
of the slurry components along a preselected rotational direction, said first and
second flow generating means (20) each being directed at an angle to a radius extending
through the respective flow generating means to generate flows with tangential components
of flow to impart a rotational movement of the entire body of liquid and solid components,
characterized in that:
each of said flow generating means (20) are disposed only at distances from the centre
ranging between approximately 25 percent and 75 percent of said preselected radial
distance, each of said generating means (20) being pointed toward the outer surrounding
wall (12) for generating a substantially helical flow path of the liquid and solid
components therein with the liquid and solid components travelling outwardly across
the tank floor (14) from the centre of the tank (10) towards the tank wall (12) and
then upwardly along the tank outer surrounding wall (12) to a first point and then
inwardly along an upper portion of the body toward the centre of the tank (10) and
then downwardly toward the tank floor (14), and then outwardly to a second point spaced
circumferentially from the first point in the direction of rotation of the entire
body of liquid, the liquid and solid components continuing to travel in the helical
path as the entire body of liquid and solid components continues to rotate, said flow
generating means (20) creating a substantially volume-filling flow of at least one
of the slurry components within said storage tank (10) which mixes the liquid and
solid slurry components to form a substantially homogeneous slurry suitable for unloading
from said storage tank (10) using liquid handling devices.
2. Apparatus (8) as claimed in claim 1, wherein each of said flow generating means (20)
is pointed in the direction for generating flows of the liquid and solid components
from the respective flow generating means (20) directed in the same rotational sense.
3. Apparatus (8) as claimed in claim 1, wherein at least one of said flow generating
means comprises a mixing propeller (98), the flow along the preselected direction
generated by said mixing propeller (98) comprising a directed stream of at least one
of the liquid and solid slurry components of a preselected direction.
4. Apparatus (8) as claimed in claim 1, wherein at least one of said flow generating
means (20) comprises a discharge nozzle, the flow along the direction generated by
said discharge nozzle comprising a jet stream of flow of at least one of the liquid
and solid slurry components in the preselected direction.
5. Apparatus (8)as claimed in claim 4, further comprising means for coupling said discharge
nozzle to a pressure source (29).
6. Apparatus (8) as claimed in claim 5, further comprising sump means (36,44) coupled
to said pressure source (29) for directing at least one of the solid and liquid slurry
components to said pressure source (29), to form a substantially closed loop path
for circulating at least one of the solid and liquid components within said storage
tank (10).
7. Apparatus (8) as claimed in claim 3 or claim 6, further comprising movable mounting
means (80,108) for movably mounting at least one of said flow generating means (20)
within said storage tank (10) so as to selectively change the preselected flow direction
thereof.
8. Apparatus (8) as claimed in claim 7, wherein said movable mounting means (80,108)
directs the preselected flow direction of flow generating means (20) away from the
tank centre portion.
9. Apparatus (8) as claimed in claim 1, further comprising means for selectively controlling
the discharge of said flow generating means (20).
10. A method for mixing a slurry having solid and liquid components stored in a storage
tank (10) defining a storage volume by creating a substantially volume-filling flow
within the storage tank (10) which mixes the slurry components to form a homogeneous
slurry suitable for unloading from the storage tank (10) using liquid handling devices,
said storage tank (10) including a floor (14) of generally circular configuration
having a centre portion, and an outer surrounding wall (12) generally at a preselected
radial distance from the centre portion, the method comprising the step of submerging
at least two flow generating means (20) having directed flow outputs, within said
slurry components, and characterized by the further steps of:
disposing the flow generating means (20) at a distance between 25 percent and 75 percent
of the preselected radial distance from the centre portion;
directing the flow from each flow generating means at an angle to a radius of the
storage tank extending through the flow generating means to generate flow of the tangential
components of flow to impart a rotational movement of the entire body of liquid and
solid components and to generate a substantially helical flow of liquid and solid
components whereby the latter travel outwardly across the tank floor (14) to a first
point, upwardly along the tank wall (12), inwardly along an upper portion of the body
toward the centre portion of the tank (10), downwardly toward the tank floor (14)
and again outwardly toward a second point on the tank wall (12) spaced from the first
point in the direction of rotation of the entire body, thereby to mix the solid and
liquid slurry components to form a substantially homogeneous slurry.
11. A method as claimed in claim 10, further comprising the step of disposing a further
flow generating means (20) generally at the centre portion.
12. A method as claimed in claim 10, further comprising the step of directing the flow
generally away from the tank centre portion.
