| (19) |
 |
|
(11) |
EP 0 806 049 B1 |
| (12) |
EUROPEAN PATENT SPECIFICATION |
| (45) |
Mention of the grant of the patent: |
|
15.03.2000 Bulletin 2000/11 |
| (22) |
Date of filing: 22.12.1995 |
|
| (51) |
International Patent Classification (IPC)7: H01H 33/91 |
| (86) |
International application number: |
|
PCT/SE9501/574 |
| (87) |
International publication number: |
|
WO 9621/234 (11.07.1996 Gazette 1996/31) |
|
| (54) |
HIGH-VOLTAGE CIRCUIT BREAKER
HOCHSPANNUNGSLASTSCHALTER
DISJONCTEUR A HAUTE TENSION
|
| (84) |
Designated Contracting States: |
|
CH DE ES FR GB IT LI |
| (30) |
Priority: |
29.12.1994 SE 9404549
|
| (43) |
Date of publication of application: |
|
12.11.1997 Bulletin 1997/46 |
| (73) |
Proprietor: ABB AB |
|
721 83 Västeras (SE) |
|
| (72) |
Inventors: |
|
- SKOGH, Kerstin
S-771 43 Ludvika (SE)
- STENGARD, Peter
S-771 43 Ludvika (SE)
- AKESSON, Ulf
S-771 42 Ludvika (SE)
|
| (56) |
References cited: :
EP-A- 0 259 010 SE-B- 452 924
|
DE-A- 2 844 323 US-A- 3 808 676
|
|
| |
|
|
|
|
| |
|
| Note: Within nine months from the publication of the mention of the grant of the European
patent, any person may give notice to the European Patent Office of opposition to
the European patent
granted. Notice of opposition shall be filed in a written reasoned statement. It shall
not be deemed to
have been filed until the opposition fee has been paid. (Art. 99(1) European Patent
Convention).
|
TECHNICAL FIELD
[0001] The present invention relates to a high-voltage circuit breaker of the kind described
in the preamble to claim 1.
[0002] The invention is primarily intended for circuit breakers with rated operating voltages
of the order of magnitude of 100-300 kV, but it may also be used to advantage in circuit
breakers for voltages both above and below this range, for example in medium-voltage
circuit breakers.
BACKGROUND ART
[0003] Circuit breakers of the above-mentioned kind are previously known, for example from
the ABB pamphlet SESWG/B 2330 E "SF
6 Circuit-Breaker Type LTB", published in 1990. In the circuit breaker shown in this
publication, the blast piston and an annular guide means for the operating rod are
fixed to the lower connection flange of the circuit breaker via rods arranged parallel
to the operating rod. The other components included in the circuit breaker, such as
the movable arcing contact, the intermediate flange between the compression space
(the puffer volume) and the pressure-collecting space (the self-blasting volume) etc.,
are fixed to the respective current path section (metal tube) by means of screw joints.
SUMMARY OF THE INVENTION
[0004] The invention aims to provide a circuit breaker of the above-mentioned kind which
is simpler to manufacture, contains a smaller number of components, and has a lower
contact resistance between the current path sections of the circuit breaker than comparable
prior art circuit breakers. This is achieved according to the invention with a design
which exhibits the characteristic features described in the claims.
[0005] By integrating the blast nozzle, the guides, the intermediate flange, the arcing
contact etc. by means of a pressing operation into the respective current path section,
a simplified design is obtained, which results in lower manufacturing cost because
of less mounting work. At the same time, the reliability of the function is increased
because the number of components are reduced and the screw joints previously used
are omitted.
BRIEF DESCRIPTION OF THE DRAWINGS
[0006] The invention will be explained in greater detail by description of embodiments with
reference to the accompanying drawings, wherein
- Figure 1
- shows in axial section the central part of a first embodiment of a high-voltage circuit
breaker designed according to the invention, in the open contact position,
- Figures 2
- shows in axial section a current path section which is included in the circuit breaker
according to Figure 1,
- Figure 3
- shows in axial section the central part of a second embodiment of a high-voltage circuit
breaker designed according to the invention, wherein the part of the figure to the
left of the centre line shows the circuit breaker in the closed position, and the
part of the figure to the right of the centre line shows the circuit breaker in the
open position, and
- Figure 4
- shows, in the same way as Figure 3, a third embodiment of a circuit breaker according
to the invention.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
[0007] The circuit breaker shown in Figure 1 has an elongated casing 10 which is made of
insulating material and which is provided with an upper and a lower connection flange
11 and 12, respectively. The casing contains insulating gas, for example SF
6. The contact device of the circuit breaker comprises a fixed main contact 13 which
cooperates with an axially movable main contact 14, as well as a fixed plug-shaped
arcing contact 15 which cooperates with an axially movable sleeve-shaped arcing contact
16.
