[0001] The invention concerns an external gear hydraulic device, i.e. an external volumetric
gear pump, or motor, comprising a hollow body acting as casing closed off axially
at one end by a cover and by a flange at the opposite end, the hollow body having
a seat in the form of two opposing lobes in which are coupled rotationally pairs of
gearwheels that mesh with each other.
[0002] The prior art comprises gear pumps of the type described above, in which the hollow
body is generally obtained by extruding high strength aluminium, or by casting metallic
material, for example, special cast iron.
[0003] In the pumps of the first type supports are provided for the rotational coupling
of the shafts, onto which the gearwheels are keyed, said supports being set into in
the two-lobe cavity in which the said gearwheels are positioned: in this way the gearwheels
are automatically positioned coaxially in the relative lobe of the cavity in which
they are placed.
[0004] When two or more independent pumping elements are required, having the same displacements
or even displacements that are not the same, they are arranged in series, whereby
the driving shaft of the pair of gearwheels of one pumping element is coupled in series,
by means of a coupling, with the driving shaft of the next pumping element, and so
on: the resulting axial dimension corresponding to the sum of the axial lengths of
the bodies of each pumping element, to which have to be added the axial lengths of
the couplings, the thickness of a cover and that of a flange.
[0005] With pumps of the second type, that is, having bodies obtained from a casting, the
supports of the shafts of each pumping element are set into the cover and into the
flange, thereby requiring these to be positioned with respect to the body by means
of centering pins that entail a high degree of precision during machining and therefore
high costs: when a number of pumping elements are required, the body of the pump is
split into sections in order to insert, between the shaft of one pumping element and
the next, the coupling for transmitting the rotation, this entailing further machining
difficulties, considerable costs and sizeable overall dimensions.
[0006] Alternatively, at least in the case where only two pumping elements are required
that are hydraulically independent of each other, special castings have to be designed
that have two distinct pumping chambers.
[0007] The excessive dimensions of such apparatus constitutes a severe limit on the application
of these pumps, causing considerable problems during installation, for example, for
small hydraulic excavators, in which the available space is very limited and in which
there is the requirement for a number of independent hydraulic circuits.
[0008] Such prior art may be subject to considerable improvements with a view to eliminating
the above-mentioned drawbacks.
[0009] A hydraulic gear device with a rather simple construction is known from the document
EP-A-0.004.119.
[0010] The technical problem to be solved by the invention is that of simplifying the manufacture
of hydraulic devices, such as gear motor or pumps.
[0011] According to a particular aspect, the problem consists in achieving, in an extremely
simple and economical manner, a number of independent chambers in a single gear motor
or pump.
[0012] The invention solves the above-mentioned problem by adopting a gear motor or pum
having the features of claim 1. In particular is provided a device comprising a casing
having a lobed cavity, said casing being fitted with positionable partitioning means
that divide the lobed cavity into at least two distinct and independent chambers.
[0013] Each chamber may be provided with an inlet and a respective outlet; this is particularly
advantageous when the hydraulic device has to be used as a bi-directional gear motor
or pump.
[0014] The chambers may also have a common inlet and distinct outlets, which is preferable
when the hydraulic device has to be used as uni-directional pump, or as a gear motor
flow-divider.
[0015] In the latter embodiment, the outlets may be conected toghether and a check valve
may be interposed between them, particularly when the device has to be used as an
high-low (hi-lo) pump.
[0016] In a particularly advantageous embodiment, the said positionable partitioning means
consists of at least one divider plate that may be placed axially inside the cavity
with two opposing lobes in correspondence with a transverse plane perpendicular to
the axis of the said cavity.
[0017] One of the advantages of the present invention lies in the reduction in overall dimensions
achieved by adopting the said solution when at least two independent pumping or motor
elements are required.
[0018] Furthermore, another advantage lies in the fact that it is possible, using the same
pump, or motor, body of a predetermined length, to obtain a range of different displacements
for the chambers in function of the axial position in which the divider plate is set
during assembly: this gives significant benefits in terms of the reduction of spare
parts kept in stock and greatly simplifies the production cycle; also, the solution
as described is suitable for use both with pumps, or motors, having bodies obtained
by extrusion and with pumps having bodies obtained from a casting.
[0019] In this respect, it is to be noted that the divider plate can advantageously be made
of a wearproof low friction material suitable for coupling with the ends of the gearwheels,
solution which is impracticable with prior art pumps, in particular those obtained
from a casting, in which only one material is used in the manufacture of the body
of the pump, and impossible with pumps, or motors, having extruded bodies in which
it is not possible to obtain structural elements formed in a plane that is perpendicular
to the axis of extrusion.
[0020] In a particularly advantageous version, the device has a single inlet opening that
passes through the body of the pump, divided into two parts by the underlying divider
plate, so as to supply a flow to the two pumping chambers separately, said flow being
advantageously proportional to the displacement of each chamber.
[0021] For this reason the divider plate may be positioned centrally with respect to the
said opening, or even offset with respect to it, that is, displaced along the axis
of the cavity towards one of the chambers.
[0022] This has the particular advantage of obtaining, in an extremely simple manner and
automatically with the positioning of the divider plate, an optimal supply to the
chamber of each pumping, or motor, element, without having to use complex external
inlet manifolds as used in the prior art.
[0023] In another advantageous version, the axial length of the divider plate, that is,
its dimension in a direction parallel to the axis of the cavity with two opposing
lobes, is less than the sum of the axial lengths of the end supports: it being envisaged
that the reduction in length may be of the order of approximately 30% or even up to
50%.
[0024] This gives rise to the further advantage consisting in the possibility of further
reducing the axial extent of the body of the pump or motor (with a given ratio between
the displacements of the adjacent chambers).