13. A method as claimed in claim 10, further comprising the step of generating said flows
at distances from the centre portion ranging between approximately 30 percent and
70 percent of said preselected radial distance.
14. A method as claimed in claim 10, further comprising the step of capturing a portion
of the flow at an outlet (36, 44) from the storage tank (10) and coupling the outlet
flow to the tank flow to form a substantially closed loop path for circulating a portion
the slurry components within said storage tank (10).
15. A method as claimed in claim 10, further comprising the step of controlling the amounts
of flow.
1. Vorrichtung (8) zum Lagern von Schlamm, der feste und flüssige Bestandteile aufweist,
umfassend einen ein Volumen zum Halten einer Substanz aus flüssigen und festen Schlammbestandteilen
begrenzenden Speicherbehälter (10), der einen Boden (14) eines im allgemeinen kreisförmigen
Aufbaus, ein Zentrum, eine umgebende Außenwand (12) aufweist, die im allgemeinen in
einem radialen Abstand von dem Zentrumsabschnitt positioniert ist, wenigstens zwei
Strömungserzeugungsmittel (20), die derart positioniert sind, daß sie in den flüssigen
und festen Schlammbestandteilen zum Erzeugen einer Strömung aus wenigstens einem der
Schlammbestandteile entlang einer vorgewählten Drehrichtung eingetaucht sind, wobei
jeweils das erste und zweite Strömungserzeugungsmittel (20) in einem Winkel zu einem
sich durch die jeweiligen Strömungserzeugungsmittel hindurch erstreckenden Radius
ausgerichtet sind, um Ströme mit tangentialen Strömungskomponenten zu erzeugen, um
eine Drehbewegung der gesamten Substanz aus flüssigen und festen Bestandteilen zu
erteilen, dadurch gekennzeichnet, daß:
jedes der Strömungserzeugungsmittel (20) vom Zentrum lediglich in Abständen angeordnet
ist, die in einem Bereich zwischen näherungsweise 25 Prozent und 75 Prozent des vorgewählten
radialen Abstandes liegen, wobei jedes der Erzeugungsmittel (20) zur umgebenden Außenwand
(12) hin gerichtet ist, um einen im wesentlichen schraubenförmigen Strömungsweg der
flüssigen und darin befindlichen festen Bestandteile zu erzeugen, wobei die flüssigen
und festen Bestandteile nach außen über den Behälterboden (14) vom Zentrum des Behälters
(10) hin zur Behälterwand (12) und dann nach oben entlang der umgebenden Außenwand
(12) des Behälters zu einem ersten Punkt und dann nach innen entlang einem oberen
Teil der Substanz hin zum Zentrum des Behälters (10) und dann nach unten hin zum Behälterboden
(14) und anschließend nach außen zu einem zweiten Punkt wandern, der in Umfangsrichtung
von dem ersten Punkt in der Drehrichung der gesamten Flüssigkeitssubstanz in Abstand
angeordnet ist, wobei die flüssigen und festen Bestandteile weiter auf dem spiralförmigen
Weg wandern, während sich die gesamte Substanz aus flüssigen und festen Bestandteilen
weiter dreht, wobei die Strömungserzeugungsmittel (20) innerhalb des Speicherbehälters
(10) eine im wesentlichen volumenfüllende Strömung aus wenigstens einem der Schlammbestandteile
erzeugen, die die flüssigen und festen Schlammbestandteile mischt, um einen im wesentlichen
homogenen Schlamm zu bilden, der zur Entnahme aus dem Speicherbehälter (10) unter
Verwendung von Flüssigkeitshandhabevorrichtungen geeignet ist.
2. Vorrichtung (8) nach Anspruch 1, wobei jedes der Strömungserzeugungsmittel (20) in
der Richtung gerichtet ist, um Strömungen aus flüssigen und festen Bestandteilen von
den jeweiligen Strömungserzeugungsmitteln (20) zu erzeugen, die in dem selben Drehsinn
ausgerichtet sind.
3. Vorrichtung (8) nach Anspruch 1, wobei wenigstens eines der Strömungserzeugungsmittel
(20) einen Mischpropeller (98) umfaßt, wobei die Strömung entlang der vorgewählten,
von dem Mischpropeller (98) erzeugten Richtung einen gerichteten Strahl aus wenigstens
einem der flüssigen und festen Schlammbestandteile mit einer vorgewählten Richtung
umfaßt.