[0008] At the upper connection flange 11 the circuit breaker has a stationary upper current
path section 17 in the form of a copper tube with a thickness of one or a few millimetres.
The lower end portion of the tube is compression-moulded and slotted so as to form
a large number of contact fingers which are integrated with the tube and which constitute
the fixed main contact 13 of the circuit breaker. The fixed arcing contact 15 of the
circuit breaker is arranged coaxially in the tube 17 and is electrically and mechanically
connected thereto by means of a holder 18.
[0009] The movable main contact 14 of the circuit breaker consists of the upper end portion
of a hollow cylinder 19 (puffer-type cylinder) in the form of a copper tube, which
may have the same cross-section dimension as the copper tube 17. The movable arcing
contact 16 is arranged coaxially in the cylinder 19 and is electrically and mechanically
connected thereto. The hollow cylinder 19 encloses a pressure-collecting space 20
(the self-blasting volume), the volume of which is constant, and a compression space
21 (the puffer volume). The spaces 20 and 21 are separated by an intermediate flange
22 with openings which are covered by an annular plate serving as a nonreturn valve.
At its upper end, the hollow cylinder 19 supports an electrically insulating blast
nozzle 23 with an annular channel 24, which connects the pressure-collecting space
20 to the area where the arc is burning during an opening operation. The hollow cylinder
19 with the movable contacts 14, 16 is connected, via an operating rod 25, to an operating
device and can be displaced by means of this device between a closed position and
the open position shown in Figure 1.
[0010] The hollow cylinder 19 surrounds the upper portion of a lower current path section
26 which is secured to the lower connection flange 12 and which consists of a copper
tube with substantially the same cross-section dimension as the copper tube 17. Via
sliding contact means 27, for example in the form of spiral springs of contact material,
the hollow cylinder 19 is electrically connected to the lower current path section
26.
[0011] The compression space 21 is limited downwards by an annular blast piston 28 which
surrounds the operating rod 25. This piston is fixed by being pressed to the upper
end portion of the copper tube 26. In the same way, an annular guide washer for the
operating rod 25 is pressed to the tube 26.
[0012] The circuit breaker according to Figure 1 operates as follows:
[0013] During a breaking operation, the operating rod 25 is pulled downwards with the aid
of the operating device, whereby the main contacts 13 and 14 are first separated.
The current thereby commutates over to the arcing contacts 15, 16 which, when separated,
generate an arc between them. The arc heats the gas in the arcing region, whereby
the gas pressure increases and a gas flow through the channel 24 into the pressure-collecting
space 20 is started. As a result of this flow, the pressure in the pressure-collecting
space 20 increases. The arc current follows the power-frequency sine curve, and when
the current value approaches the zero crossing, the pressure in the arc region starts
decreasing. The contact movement has now proceeded so far that the plug contact 15
has exposed the nozzle outlet, where the pressure is now lower than in the pressure-collecting
space 20. This gives rise to a gas flow from the pressure-collecting space 20 through
the channel 24 and the nozzle 23 to a surrounding expansion space 30. The arc is cooled
through this flow and is extinguished during the next current zero-crossing.
[0014] When breaking relatively small currents, the pressure increase in the pressure-collecting
space 20, generated by the arc, is insufficient to achieve an efficient flow of arc-extinguishing
gas. In such cases, the arc extinction is performed with the aid of the compression
space 21, in which a pressure build-up takes place during the opening process because
of the downward movement of the intermediate flange 22. The pressure in the compression
space 21 then becomes higher than in the pressure-collecting space 20, which causes
the nonreturn valve in the intermediate flange to open and cold arc-extinguishing
gas to flow from the compression space 21 via the pressure-collecting space 20 and
the channel 24 to the blast nozzle 23, where the arc is cooled and extinguished.
[0015] Figure 2 shows separately the lower current path section 26 with a piston 28 and
a guide washer 29 pressed to the section 26. The pressing has been accomplished by
pressing the plastically machinable material in the tube 26, for example by so-called
pressure turning, into prepared grooves 31 and 32, respectively, in the piston 28
and the guide washer 29. The piston 28 is also provided with grooves 33 into which
tube material is pressed for forming a seat for the sliding contact means 27.