[0025] It is to be noted, in particular, that the reduction in the axial length envisaged
for the divider plate enables, taking into account the manner in which the pump, or
motor, is operated during its working life, the quantity of materials used in its
manufacture to be optimised eliminating onerous waste caused by over designing.
[0026] The provision of an additional support for each of the driving and driven shafts
at the divider plate enables a synergic effect in the distribution of the loads to
be achieved, effect which does not occur in applications in which there are pumps
in series connected by couplings, as found in the prior art.
[0027] In another advantageous version, the said divider plate has a plane of symmetry parallel
to the axis of the cavity with two opposing lobes and is divided into two parts at
the said plane.
[0028] This gives rise to the further advantage of making the divider plate particularly
easy to manufacture, in that each one of the two parts into which the divider plate
is divided can be obtained by axial-symmetric machining from a semifinished piece
obtained by forming, for example by casting, or forged, or even swarf machined from
bars using normal machine tools.
[0029] In another advantageous version, the divider plate has a first recess, positioned
on the side corresponding to the inlet, thereby making the pumping, or motor, chambers
axially intercommunicating so as to improve the filling of them.
[0030] On its side facing the outlet, the divider plate may have a second recess, analogous
to said first recess, but coupling with a plugging element of the same shape protruding
from the surface defining the cavity and extending inwards in a position corresponding
to the join between the lobes, so as to prevent the pumping chambers from being interconnected
on the outlet side.
[0031] Moreover, the divider plate can be symmetrical with respect to a plane that is perpendicular
to the axis of the cavity with two opposing lobes of the body of the pump.
[0032] This affords the further advantage of rapidity of assembly, essential requirement
in order to easily automate the manufacturing cycle of such pumps.
[0033] Some embodiments of the invention are illustrated, purely by way of example, in the
ten tables of drawings attached in which:
Figure 1 is a longitudinal section of an uni-directional gear pump having an extruded
body, in a first embodiment with two pumping chambers having substantially the same
displacement separated by an intermediate divider plate;
Figure 2 is a section taken along line II-II of Figure 1;
Figure 3 is a section taken along III-III of Figure 2, but showing an embodiment having
pumping chambers with different displacements;
Figure 4 is a longitudinal section as in Figure 1, but relative to an embodiment with
a double ring gear in order to reduce noise levels;
Figure 5 is a longitudinal section as in Figure 1, but relating to an embodiment having
a cast body;
Figure 6 is a partial and enlarged top view of Figure 2, in an embodiment with divider
plate centred with respect to the inlet opening;
Figure 7 is a view as in Figure 6, but in an embodiment with divider plate off centre;
Figure 8 is a plan view of a divider plate separating two adjacent pumping chambers,
in an embodiment comprising two separate symmetrical parts placed side by side, for
example, obtained from a bar;
Figure 9 is a view from the right of Figure 8;
Figure 10 is a view as in Figure 8, but in an embodiment with a single-piece divider
plate, for example obtained by casting;
Figure 11 is a view from the right of Figure 10;
Figure 12 is a longitudinal section of a bi-directional gear motor, or pump, having
an extruded body, in a further embodiment with two chambers having substantially the
same displacement separated by an intermediate divider plate;
Figure 13 is a section taken along line XIII-XIII;
Figure 14 is a view of a divider plate insertable in an intermediate position into
the cavity of the gear motor or pump shown in Figure 12;
Figure 15 is a longitudinal section of an high-low (hi-lo) pump provided with a postionable
divider plate;
Figure 16 is a longitudinal section of a bi-directional gear motor flow divider having
two chambers obtained by means of a positionable divider plate;
Figure 17 is a front view of a divider plate positionable into a lobed cavity of a
gear motor flow divider of Figure 16.
[0034] The hydraulic device may include a gear pump 1 having a body 2, for example, obtained
by extrusion, to which are fitted axially a cover 3 and, at the opposite end, a flange
4 for coupling it to driving means not shown. The body 2 has a through opening 5,
or cavity, preferably having the shape of two opposing symmetrical lobes, for the
insertion into them with wet seal of two pairs of end supports 6 of a driving shaft
7 and of a driven shaft 8 (Figure 2), coupled to each other by means of pairs of driving
gearwheels 9, 9a, that is, keyed onto the driving shaft 7, meshing with a corresponding
pair of driven gearwheels 10, 10a mounted on the driven shaft 8.
[0035] The supports 6 are equipped with bushes 6b for the rotary coupling in them of the
shafts 7, 8, said bushes being fitted into corresponding axial holes 6a of the supports
6.
[0036] The cover 3 and the flange 4 are locked onto the body 2, by means of ties 10c; frontal
peripheral seals 2a being positioned between the body 2, the cover 3 and the flange
4 respectively. The flange 4 is provided with a through hole 10d for the shaft 7,
equipped with rotary sealing elements 10e on the shaft itself. In the vicinity of
an intermediate section of each shaft 7, 8 there is a divider plate 11 having a pair
of through holes 12 for the rotary coupling in them of the shafts 7, 8 with bushes
11 a positioned between them.
[0037] The divider plate 11 defines, inside the opening 5 of the body 2 having the shape
of two opposing lobes, two distinct pumping chambers 13 delimited axially between
the said divider plate and the supports 6; said lobes serving as seat for the gearwheels
9, 10, 9a, 10a. It has to be noted that the ends of the gearwheels 9, 9a, 10, 10a
have a sliding contact with the divider plate 11 on one side and the end supports
6 on the other side: this making it possible to obtain a range of displacements with
predetermined proportions between the pumping chambers 3 by using gearwheels having
suitable axial dimensions as shown in Figure 3.