4. Vorrichtung (8) nach Anspruch 1, wobei wenigstens eines der Strömungserzeugungsmittel
(20) eine Abgabedüse umfaßt, wobei die Strömung entlang der von der Abgabedüse erzeugten
Richtung einen Strömungs-Jetstrahl aus wenigstens einem der flüssigen und festen Schlammbestandteile
in der vorgewählten Richtung umfaßt.
5. Vorrichtung (8) nach Anspruch 4 ferner umfassend ein Mittel zum Koppeln der Abgabedüse
mit einer Druckquelle (29).
6. Vorrichtung (8) nach Anspruch 5 ferner umfassend ein Sickermittel (36, 44), das mit
der Druckquelle (29) zum Ausrichten wenigstens eines der festen und flüssigen Schlammbestandteile
mit der Druckquelle (29) gekoppelt ist, um einen im wesentlichen geschlossenen Umlaufweg
zum Zirkulieren wenigstens eines der festen und flüssigen Bestandteile innerhalb des
Speicherbehälters (10) zu bilden.
7. Vorrichtung (8) nach Anspruch 3 oder 6 ferner umfassend ein bewegliches Anbringmittel
(80, 108) zum beweglichen Anbringen wenigstens eines der Strömungserzeugungsmittel
(20) innerhalb des Speicherbehälters (10), um wahlweise deren vorgewählte Strömungsrichtung
zu ändern.
8. Vorrichtung (8) nach Anspruch 7, wobei das bewegliche Anbringmittel (80, 108) die
vorgewählte Strömungsrichtung der Strömungserzeugungsmittel (20) weg von dem Behälterzentrumsabschnitt
ausrichtet.
9. Vorrichtung (8) nach Anspruch 1 ferner umfassend ein Mittel zum wahlweisen Steuern
der Abgabe der Strömungserzeugungsmittel (20).
10. Verfahren zum Mischen eines Schlamms mit festen und flüssigen Bestandteilen, die in
einem ein Speichervolumen begrenzenden Speicherbehälter (10) gelagert sind, durch
Erzeugen einer im wesentlichen volumenfüllenden Strömung innerhalb des Speicherbehälters
(10), die die Schlammbestandteile mischt, um einen homogenen Schlamm zu bilden, der
zur Entnahme aus dem Speicherbehälter (10) unter Verwendung von Flüssigkeitshandhabevorrichtungen
geeignet ist, wobei der Speicherbehälter (10) einen Boden (14) eines im allgemeinen
kreisförmigen Aufbaus mit einem Zentrumsabschnitt und eine umgebende Außenwand (12)
im allgemeinen in einem vorgewählten radialen Abstand zum Zentrumsabschnitt aufweist,
wobei das Verfahren den Schritt des Eintauchens von wenigstens zwei Strömungserzeugungsmitteln
(20) mit ausgerichteten Strömungsausgängen in den Schlammbestandteilen umfaßt, und
gekennzeichnet durch die weiteren Schritte:
Anordnen der Strömungserzeugungsmittel (20) in einem Abstand zwischen 25 Prozent und
75 Prozent des vorgewählten radialen Abstandes von dem Zentrumsabschnitt;
Ausrichten der Strömung von jedem Strömungserzeugungsmittel in einem Winkel zu einem
sich durch die Strömungserzeugungsmittel erstreckenden Radius des Speicherbehälters,
um eine Strömung aus den tangentialen Strömungskomponenten zu erzeugen, um eine Drehbewegung
der gesamten Substanz aus flüssigen und festen Bestandteilen zu erteilen und um eine
im wesentlichen schraubenförmige Strömung aus flüssigen und festen Bestandteilen zu
erzeugen, wodurch letztere nach außen über den Behälterboden (14) zu einem ersten
Punkt, nach oben entlang der Behälterwand (12), nach innen entlang einem oberen Teil
der Substanz hin zum Zentrumsabschnitt des Behälters (10), nach unten hin zum Behälterboden
(14) und wieder nach außen hin zu einem zweiten Punkt an der Behälterwand (12) wandern,
der von dem ersten Punkt in der Drehrichtung der gesamten Substanz in Abstand angeordnet
ist, um dadurch die festen und flüssigen Schlammbestandteile zu mischen, so daß ein
im wesentlichen homogener Schlamm gebildet wird.
11. Verfahren nach Anspruch 10 ferner umfassend den Schritt des Anordnens eines weiteren
Strömungserzeugungsmittels (20) im wesentlichen im Zentrumsabschnitt.