[0016] Figures 3 and 4 show examples of puffer-type circuit breakers where the blast piston
28 is directly integrated into the tubular lower current path 26. The blast piston
is here formed by inwardly arching the upper end portion of the tube 26 so as to create
an annular bottom with a U-shaped profile, which may be semicircular according to
Figure 3 or substantially perpendicular according to Figure 4. The arched curvature
imparts enormous mechanical strength to the end portion of the tube. This is particularly
true of the embodiment according to Figure 3, which may be used at high pressures
in the compression chamber 21. The embodiment according to Figure 4 has lower strength
and is therefore intended for circuit breakers dimensioned for medium-high pressures
in the chamber 21. The blast piston 28 is provided with openings 34 covered by an
annular washer 35 which serves as a nonreturn valve and has a profile adapted to the
shape of the blast piston 28. Through this nonreturn valve, the compression chamber
21 is refilled with arc-extinguishing gas from the expansion space 30 during a circuit-breaker
closing. The end portion of the tube is also shaped with grooves for seals 36 and
37 against the hollow cylinder 19 and the operating rod 25, respectively.
[0017] The embodiment of the blast piston shown in Figures 3 and 4 is not limited to use
only in connection with puffer-type circuit breakers, but may be used for all types
of SF
6 circuit breakers.
1. A high-voltage circuit breaker comprising an elongated casing (10) which is filled
with a gaseous arc-extinguishing medium and provided with connection flanges (11,
12), said casing comprising a contact device with cooperating fixed and movable main
and arcing contacts (13-16), the fixed contacts (13, 15) being arranged at one end
portion of a first metal tube (17) secured to one connection flange (11) of the circuit
breaker, whereas the movable contacts (14, 16) are arranged at one end portion of
a second metal tube (19), which is connected via an operating rod (25) to an operating
device and with the aid of this device is axially displaceable in the casing between
a closed and an open position, wherein the second metal tube (19), via a sliding contact
means (27), is permanently connected to a third metal tube (26) secured to the other
connection flange (12) of the circuit breaker, and wherein the second metal tube (19)
together with a blast piston (28) defines a compression space (21), characterized in that the metal tubes (17, 19, 26) are made of plastically machinable sheet material
and that the blast piston (28) is integrated into the third metal tube (26) by plastic
machining thereof.
2. A circuit breaker according to claim 1, characterized in that the blast piston (28) consists of a substantially rotationally symmetrical
body, which is provided with at least one groove (31) arranged around the periphery
of the body and is fixed to one end portion of said third metal tube (26) by pressing
the plastically machinable material in the tube into the groove.
3. A circuit breaker according to claim 1, characterized in that the blast piston (28) consists of an inward flanging of one end portion of
said third metal tube (26), shaped by plastic machining.
4. A circuit breaker according to claim 1, 2 or 3, characterized in that an annular guide washer (29) for guiding the operating rod (25) is fixed
to said third metal tube (26) by pressing the plastically machinable material in the
tube into a prepared surrounding groove (32) in the washer (29).
5. A circuit breaker according to any of the preceding claims, characterized in that the movable arcing contact (16) of the circuit breaker is supported by an
annular body which, together with a blast nozzle (23), is fixed to one end portion
of said second metal tube (19) by pressing a portion of the tube wall into a prepared
surrounding groove in the body.
6. A circuit breaker according to any of the preceding claims, characterized in that in said second metal tube (19) there is arranged an annular intermediate
flange (22) between a pressure-collecting space (20) and said compression space (21),
which intermediate flange is fixed to the tube (19) by pressing a portion of the tube
wall into a prepared surrounding groove in the flange.
7. A circuit breaker according to any of the preceding claims, characterized in that the material in said metal tubes (17, 19, 26) is copper or a copper alloy.
8. A circuit breaker according to any of the preceding claims, characterized in that the metal tubes (17, 19, 26) are made of sheet with a thickness of at most
4 mm.
9. A method for manufacturing a circuit breaker according to any of the preceding claims,
characterized in that the main current path of the circuit breaker is made of a number of plastically
machinable, circular-cylindrical metal tubes (17, 19, 26), preferably of copper or
a copper alloy, and that the blast piston (28) and any other components included in
the circuit breaker are integrated into the respective metal tube by plastic machining
thereof, for example by so-called pressure turning.