[0038] The divider plate 11, manufactured separately from the body 2, can be inserted, during
assembly, in an appropriate axial position within the opening 5, so as to define chambers
13 that are the same as each other or different from each other, using one single
pump body 2: the positioning and fixing in place is preferably achieved by interference-fit
assembly, advantageously by heating the body 2 and cooling the divider plate 11.
[0039] In the case of aluminium pumps the body can be heated to approximately +250°C and
the divider plate can be cooled to approximately -20°C; the temperature levels being
equivalent to those suitable in the case of cast iron pumps.
[0040] The device used for inserting the divider plate in a predetermined axial position
inside the body 2 can comprise an assembly manipulator.
[0041] It is to be noted that the inlet opening A for the fluid to be pumped, generally
oil, consists of a through opening 14 set into the body 2 in a position corresponding
to that of the divider plate 11 so as to supply both the pumping chambers 13 in appropriate
proportions: the plan view shape of the opening 14 can be circular or rectangular,
elongated and radiused at the ends, or mixed (see Figures 6, 7), or other suitable
shape.
[0042] The inlet opening A, 14 can also have a constant oil flow section, or even variable,
in particular increasing towards the pumping chambers 13 that it supplies; in this
embodiment, the side walls of the opening 14 can have stretches 14a advantageously
diverging towards the inside in order to facilitate the complete filling of the pumping
chambers, particularly when they extend a long way axially, as in the embodiments
shown in Figures 4, 5. Furthermore, such a configuration of the opening 14 makes an
optimal filling of the pumping chambers 13 possible even when the divider plate 11,
for example, for reasons of strength, extends a long way axially.
[0043] The divider plate can be placed in a position corresponding to the axis of symmetry
of the opening 14, as in Figure 6, or in an off centre position as in Figure 7: in
the first case the position of the opening has to be determined in function of the
ratio between the displacements of the pumping chambers 13, whereas in the second
case the positioning is essentially independent of the position of the divider plate
11.
[0044] Figures 1, 3, 4 also show how the driving shaft 7 can be provided with coupling means,
at the opposite end to the end coupled to the driving means, for example, by means
of shank 7a and key 7b, preferably for driving the drive shaft of another pump coupled
in series with pump 1: the said driving means possibly consisting of a splined portion
7c.
[0045] Figure 4 shows an embodiment of a pump in which each pumping chamber 13 is occupied
by a pair of gearwheels 15 meshing with each other, each having two ring gears 15a
between which a spacer ring 16 is placed. Each ring gear 15a is angularly offset with
respect to the other ring gear 15a inserted in the same chamber 13, by an angle corresponding
to a fraction of the pitch, preferably 1/2 the pitch between the teeth of each gearwheel:
this in order to reduce the noise level of the pump.
[0046] Each chamber 13, furthermore, is made communicating with the hydraulic circuit downstream
by means of a relative outlet M, consisting of a through opening 17 set into the body
2.
[0047] Figure 5 shows an embodiment in which the body 18, analogously hollow, is obtained
from a casting and coupled to a cover 19 and a flange 20.
[0048] In this embodiment the supports 6 are an integral part of the said cover and said
flange and are each equipped with a pair of bushes 6a.
[0049] The ends of the gearwheels 9, 9a and similarly 10, 10a have a sliding contact, as
regards the internal ends, directly on the divider plate 11 and, as regards the external
ends, on the respective cover 19 and flange 20 with anti-friction plates 21 positioned
between them, that is, manufactured using a material having a low coefficient of friction:
it is to be noted that making the divider plate separately from the body makes it
possible to save on production costs as anti-friction plates between the ends of the
gearwheels 9, 9a, 10, 10a and the divider plate 11 are not required because the divider
plate is preferably made from a wearproof material with a low coefficient of friction.
[0050] Figures 8 to 10 show two possible embodiments of the divider plate 11: it is to be
noted that the external surface of the divider plate has to have two opposing lobes
22 so that they may marry with the internal surface of the axial opening 5 with a
stable coupling of the forms on assembly.
[0051] On the inlet side A, the divider plate has a first recess 23, in order to improve
the filling of the pumping chambers 13.
[0052] On the same side, the divider plate has a pair of grooves 23a, interconnecting through
holes 12, that are intended to avoid the possibility of cavitation.
[0053] On the outlet side M, a second recess 26 can be provided, corresponding to the first
recess 23 and positioned opposite it: inside the cavity 5 a plugging element 27 is
positioned between the said second recess and the said cavity 5, to prevent the pumping
chambers 13 from being intercommunicating on the outlet side. The plugging element
27 may be integral with the body of the hydraulic device 1, and may consist of an
internally projecting appendix of the lobed cavity 5.
[0054] On the side where the second recess 26 is provided, the divider plate is advantageously
provided with two pairs of opposing grooves 24, each being "V" shaped, that allow
the oil to exit more gradually from the chamber defined by the meshing teeth in a
position corresponding to that of the chamber with the highest pressure so as to reduce
noise levels.
[0055] The divider plate is symmetrical with respect to a first plane parallel to the axes
of the holes 12, and therefore to the lobed cavity 5: it can therefore be divided
into two parts along a first plane of symmetry S, as in the embodiment of Figure 8,
positioned with respect to each other by a locating pin on assembly, or it can be
made from a single piece, as in the embodiment shown inFigure 10.
[0056] Furthermore, as shown in Figure 9, 11, the divider plate is advantageously symmetrical
also in a third plane of symmetry perpendicular to the axis of hole 12.
[0057] It is to be noted that the supports 6 and the plates 21 are such as to compensate
the axial thrust acting on the ends of the gearwheels 9, 9a, 10, 10a, 15a of shafts
7, 8.
