[0001] Die vorliegende Erfindung betrifft ein neues Verfahren zur Herstellung von aus Lösungsmitteln
gesponnenen Cellulosefasern mit verringerter Neigung zum Fibrillieren durch Behandlung
der Fasern mit bestimmten reaktiven Verbindungen.
[0002] Aus der GB-A-2 043 525 ist die Herstellung von Cellulosefasern durch Spinnen einer
Celluloselösung in einem geeigneten Lösungsmittel, z.B. einem N-Oxid eines tertiären
Amins, wie N-Methylmorpholin-N-oxid, bekannt. In einem solchen Spinnprozeß wird die
Celluloselösung durch eine geeignete Düse extrudiert und die resultierende Faservorstufe
in Wasser gewaschen und danach getrocknet. Solche Fasern werden als "aus Lösungsmittel
gesponnene Fasern" bezeichnet.
[0003] Solche aus Lösungsmitteln gesponnenen Cellulosefasern bieten viele anwendungstechnische
Vorteile, neigen aber zum Fibrillieren. Darunter versteht man das Abspleißen feinster
Faserfibrillen, die bei der Verarbeitung der Cellulosefasern in der Textilherstellung
zu Problemen führen können.
[0004] Die WO-A-92/07124 empfiehlt zur Lösung dieses Problems die Behandlung der Cellulosefasern
mit einer wäßrigen Lösung oder Dispersion eines Polymers, das über eine Vielzahl kationisch
ionisierbarer Gruppen verfügt, z.B. ein Polyvinylimidazolin.
[0005] Weiterhin lehrt die EP-A-538 977 die Verwendung von Verbindungen, die 2 bis 6 funktionelle
Gruppen aufweisen, die mit Cellulose reagieren können, z.B. Produkte auf Basis von
Dichlortriazin, für diesen Zweck.
[0006] Aufgabe der vorliegenden Erfindung war es, ein neues Verfahren zur Herstellung von
aus Lösungsmitteln gesponnenen Cellulosefasern mit verringerter Neigung zum Fibrillieren
bereitzustellen, das von anderen chemischen Defibrillierungsreagenzien ausgeht.
[0007] Es wurde nun gefunden, daß die Herstellung von aus Lösungsmitteln gesponnenen Cellulosefasern
mit verringerter Neigung zum Fibrillieren vorteilhaft gelingt, wenn man die Fasern
mit einer oder mehreren Verbindungen aus der Gruppe der
(A) N-Methylolether von Carbonsäureamiden, Urethanen, Harnstoffen und Aminotriazinen,
(B) durch eine oder mehrere Alkylgruppen N-substituierten cyclischen Hydroxy- oder
Alkoxyethylenharnstoffe,
(C) hydrophil modifizierten Polyisocyanate und
(D) Mischungen von Polyurethanen mit Isocyanaten
behandelt.
[0008] In einer bevorzugten Ausführungsform setzt man als Verbindungen (A) N-Methylolether
der allgemeinen Formel I
in der
- R1
- für eine gegebenenfalls durch nicht benachbarte Sauerstoffatome unterbrochene C1-C10-Alkylgruppe steht,
- R2
- Wasserstoff, die Gruppe CH2OR1 oder einen C1-C8-Alkylrest bezeichnet, der noch zusätzlich Hydroxylgruppen und/oder C1-C4-Alkoxygruppen als Substituenten tragen und durch nicht benachbarte Sauerstoffatome
und/oder C1-C4-Alkylgruppen tragende Stickstoffatome unterbrochen sein kann, und
- R3
- Wasserstoff, einen C1-C10-Alkylrest, einen C1-C10-Alkoxyrest, der durch nicht benachbarte Sauerstoffatome unterbrochen sein kann, oder
die Gruppe (-NR2-CH2OR1) bedeutet,
wobei die Reste R
2 und R
3 zu einem fünf- oder sechsgliedrigen Ring verbunden und im Falle von R
3 = (-NR
2-CH
2OR
1) außerdem zwei solcher Ringe über die zu den Amidstickstoffen α-ständigen C-Atome
der Reste R
2 zu einem bicyclischen System kondensiert sein können, ein.
[0009] Die N-Methylolether I sind durch übliche Umsetzung, meist in wäßriger Lösung, der
entsprechenden N-Methylolverbindungen der allgemeinen Formel II
mit Alkoholen der allgemeinen Formel III
R
1―OH (III)
leicht erhältlich.
[0010] Der Rest R
1 steht für eine gegebenenfalls durch nicht benachbarte Sauerstoffatome unterbrochene
C
1-C
10-Alkylgruppe wie -CH
2CH
2OCH
3, -CH
2CH
2OCH
2CH
3 oder -CH
2CH
2OCH
2CH
2OCH
3. Als weitere Beispiel für R
1 sind zu nennen: n-Butyl, iso-Butyl, sec.-Butyl, tert.-Butyl, n-Pentyl, n-Hexyl, 2-Ethylhexyl
und 2-Methoxyethyl; von besonderem Interesse sind die C
1-C
3-Alkylgruppen Ethyl, n-Propyl, iso-Propyl und insbesondere Methyl.
[0011] Der Rest R
2 bezeichnet Wasserstoff, die Gruppe CH
2OR
1 und insbesondere einen C
1-C
8-Alkylrest, der noch zusätzliche Hydroxylgruppen und/oder C
1-C
4-Alkoxygruppen als Substituenten tragen und durch nicht benachbarte Sauerstoffatome
und/oder durch C
1-C
4-Alkylgruppen tragende Stickstoffatome unterbrochen sein kann.