1. Hochspannungslastschalter mit länglichem Gehäuse (10), das mit einem gasförmigen bogenlöschenden
Medium gefüllt und mit Anschlußflanschen (11, 12) versehen ist, wobei das Gehäuse
eine Kontaktvorrichtung mit zusammenwirkenden, stillstehenden und beweglichen Haupt-
und Bogenkontakten (13-16) umfaßt, wobei die stillstehenden Kontakte (13, 15) am einen
Giebelbereich eines ersten, am einen Anschlußflansch (11) des Lastschalters befestigten
Metallrohres (17) angeordnet sind, wogegen die beweglichen Kontakte (14, 16) an einem
Giebelbereich eines zweiten Metallrohres angeordnet sind, das über eine Bedienungsstange
(25) an die Bedienungsvorrichtung angeschlossen ist und mit Hilfe dieser Vorrichtung
achsial im Gehäuse zwischen einer Anschluß- und einer Abschaltstellung verschiebbar
ist, wobei das zweite Metallrohr (19) über eine Gleitkontaktvorrichtung (27) ständig
an ein drittes, am anderen Anschlußflansch des Lastschalters befestigten Metallrohr
(26) angeschlossen ist und wo das zweite Metallrohr (19) zusammen mit einem Löschkammerkolben
(28) einen Druckraum (21) begrenzt, dadurch gekennzeichnet, daß die Metallrohre (17, 19, 26) aus plastisch verformbaren Plattenwerkstoff hergestellt
sind und daß der Löschkammerkolben (28) in das dritte Metallrohr (26) durch plastische
Bearbeitung desselben eingefügt ist.
2. Lastschalter gemäß Patentanspruch 1, dadurch gekennzeichnet, daß der Löschkammerkolben (28) aus einem im wesentlichen rotationssymmetrischen
Körper besteht, der mit mindestens einer Nut (31) versehen ist, die den Umkreis des
Körpers umgibt und an einem Giebelbereich dieses dritten Metallrohres (26) dadurch
befestigt ist, daß plastisch verformbares Material des Rohres in die Nut gepresst
wird.
3. Lastschalter gemäß Patentanspruch 1, dadurch gekennzeichnet, daß der Löschkammerkolben (28) aus einem inneren Anflanschen des einen Giebelbereiches
dieses dritten Metallrohres (26) mit Hilfe plastischer Verformung besteht.
4. Lastschalter gemäß Patentanspruch 1, 2 oder 3, dadurch gekennzeichnet, daß eine rohrförmige Führungsscheibe (29) zum Führen der Bedienungsstange (25) an
diesem dritten Metallrohr (26) befestigt ist, indem plastisch verformbarer Werkstoff
des Rohres in eine bereitgestellte, umgebende Nut (32) in der Scheibe (29) gepresst
wird.
5. Lastschalter gemäß irgendeinem der vorhergehenden Patentansprüche, dadurch gekennzeichnet, daß der bewegliche Bogenkontakt (16) des Lastschalters von einem ringförmigen Körper
getragen wird, der zusammen mit einer Löschkammerdüse (23) am einen Giebelbereich
dieses zweiten Metallrohres (19) befestigt ist, indem ein Teil der Rohrwand in eine
bereitgestellte, umgebende Nut im Körper gepresst wird.
6. Lastschalter gemäß irgendeinem der vorhergehenden Patentansprüche, dadurch gekennzeichnet, daß in diesem zweiten Metallrohr (19) ein ringförmiger Zwischenflansch (22) zwischen
einem druckaufnehmenden Raum (20) und diesem Druckraum (21) angeordnet ist, wobei
der Zwischenflansch am Rohr (19) befestigt ist, indem ein Bereich der Rohrwand in
eine bereitgestellte Nut im Flansch gepresst wird.
7. Lastschalter gemäß irgendeinem der vorhergehenden Patentansprüche, dadurch gekennzeichnet, daß das Material dieser Metallrohre (17, 19, 26) Kupfer oder eine Kupferlegierung
ist.
8. Lastschalter gemäß irgendeinem der vorhergehenden Patentansprüche, dadurch gekennzeichnet, daß die Metallrohre (17, 19, 26) aus einer Platte einer Dicke von höchstens 4 mm
hergestellt sind.
9. Herstellungsverfahren für einen Lastschalter gemäß irgendeinem der vorhergehenden
Patentansprüche, dadurch gekennzeichnet, daß die Hauptstrombahn des Lastschalters aus einer Anzahl plastisch verformbarer,
kreisrund-zylindrischer Metallrohre (17, 19, 26), vorzugsweise aus Kupfer oder einer
Kupferlegierung, hergestellt ist und daß der Löschkammerkolben (28) und jedwede weitere
Bestandteile des Lastschalters in das entsporechende Metallrohr durch dessen plastische
Verformung, beispielsweise mit Hilfe von Drücken eingefügt sind.