[0058] According to a further embodiment, not shown, both the driving shaft 7 and the driven
shaft 8 may be rotatably coupled to one of the support 6 and to the divider plate
11, thereby the further support 6 serving only as an axial balancing plate.
[0059] As shown in Figure 12, the hydraulic device may include a bi-directional gear motor,
or pump, 1a; in the drawings, inlets A are associated to oultets M when the gearwheels
9, 9a are driven in a clockwise direction, while inlets A1 are associated to outlets
M1 when the gearwheels 9, 9a are driven in counterclockwise direction.
[0060] Each chamber 13 is provided with an inlet A, A1, 14b and a respective outlet M, M1,
provided for in the body 2 of the motor, or pump, 1a.
[0061] In order to obtain separation between the chambers 13, the divider plate 11b must
have an external outline peripherally coupled to the internal outline of the cavity
5; this is preferably achieved by providing a divider plate 11 b which is also symmetrical
with respect to a second plane of symmetry passing through the axis of the holes 12.
In particular, said divider plate 11b has a pair of opposed second recesses 26 engageable
with corresponding appendixes 27 of the cavity 5.
[0062] Each second recess 26 is provided with a respective V-shaped groove 24.
[0063] As shown in Figure 15, a hydraulic hi-lo pump 1c has outlets joined together by a
connecting channel 30 provided with a check valve 31, a pilot line 32 piloting a sequence
valve 33; said sequence velve 33 being inserted into a by-pass line 34 of one chamber
13.
[0064] A gear motor flow divider 1d, as shown in Figure 16, is provided with a divider plate
11c, having a first recess 23 and a second recess 26, both having a V-shaped groove
24: the gear motor flow divider 1d has a pair of opposing covers 4, both ends of shafts
7d being provided with coupling means 7c.
[0065] In practice the materials, dimensions and details of execution may be different from,
but technically equivalent to, those described without departing from the juridical
domain of the present invention.
1. An external hydraulic device (1, 1a, 1c, 1d), for use as a gear motor or pump, comprising:
a hollow body (2) acting as a casing of the device and having a cavity (5) with a
cross-sectional lobed configuration; pairs of intermeshing gearwheels (9, 9a, 10,
10a, 15, 15a) rotationally coupled and located in said cavity (5); partitioning means
(11, 11b, 11c) fittingly positionable in said cavity for the division thereof into
at least two distinct independent chambers (13); closing means (3, 4, 19, 20) for
closing at opposing ends thereof said cavity (5); and inlet (A, A1) and outlet (M,
M1) openings for the inlet and respectively outlet of hydraulic fluid in said chambers
(13),
characterized in that
said partitioning means is constituted by a divider plate (11, 11b, 11c) which is
symmetrical in at least two planes of symmetry, preferably in three planes of symmetry,
and has a first (23) and a second (26) symmetrical recesses (26) being provided at
opposite sides of the divider plate (11, 11b, 11c) corresponding to the inlet and,
respectively, outlet side of said cavity (5) for distributing the fluid flow between
the two chambers (13) at least at the inlet side, with at least the second recess
(26) being closeable by a plugging element (27) which cuts off fluid flow between
the chambers, and
said divider plate (11, 11b, 11c) has a lobed configuration, mating with the configuration
of said cavity (5) and being fittingly locatable into said cavity (5) at a plurality
of selected positions for defining distinct chambers (13) with different axial extensions
adapted to accommodate each pairs of gearwheels with different axial dimensions, whereby
to provide within a body (2) of a predetermined length, any of a plurality of pump
or motor configurations suitable for achieving a selected one of a plurality of different
displacements and fluid inlet and outlet configurations.
2. Hydraulic device according to claim 1, wherein each chamber (13) is provided with
an independent outlet opening (M, M1, 17) and with an inlet opening (A, 14, 14a) communicating
with a corresponding inlet opening (A, 14, 14a) of a further chamber (13).
3. Hydraulic device according to claim 1, wherein each chamber (13) is provided with
an independent outlet (M, M1, 14b, 17) opening and an independent inlet (A, A1, 14,
14b, 17) opening.
4. Hydraulic device according to any preceding claim, wherein said divider plate (11,
11b, 11c) has a pair of through holes (12) for the rotary coupling in them of respective
shafts (7, 8) onto which said gearwheels (9, 9a, 10, 10a, 15, 15a) are provided for.
5. Hydraulic device according to claim 2, wherein a single inlet opening (14) is provided
for passing through the body (2) of the pump, said opening being divided into two
sections by the underlying divider plate (11).
6. Hydraulic device according to any preceding claim, wherein the inlet opening (14a)
has side walls that define a flow section increasing towards the chambers (13).
7. Hydraulic device according to claim 5, wherein the position of the divider plate (11)
with respect to the said chambers (13) is such that the flow of the liquid entering
to each chamber (13) is proportional to its displacement.
8. Hydraulic device according to any preceding claim, characterized in that it comprises
pairs of end supports (6) sealingly inserted at ends of said cavity (5) for supporting
the gearwheels shafts (7, 8), and in that the linear dimension of the divider plate
(11) in a direction parallel to the axis of the cavity (5) is less than the sum of
the corresponding axial dimensions of the end supports (6), the reduction in length
being of the order of 30%, or even up to 50%.
9. Hydraulic device according to any preceding claim, wherein the plugging element (27)
protruding in the cavity (5) in a position corresponding to the join between the lobes
of said cavity (5).
10. Hydraulic device according to any preceding claim, wherein the divider plate (11),
has two pairs of grooves (23a), bilateral and opposite each other, extending between
said through holes (12) for the shaft coupling.
11. Hydraulic device according to any preceding claim, wherein the divider plate (11,
11b, 11c) has, on the side of the outlet opening (17), two pairs of bilateral opposing
grooves (24) that are "V" shaped.