12. Verfahren nach Anspruch 10 ferner umfassend den Schrift des Lenkens der Strömung im
allgemeinen weg von dem Behälterzentrumsabschnitt.
13. Verfahren nach Anspruch 10 ferner umfassend den Schrift des Erzeugens der Strömungen
in Abständen zum Zentrumsabschnitt, die in einem Bereich zwischen näherungsweise 30
Prozent und 70 Prozent des vorgewählten Radialabstandes liegen.
14. Verfahren nach Anspruch 10 ferner umfassend den Schrift des Einfangens eines Strömungsabschnitts
an einem Auslaß (36, 44) von dem Speicherbehälter (10) und des Koppelns der Auslaßströmung
mit der Behälterströmung, um einen im wesentlichen geschlossenen Umlaufweg zum Zirkulieren
eines Teils der Schlammbestandteile innerhalb des Speicherbehälters (10) zu bilden.
15. Verfahren nach Anspruch 10 ferner umfassend den Schrift des Steuerns der Strömungsmengen.
1. Appareil (8) pour le stockage d'une suspension ayant des constituants solides et liquides,
comportant une cuve (10) de stockage définissant un volume destiné à retenir une masse
de constituants liquides et solides d'une suspension, comprenant un fond (14) de configuration
globalement circulaire, un centre, une paroi périphérique extérieure (12) positionnée
globalement à une distance radiale de la partie centrale, au moins deux moyens (20)
de génération d'écoulements positionnés de façon à être immergés dans les constituants
liquides et solides de la suspension pour générer un écoulement d'au moins l'un des
constituants de la suspension suivant un sens de rotation préalablement choisi, lesdits
premier et second moyens (20) de génération d'écoulements étant dirigés chacun de
façon à former un angle par rapport à un rayon passant par les moyens respectifs de
génération d'écoulements pour générer des écoulements ayant des composantes d'écoulements
tangentielles afin de communiquer un mouvement de rotation à la masse entière de constituants
liquides et solides, caractérisé en ce que :
chacun desdits moyens (20) de génération d'écoulements est disposé seulement à des
distances du centre allant d'environ 25 % à 75 % de ladite distance radiale préalablement
choisie, chacun desdits moyens de génération (20) étant orienté vers la paroi périphérique
extérieure (12) pour y générer un trajet d'écoulement sensiblement hélicoïdal des
constituants liquides et solides, les constituants liquides et solides se déplaçant
vers l'extérieur sur le fond (14) de la cuve depuis le centre de la cuve (10) vers
la paroi (12) de la cuve, puis s'élevant le long de la paroi périphérique extérieure
(12) de la cuve jusqu'à un premier point, puis se déplaçant vers l'intérieur le long
de la partie supérieure de la masse vers le centre de la cuve (10), puis vers le bas
en direction du fond (14) de la cuve, puis vers l'extérieur jusqu'à un second point
espacé circonférentiellement du premier point dans le sens de rotation de la masse
entière de liquide, les constituants liquides et solides continuant à se déplacer
suivant le trajet hélicoïdal pendant que la masse entière de constituants liquides
et solides continue de tourner, lesdits moyens (20) de génération d'écoulements créant
un écoulement sensiblement de remplissage de volume d'au moins l'un des constituants
de la suspension à l'intérieur de ladite cuve (10) de stockage qui mélange les constituants
liquides et solides de la suspension pour former une suspension sensiblement homogène
apte à être déchargée de ladite cuve (10) de stockage en utilisant des dispositifs
de manutention de liquides.
2. Appareil (8) selon la revendication 1, dans lequel chacun desdits moyens (20) de génération
d'écoulements est orienté dans la direction pour générer des écoulements des constituants
liquides et solides à partir des moyens respectifs (20) de génération d'écoulements
dirigés dans le même sens de rotation.
3. Appareil (8) selon la revendication 1, dans lequel au moins l'un desdits moyens de
génération d'écoulements comporte une hélice mélangeuse (98), l'écoulement suivant
la direction préalablement choisie généré par ladite hélice mélangeuse (98) comprenant
un courant dirigé d'au moins l'un des constituants liquides et solides de la suspension
d'une direction préalablement choisie.
4. Appareil (8) selon la revendication 1, dans lequel au moins l'un desdits moyens (20)
de génération d'écoulements comporte une buse de décharge, l'écoulement suivant la
direction générée par ladite buse de décharge comprenant un courant-jet d'écoulement
d'au moins l'un des constituants liquides et solides de la suspension dans la direction
préalablement choisie.