1. Disjoncteur à haute tension, comportant un boîtier (10) oblong qui est empli d'un
fluide gazeux extincteur d'arc et qui est muni de rebords (11, 12) de connexion, le
boîtier comportant un dispositif de contact ayant des contacts (13-16) coopérant fixes
et mobiles de formation d'arcs et principaux, les contacts (13, 15) fixes étant disposés
à une partie d'extrémité d'un premier tube (17) métallique fixé à un rebord (11) de
connexion du disjoncteur, tandis que les contacts (14, 16) mobiles sont disposés à
une partie d'extrémité d'un second tube (19) métallique, qui est connectée par l'intermédiaire
d'une tige (25) d'actionnement à un dispositif d'actionnement et à l'aide de ce dispositif
peut être déplacée axialement dans le boîtier entre une position fermée et une position
ouverte, dans lequel le second tube (19) métallique, par l'intermédiaire de moyens
(27) de contact coulissant, est relié de manière permanente à un troisième tube (26)
métallique fixé à l'autre rebord (12) de connexion du disjoncteur, et dans lequel
le second tube (19) métallique, définit ensemble avec un piston (28) de soufflage,
un espace (21) de compression, caractérisé en ce que les tubes (17, 19, 26) métalliques
sont réalisés en un matériau en feuille usinable plastiquement et en ce que le piston
(28) de soufflage est intégré dans le troisième tube (26) métallique par usinage plastique
de celui-ci.
2. Disjoncteur suivant la revendication 1, caractérisé en ce que le piston (28) d'échappement
est constitué d'un corps sensiblement symétrique de révolution, qui est muni d'au
moins une rainure (31) disposée à la périphérie du corps et qui est fixé à une partie
d'extrémité du troisième tube (26) métallique par pressage du matériau usinable plastiquement
du tube dans la rainure.
3. Disjoncteur suivant la revendication 1, caractérisé en ce que le piston (28) de soufflage
est constitué d'un rebord dirigé vers l'intérieur d'une partie d'extrémité du troisième
tube (26) métallique, formée par usinage plastique.
4. Disjoncteur suivant la revendication 1, 2 ou 3, caractérisé en ce qu'une rondelle
(29) de guidage annulaire destinée à guider la tige (25) d'actionnement est fixée
au troisième tube (26) métallique par pressage du matériau usinable plastiquement
du tube dans une rainure (30) préparée et qui l'entoure de la rondelle (29).
5. Disjoncteur suivant l'une quelconque des revendications précédentes, caractérisé en
ce que le contact (16) mobile de formation d'arc du disjoncteur est supporté par un
corps annulaire qui, avec une buse (23) de soufflage, est fixé à une partie d'extrémité
du second tube (19) métallique en pressant une partie de la paroi de tube dans une
rainure l'entourant et préparée du corps.
6. Disjoncteur suivant l'une quelconque des revendications précédentes, caractérisé en
ce que dans le second tube (19) métallique, il est prévu un rebord (22) annulaire
intermédiaire entre un espace (20) collecteur de pression et l'espace (21) de compression,
le rebord intermédiaire étant fixé au tube (19) par pressage d'une partie de la paroi
de tube dans une rainure entourante et préparée du rebord.
7. Disjoncteur suivant l'une quelconque des revendications précédentes, caractérisé en
ce que le matériau des tubes (17, 19, 26) métalliques est du cuivre ou un alliage
à base de cuivre.
8. Disjoncteur suivant l'une quelconque des revendications précédentes, caractérisé en
ce que les tubes (17, 19, 26) métalliques sont réalisés à partir de feuille ayant
une épaisseur d'au plus 4 mm.
9. Procédé pour fabriquer un disjoncteur suivant l'une quelconque des revendications
précédentes, caractérisé en ce que le trajet de courant principal du disjoncteur est
constitué d'un certain nombre de tubes (17,19, 26) métalliques cylindro-circulaires
et usinables plastiquement, de préférence en cuivre ou en alliage à base de cuivre,
et en ce que le piston (28) de soufflage et tous autres éléments inclus dans le disjoncteur
sont intégrés dans le tube métallique respectif par l'usinage plastique de celui-ci,
par exemple par ce que l'on appelle un usinage au tour sous pression.