12. Hydraulic device according to any preceding claim, wherein the divider plate (11,
11b, 11c) has the first plane of symmetry (S) parallel to the axis of the cavity (5).
13. Hydraulic device according to any preceding claim, wherein the divider plate (11b)
has the second plane of symmetry passing through the axis of holes (12).
14. Hydraulic device according to any preceding claim, wherein the divider plate (11,
11b, 11c) has the third plane of symmetry perpendicular to the axis of hole (12).
15. Hydraulic device according to any preceding claim, wherein the divider plate (11,
11b, 11c) is obtained from wearproof material with a low coefficient of friction.
16. Hydraulic device according to any preceding claim, wherein each gearwheels (10, 10a,
15, 15a) have two ring gears (10a, 15a) between which a spacer ring (16) is positioned,
said ring gears having teeth angularly offset with respect to each other.
17. A method for obtaining an external hydraulic device (1, 1a, 1c, 1d), as set forth
in claim 1, for use as a gear motor or pump, the method comprising the steps of:
providing through extrusion or casting a hollow body (2) of predetermined length,
for acting as a casing of the device and having a cavity (5) with a crosss-sectional
lobed configuration;
providing closing means (3, 4, 19, 20) for closing at opposing ends thereof said cavity
(5);
providing partitioning means (11, 11b, 11c) fittingly positionable in said cavity
for the division thereof into at least two distinct independent chambers (13);
providing at said body (2) inlet (A, A1) and outlet (M, M1) openings for the inlet
and respectively outlet of hydraulic fluid in said chambers (13); and
providing, in each of said chambers (13), pairs of intermeshing gearwheels (9, 9a,
10, 10a, 15, 15a) coupled rotationally,
characterized in that it further comprises:
providing said partitioning means by machining in the form of a divider plate (11,
11b, 11c) which is symmetrical in at least two planes of symmetry, preferably in three
planes of symmetry, has a lobed configuration mating with the configuration of said
cavity (5), and has a first (23) and a second (26) symmetrical recesses (26) located
at opposite sides of the divider plate (11, 11b, 11c) to correspond, upon assembly
of the device, to the inlet and, respectively, outlet side of said cavity (5) for
distributing the fluid flow between the two chambers (13) at least at the inlet side;
providing at least one plugging element (27) adapted for closing, upon assembly of
the device, at least the second recess (26) so as to cut off fluid flow between the
chambers (13); and
positioning and fixing in place through interference-fit assembly said divider plate
(11, 11b, 11c) into said cavity (5) at any of a plurality of selected positions for
defining distinct chambers (13) with different axial extensions adapted to accommodate
gearwheels with different axial dimensions, whereby to provide within a body (2) of
a predetermined length, any of a plurality of pump or motor configurations, suitable
for achieving a selected one of a plurality of different displacements and fluid inlet
and outlet configurations.
18. The method of claim 17, characterized in that said divider plate (11, 11b, 11c) is
made of a wear resistant, low friction material.
1. Außenverzahnungshydraulikeinrichtung (1, 1a, 1c, 1d) zur Verwendung als Zahnradmotor
oder -pumpe mit: einem hohlen Körper (2), der als ein Gehäuse der Einrichtung fungiert
und einen Leerraum (5) mit einer im Querschnitt weitgehend achtförmigen Konfiguration
besitzt; Paaren von miteinander kämmenden Zahnrädern (9, 9a, 10, 10a, 15, 15a), die
drehend gekoppelt und in dem Leerraum (5) angeordnet sind; einer Trenneinrichtung
(11, 11b, 11c), die mit einem Sitz in dem Leerraum zu dessen Teilung in wenigstens
zwei eigenständige unabhängige Kammern (13) positionierbar ist; einer Verschlusseinrichtung
(3, 4, 19, 20) zum Verschließen des Leerraumee (5) an einander gegenüberliegenden
Enden; und Einlass- (A, A1) und Auslass- (M, M1) Öffnungen für den Einlass beziehungsweise
den Auslass eines hydraulischen Fluids in den Kammern (13) dadurch gekennzeichnet,
dass die Trenneinrichtung von einer Trennplatte (11, 11b, 11c) gebildet ist, die in
wenigstens zwei Symmetrieebenen, vorzugsweise in drei Symmetrieebenen symmetrisch
ist und einen ersten (23) sowie einen zweiten (26) symmetrischen Aufnahmeraum (26)
besitzt, der an den gegenüberliegenden Enden der Trennplatte (11, 11b, 11c) vorgesehen
ist entsprechend der Einlass- und Auslassseite des Leerraumes (5) zur Verteilung der
Fluidströmung zwischen den beiden Kammern an wenigstens der Einlassseite, wobei wenigstens
der zweite Aufnahmeraum (26) durch ein Verschlusselement (27) verschließbar ist, welches
die Fluidströmung zwischen den Kammern abschneidet und die Trennplatte (11, 11b, 11c)
eine weitgehend achtförmige Konfiguration aufweist, die mit der Konfiguration des
Leerraumes (5) übereinstimmt und in dem Leerraum (5) mit einem Sitz an mehreren ausgewählten
Positionen zur Begrenzung von eigenständigen Kammern (13) mit unterschiedlichen axialen
Erstreckungen aufnehmbar ist, die zur Aufnahme von jeweils Paaren der Zahnräder mit
unterschiedlichen axialen Abmessungen ausgebildet sind, wodurch innerhalb eines Körpers
(2) von einer vorbestimmten Länge eine beliebige einer Vielzahl von Pumpen- oder Motorkonfigurationen
einstellbar sind, die zur Einstellung einer ausgewählten einer Vielzahl von unterschiedlichen
Volumina und Fluideinlass- und Auslasskonfigurationen geeignet sind.