5. Appareil (8) selon la revendication 4, comportant en outre des moyens destinés à raccorder
ladite buse de décharge à une source (29) de pression.
6. Appareil (8) selon la revendication 5, comportant en outre des moyens (36, 44) de
puisard raccordés à ladite source (29) de pression pour diriger au moins l'un des
constituants solides et liquides de la suspension vers ladite source (29) de pression,
afin de former un trajet à boucle sensiblement fermée pour faire circuler au moins
l'un des constituants solides et liquides à l'intérieur de ladite cuve (10) de stockage.
7. Appareil (8) selon la revendication 3 ou la revendication 6, comportant en outre des
moyens mobiles (80, 108) de montage pour le montage mobile d'au moins l'un desdits
moyens (20) de génération d'écoulements à l'intérieur de ladite cuve (10) de stockage
afin d'en changer sélectivement la direction d'écoulement préalablement choisie.
8. Appareil (8) selon la revendication 7, dans lequel lesdits moyens mobiles (80, 108)
de montage dirigent la direction d'écoulement préalablement choisie des moyens (20)
de génération d'écoulements à l'écart de la partie centrale de la cuve.
9. Appareil (8) selon la revendication 1, comportant en outre des moyens pour commander
sélectivement la décharge desdits moyens (20) de génération d'écoulements.
10. Procédé pour mélanger une suspension ayant des constituants solides et liquides stockée
dans une cuve de stockage (10) définissant un volume de stockage en créant un écoulement
sensiblement de remplissage de volume à l'intérieur de la cuve (10) de stockage qui
mélange des constituants de la suspension pour former une suspension homogène apte
à être déchargée de la cuve (10) de stockage en utilisant des dispositifs de manutention
de liquides, ladite cuve (10) de stockage comprenant un fond (14) de configuration
globalement circulaire ayant une partie centrale, et une paroi périphérique extérieure
(12) située globalement à une distance radiale préalablement choisie de la partie
centrale, le procédé comprenant l'étape d'immersion d'au moins deux moyens (20) de
génération d'écoulements ayant des sorties d'écoulements orientées, à l'intérieur
desdits constituants de la suspension, et caractérisé par les autres étapes dans lesquelles
:
on dispose les moyens (20) de génération d'écoulements à une distance de la partie
centrale comprise entre 25 % et 75 % de la distance radiale préalablement choisie
;
on dirige l'écoulement provenant de chacun des moyens de génération d'écoulements
sous un angle avec un rayon de la cuve de stockage passant par les moyens de génération
d'écoulements pour générer un écoulement des composantes tangentielles d'écoulement
afin de communiquer un mouvement de rotation à la masse entière de constituants liquides
et solides et de générer un écoulement sensiblement hélicoïdal des constituants liquides
et solides de façon que ce dernier se déplace vers l'extérieur sur le fond (14) de
la cuve jusqu'à un premier point, s'élève le long de la paroi (12) de la cuve, se
déplace vers l'intérieur le long d'une partie supérieure de la masse vers la partie
centrale de la cuve (10), descende vers le fond (14) de la cuve et se déplace de nouveau
vers l'extérieur jusqu'à un second point sur la paroi (12) de la cuve espacé du premier
point dans la direction de rotation de la masse entière, afin de mélanger les constituants
solides et liquides de la suspension pour former une suspension sensiblement homogène.
11. Procédé selon la revendication 10, comportant en outre l'étape dans laquelle on dispose
un autre moyen (20) de génération d'écoulements globalement à la partie centrale.
12. Procédé selon la revendication 10, comportant en outre l'étape dans laquelle on dirige
l'écoulement globalement à l'écart de la partie centrale de la cuve.
13. Procédé selon la revendication 10, comprenant en outre l'étape dans laquelle on génère
lesdits écoulements à des distances, à partir de la partie centrale, comprises entre
environ 30 % et 70 % de ladite distance radiale préalablement choisie.
14. Procédé selon la revendication 10, comprenant en outre l'étape dans laquelle on capte
une partie de l'écoulement à une sortie (36, 44) de la cuve (10) de stockage et on
raccorde l'écoulement de sortie à l'écoulement de la cuve pour former un trajet en
boucle sensiblement fermé pour la circulation d'une partie des constituants de la
suspension à l'intérieur de ladite cuve (10) de stockage.
15. Procédé selon la revendication 10, comprenant en outre l'étape de réglage des quantités
en écoulement.