2. Hydraulikeinrichtung nach Anspruch 1, wobei jede Kammer (13) mit einer unabhängigen
Auslassöffnung (M, M1, 17) und mit einer Einlassöffnung (A, 14, 14a) versehen ist,
die mit einer zugehörigen Einlassöffnung (A, 14, 14a) einer weiteren Kammer (13) in
Verbindung steht.
3. Hydraulikeinrichtung nach Anspruch 1, wobei jede Kammer (13) mit einer unabhängigen
Auslassöffnung (M, M1, 14b, 17) und einer unabhängigen Einlassöffnung (A, A1, 14,
14b, 17) versehen ist.
4. Hydraulikeinrichtung nach einem der vorhergehenden Ansprüche, wobei die Trennplatte
(11, 11b, 11c) ein Paar von Durchgangsöffnungen (12) zur drehenden Aufnahme von jeweiligen
Wellen (7, 8) besitzt, an denen die Zahnräder (9 9a, 10, 10a, 15, 15a) vorgesehen
sind.
5. Hydraulikeinrichtung nach Anspruch 2, wobei eine einzelne Einlassöffnung (14) vorgesehen
ist zum Durchsetzen des Körpers (2) der Pumpe, wobei die Öffnung von der darunterliegenden
Trennplatte (11) in zwei Abschnitte geteilt ist.
6. Hydraulikeinrichtung nach einem der vorhergehenden Ansprüche, wobei die Einlassöffnung
(14a) Seitenwände besitzt, die einen zu den Kammern (13) hin zunehmenden Strömungsquerschnitt
begrenzen.
7. Hydraulikeinrichtung nach Anspruch 5, wobei die Anordnung der Trennplatte (11) bezüglich
der Kammern (13) derart ist, dass der Strom der in jede Kammer (13) eintretenden Flüssigkeit
proportional zu ihrem Volumen ist.
8. Hydraulikeinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
dass sie Paare von Endaufnahmen (6) aufweist, die an Enden des Leerraumes zum Abstützen
der Zahnradwellen (7, 8) dichtend eingesetzt sind und dass die lineare Abmessung der
Trennplatte (11) in einer Richtung parallel zu der Achse des Leerraumes (5) kleiner
ist als die Summe der entsprechenden axialen Abmessungen der Endaufnahmen (6), wobei
die Verkleinerung der Länge die Größenordnung von 30% oder sogar bis zu 50% aufweist.
9. Hydraulikeinrichtung nach einem der vorhergehenden Ansprüche, wobei das Verschlusselement
(27) in den Leerraum (5) an einer Position entsprechend der Verbindung zwischen den
Hälften des Hohlraumes (5) vorsteht.
10. Hydraulikeinrichtung nach einem der vorhergehenden Ansprüche, wobei die Trennplatte
(11) zwei Paare von Nuten (23a) zweiseitig und einander gegenüberliegend besitzt,
die sich zwischen den Durchgangsöffnungen (12) für die Wellenverbindung erstrecken.
11. Hydraulikeinrichtung nach einem der vorhergehenden Ansprüche, wobei die Trennplatte
(11, 11b, 11c) an der Seite der Auslassöffnung (17) zwei Paare von zweiseitig gegenüberliegenden
Nuten (24) aufweist, die "V"-förmig sind.
12. Hydraulikeinrichtung nach einem der vorhergehenden Ansprüche, wobei die Trennplatte
(11, 11b, 11c) die erste Symmetrieebene (S) parallel zu der Achse des Leerraumes (5)
aufweist.
13. Hydraulikeinrichtung nach einem der vorhergehenden Ansprüche, wobei die Trennplatte
(11b) die zweite Symmetrieebene die Achse der Bohrungen (12) durchsetzend besitzt.
14. Hydraulikeinrichtung nach einem der vorhergehenden Ansprüche, wobei die Trennplatte
(11, 11b, 11c) die dritte Symmetrieebene rechtwinklig zu der Achse der Bohrung (12)
besitzt.
15. Hydraulikeinrichtung nach einem der vorhergehenden Ansprüche, wobei die Trennplatte
(11, 11b, 11c) aus einem abriebfesten Werkstoff mit einem niedrigen Reibungskoeffizienten
gewonnen wird.
16. Hydraulikeinrichtung nach einem der vorhergehenden Ansprüche, wobei jedes Zahnrad
(10, 10a, 15, 15a) zwei Hohlräder (10a, 15a) besitzt, zwischen denen ein Abstandshaltering
(16) angeordnet ist, wobei die Hohlräder Zähne aufweisen, die zueinander im Winkel
versetzt sind.
17. Verfahren zur Herstellung einer Außenverzahnungshydraulikeinrichtung (1, 1a, 1c, 1d)
nach Anspruch 1 zur Verwendung als Zahnradmotor oder -pumpe, wobei das Verfahren folgende
Schritte umfasst:
Bereitstellen eines hohlen Körpern (2) von vorbestimmter Länge durch Extrusion oder
Formgebung als ein Gehäuse der Einrichtung mit einem Leerraum (5) mit einer im Querschnitt
weitgehend achtförmigen Konfiguration;
Bereitstellen einer Verschlusseinrichtung (3, 4, 19, 20) zum Verschließen des Leerraumes
(5) an seinen einander gegenüber liegenden Enden;
Bereitstellen einer Trenneinrichtung (11, 11b, 11c), die mit einem Passsitz in dem
Leerraum angeordnet werden kann zu dessen Teilung in wenigstens zwei eigenständige
unabhängige Kammern (13) ;
Bereitstellen von Einlass (A, A1) und Auslass (M, M1) Öffnungen an dem Körper (2)
für den Einlass und den Auslass eines Hydraulikfluids in den Kammern (13) ;
Bereitstellen in jeder der Kammern (13) von Paaren von miteinander kämmenden Zahnrädern,
(9, 9a, 10, 10a, 15, 15a) die zur Drehung gekoppelt sind,
dadurch gekennzeichnet, dass es weiterhin folgendes umfasst:
Bereitstellen der Trenneinrichtung durch eine Bearbeitung in Form einer Trennplatte
(11, 11b, 11c), die in wenigstens zwei Symmetrieebenen, vorzugsweise in drei Symmetrieebenen
symmetrisch ist und eine weitgehend achtförmige Konfiguration aufweist, die mit der
Konfiguration des Leerraumes (5) übereinstimmt und eine erste (23) sowie eine zweite
(26) symmetrische Vertiefung (26) an gegenüberliegenden Seiten der Trennplatte (11,
11b, 11c) besitzt, um nach der Montage der Einrichtung der Einlaes- und Auslassseite
des Leerraumes (5) zur Verteilung der Fluidströmung zwischen den beiden Kammern (13)
an wenigstens der Einlassseite zu entsprechen;
Bereitstellen wenigstens eines Verschlusselements (27), welches zum Verschließen nach
der Montage der Einrichtung von wenigstens der zweiten Vertiefung (26) ausgebildet
ist zum Absperren der Fluidströmung zwischen den Kammern (13);
Positionieren und Festlegen der Trennplatte (11, 11b, 11c) mittels eines Presssitzes
in dem Leerraum (5) an einer beliebigen von einer Vielzahl von ausgewählten Positionen
zur Begrenzung von getrennten Kammern (13) mit unterschiedlichen axialen Erstreckungen,
die zur Aufnahme von Zahnrädern mit unterschiedlichen axialen Dimensionen ausgebildet
sind, wodurch innerhalb eines Körpers (2) von einer vorbestimmten Länge eine von einer
Vielzahl von Pumpen- oder Motorkonfigurationen geschaffen wird, die zur Einstellung
einer ausgewählten einer Vielzahl von unterschiedlichen Volumina und Fluideinlass-
sowie Auslasskonfigurationen geeignet sind.
18. Verfahren nach Anspruch 17, dadurch gekennzeichnet, dass die Trennplatte (11, 11b,
11c) aus einem widerstandsfähigen, reibungsarmen Werkstoff hergestellt ist.
1. Dispositif hydraulique extérieur (1,1a, 1c,1d), utilisable comme moteur ou pompe à
engrenages, comprenant : un corps creux (2) servant de carter du dispositif et ayant
une cavité (5) à configuration de section transversale en lobes ; des paires d'engrenages
en prise mutuelle (9,9a,10,10a,15,15a) couplés en rotation et logés dans ladite cavité
(5) ; des moyens de cloisonnement (11,11b,11c) qui peuvent être placés en ajustement
dans ladite cavité pour sa division en au moins deux chambres indépendantes distinctes
(13) ; des moyens de fermeture (3,4,19,20) pour fermer ladite cavité (5) à ses extrémités
opposées ; et des orifices d'entrée (A,A1) et de sortie (M,M1) pour l'entrée et respectivement
la sortie du fluide hydraulique dans lesdites chambres (13) ;
caractérisé en ce que :
lesdits moyens de cloisonnement sont constitués par une plaque de séparation (11,11b,11c)
qui est symétrique dans au moins deux plans de symétrie, de préférence dans trois
plans de symétrie, et qui comporte un premier (23) et un deuxième (26) évidements
symétriques (26) prévus sur des côtés opposés de la plaque de séparation (11,11b,11c)
correspondant au côté d'entrée et, respectivement, au côté de sortie de ladite cavité
(5) pour répartir l'écoulement de fluide entre les deux chambres (13) au moins du
côté d'entrée, au moins le deuxième évidement (26) pouvant être fermé par un élément
d'obturation (27) qui empêche l'écoulement de fluide entre les chambres, et
ladite plaque de séparation (11,11b,11c) a une configuration en lobes, qui concorde
avec la configuration de ladite cavité (5), et elle peut être placée de façon ajustée
dans ladite cavité (5) à une pluralité de positions choisies pour définir des chambres
distinctes (13) de longueurs axiales différentes prévues pour recevoir chaque paire
d'engrenages de dimensions axiales différentes, de façon à définir, à l'intérieur
d'un corps (2) de longueur prédéterminée, une quelconque d'une pluralité de configurations
de pompe ou de moteur permettant d'obtenir une configuration choisie parmi une pluralité
de déplacements différents et de configurations d'entrée et de sortie de fluide différentes.
2. Dispositif hydraulique selon la revendication 1, dans lequel chaque chambre (13) comporte
un orifice de sortie indépendant (M,M1,17) et un orifice d'entrée (A,14,14a) qui communique
avec un orifice d'entrée correspondant (A,14,14a) d'une autre chambre (13).
3. Dispositif hydraulique selon la revendication 1, dans lequel chaque chambre (13) comporte
un orifice de sortie indépendant (M,M1,14b,17) et un orifice d'entrée indépendant
(A,A1,14,14b,17).
4. Dispositif hydraulique selon une quelconque des revendications précédentes, dans lequel
ladite plaque de séparation (11,11b,11c) comporte deux trous traversants (12) pour
le couplage rotatif, dans ces trous, d'arbres respectifs (7,8) sur lesquels sont montés
lesdits engrenages (9,9a,10,10a,15,15a).
5. Dispositif hydraulique selon la revendication 2, dans lequel un orifice d'entrée unique
(14) est prévu à travers le corps (2) de la pompe, ledit orifice étant divisé en deux
parties par la plaque de séparation située au-dessous (11).
6. Dispositif hydraulique selon une quelconque des revendications précédentes, dans lequel
l'orifice d'entrée (14a) présente des parois latérales qui définissent une section
d'écoulement croissante vers les chambres (13).
7. Dispositif hydraulique selon la revendication 5, dans lequel la position de la plaque
de séparation (11) par rapport auxdites chambres (13) est telle que l'écoulement du
liquide qui entre dans chaque chambre (13) est proportionnel à son déplacement.
8. Dispositif hydraulique selon une quelconque des revendications précédentes, caractérisé
en ce qu'il comprend des paires de supports d'extrémité (6) insérés de façon étanche
aux extrémités de ladite cavité (5) pour supporter les arbres d'engrenages (7,8) et
en ce que la dimension linéaire de la plaque de séparation (11) dans une direction
parallèle à l'axe de la cavité (5) est inférieure à la somme des dimensions axiales
correspondantes des supports d'extrémité (6), la réduction de longueur étant de l'ordre
de 30% ou même jusqu'à 50%.
9. Dispositif hydraulique selon une quelconque des revendications précédentes, dans lequel
l'élément d'obturation (27) fait saillie dans la cavité (5) à une position correspondant
à la jonction entre les lobes de ladite cavité (5).
10. Dispositif hydraulique selon une quelconque des revendications précédentes, dans lequel
la plaque de séparation (11) comporte deux paires de rainures (23a), bilatérales et
mutuellement opposées, s'étendant entre lesdits trous traversants (12) pour le couplage
des arbres.
11. Dispositif hydraulique selon une quelconque des revendications précédentes, dans lequel
la plaque de séparation (11,11b,11c) comporte, sur le côté de l'orifice de sortie
(17), deux paires de rainures bilatérales opposées (24) qui sont en forme de "V".
12. Dispositif hydraulique selon une quelconque des revendications précédentes, dans lequel
la plaque de séparation (11,11b,11c) possède le premier plan de symétrie (S) parallèle
à l'axe de la cavité (5).
13. Dispositif hydraulique selon une quelconque des revendications précédentes, dans lequel
la plaque de séparation (11b) possède le deuxième plan de symétrie passant par l'axe
des trous (12).
14. Dispositif hydraulique selon une quelconque des revendications précédentes, dans lequel
la plaque de séparation (11,11b,11c) possède le troisième plan de symétrie perpendiculaire
à l'axe du trou (12).
15. Dispositif hydraulique selon une quelconque des revendications précédentes, dans lequel
la plaque de séparation (11,11b,11c) est fabriquée en une matière résistant à l'usure
et à faible coefficient de frottement.
16. Dispositif hydraulique selon une quelconque des revendications précédentes, dans lequel
chaque engrenage (10,10a,15,15a) comprend deux dentures annulaires (10a,15a) entre
lesquelles est placé un anneau d'espacement (16), lesdites dentures annulaires ayant
des dents angulairement décalées l'une par rapport à l'autre.
17. Procédé de fabrication d'un dispositif hydraulique extérieur (1,1a,1c,1d) selon la
revendication 1, utilisable comme moteur ou pompe à engrenages, le procédé comprenant
les étapes suivantes :
préparation par extrusion ou coulée d'un corps creux (2) de longueur prédéterminée,
pour servir de carter du dispositif et ayant une cavité (5) à configuration de section
transversale en lobes ;
préparation de moyens de fermeture (3,4,19,20) pour fermer ladite cavité (5) à ses
extrémités opposées ;
préparation de moyens de cloisement (11,11b, 11c) qui peuvent être positionnés de
façon ajustée dans ladite cavité pour sa division en au moins deux chambres indépendantes
distinctes (13) ;
création, dans ledit corps (2), d'orifices d'entrée (A,A1) et de sortie (M,M1) pour
l'entrée et respectivement la sortie de fluide hydraulique dans les dites chambres
(13), et
installation, dans chacune desdites chambres (13),de paires d'engrenages en prise
mutuelle (9,9a,10, 10a,15,15a)couplées en rotation ;
caractérisé en ce qu'il comprend en outre :
la création desdits moyens de cloisonnement par usinage,sous la forme d'une plaque
de séparation (11,11b,11c) qui est symétrique dans au moins deux plans de symétrie,de
préférence dans trois plans de symétrie, qui a une configuration en lobes concordant
avec la configuration de ladite cavité (5) et qui comporte un premier (23) et un deuxième
(26) évidements symétriques (26) situés sur des côtés opposés de la plaque de séparation
(11,11b,11c) de façon à correspondre, après assemblage du dispositif, au côté d'entrée
et respectivement de sortie de ladite cavité (5) pour répartir l'écoulement de fluide
entre les deux chambres (13) au moins du côté d'entrée ;
la préparation d'au moins un élément d'obturation (27) prévu pour fermer, lors de
l'assemblage du dispositif, au moins le deuxième évidement (26) de façon à empêcher
l'écoulement de fluide entre les chambres (13) ; et
le positionnement et la fixation en place, par ajustement à interférence, de ladite
plaque de séparation (11,11b,11c) dans ladite cavité (5) à une quelconque d'une pluralité
de positions choisies pour définir des chambres distinctes (13) de longueurs axiales
différentes afin de recevoir des engrenages de dimensions axiales différentes, de
sorte qu'on obtient, dans un corps (2) d'une longueur prédéterminée, une quelconque
d'une pluralité de configurations de pompe ou de moteur, permettant d'obtenir une
configuration choisie parmi une pluralité de déplacements différents et de configurations
d'entrée et sortie de fluide différentes.
18. Procédé selon la revendication 17, caractérisé en ce que ladite plaque de séparation
(11,11b,11c) est fabriquée en une matière résistant à l'usure et de faible coefficient
de frottement.