[0012] Der Rest R
3 bedeutet Wasserstoff, einen C
1-C
10-Alkylrest, einen C
1-C
10-Alkoxyrest, der durch nicht benachbarte Sauerstoffatome unterbrochen sein kann, und
insbesondere die Gruppe (-NR
2-CH
2OR
1).
[0013] Für das erfindungsgemäße Verfahren sind insbesondere diejenigen N-Methylolether I
geeignet, bei denen die Reste R
2 und R
3 zu einem fünf- oder sechsgliedrigen Ring verbunden sind. Im Falle von R
3 = (-NR
2-CH
2OR
1) können außerdem zwei solcher Ringe über die zu den Amidstickstoffen α-ständigen
C-Atome der Reste R
2 zu einem bicyclischen System kondensiert sein.
[0014] Als Beispiele für N-Methylolether I, die beim erfindungsgemäßen Verfahren eingesetzt
werden können, sind zu nennen:
- Amide von C1-C11-Carbonsäuren, beispielsweise Ameisensäure, Essigsäure, Propionsäure, Buttersäure
oder Valeriansäure, welche am Stickstoff ein oder zwei CH2OR1-Gruppen tragen,
- Carbamate mit C1-C10-Alkylgruppen im Esterrest, die durch nicht benachbarte Sauerstoffatome unterbrochen
sein können, beispielsweise Methyl, Ethyl, n-Propyl, iso-Propyl, 2-Methoxyethyl oder
n-Butyl, welche am Stickstoff zwei CH2OR1-Gruppen tragen,
- Harnstoff mit 1 bis 4 CH2-OR1-Gruppen an den Stickstoffatomen,
- cyclische Ethylenharnstoffe der allgemeinen Formel Ia
in der die Reste X verschieden oder vorzugsweise gleich sind und für Wasserstoff,
Hydroxylgruppen oder C1-C4-Alkoxygruppen, beispielsweise Methoxy oder Ethoxy, stehen,
- cyclische Propylenharnstoffe der allgemeinen Formel Ib
in der Y für CH2, CHOH, C(CH3)2, ein O-Atom oder ein eine C1-C4-Alkylgruppe tragendes N-Atom steht und Z Wasserstoff oder eine C1-C4-Alkoxygruppe, beispielsweise Methoxy oder Ethoxy, bezeichnet,
- bicyclische Glyoxaldiharnstoffe der allgemeinen Formel Ic
- bicyclische Malondialdehyddiharnstoffe der allgemeinen Formel Id
[0015] In einer weiteren bevorzugten Ausführungsform setzt man als Verbindungen (A) Melaminderivate
der allgemeinen Formel IV
in der die Reste A gleich oder verschieden sind und für Wasserstoff oder die Gruppe
CH
2OR
1 stehen, wobei mindestens einer der Reste A die Bedeutung CH
2OR
1 haben muß und R
1 die oben genannte Bedeutung hat, ein.
[0016] Die Melaminderivate IV sind durch übliche Umsetzung, meist in wäßriger Lösung, der
entsprechenden N-Methylolmelamine der allgemeinen Formel V
in der die zu A analogen Reste B Wasserstoff oder die Gruppe CH
2OH bezeichnen, mit Alkoholen der allgemeinen Formel III leicht erhältlich.
[0017] Als Beispiele für Melaminderivate IV, die beim erfindungsgemäßen Verfahren eingesetzt
werden können, sind Methoxymethylmelamin, Bis(methoxymethyl)melamin, Tris(methoxymethyl)melamin,
Tetrakis(methoxymethyl)melamin, Pentakis(methoxymethyl)melamin und Hexakis(methoxymethyl)melamin
sowie die analogen Ethoxymethyl- und Isopropyloxymethyl-Verbindungen zu nennen.
[0018] Die Verbindungen (A) sind auf dem Textilgebiet als Vernetzer bei der formaldehydarmen
Ausrüstung (Hochveredlung) von cellulosehaltigen textilen Materialien bekannt.
[0019] In einer weiteren bevorzugten Ausführungsform setzt man als Verbindungen (B) cyclische
Hydroxy- oder Alkoxyethylenharnstoffe der allgemeinen Formel VI
in der R
4 und R
5 Wasserstoff oder C
1-C
3-Alkyl mit der Maßgabe bedeuten, daß mindestens einer der Reste R
4 und R
5 eine C
1-C
3-Alkylgruppe ist, und R
6 und R
7 für Wasserstoff oder C
1-C
4-Alkyl stehen, ein.
[0020] Die Verbindungen (B) sind auf dem Textilgebiet als Vernetzer bei der formaldehydfreien
Ausrüstung (Hochveredlung) von cellulosehaltigen textilen Materialien bekannt.
[0021] Die hydrophil modifizierten Polyisocyanate (C) werden in der Regel in Form von wäßrigen
Dispersionen, welche im wesentlichen frei von organischen Lösungsmitteln und weiteren
Emulgatoren sind, beim erfindungsgemäßen Verfahren eingesetzt.
[0022] Als Basis für die erfindungsgemäß verwendeten hydrophil modifizierten Polyisocyanate
dienen übliche Diisocyanate und/oder übliche höher funktionelle Polyisocyanate mit
einer mittleren NCO-Funktionalität von 2,0 bis 4,5. Diese Komponenten können alleine
oder im Gemisch vorliegen.
[0023] Beispiele für übliche Diisocyanate sind aliphatische Diisocyanate wie Tetramethylendiisocyanat,
Hexamethylendiisocyanat (1,6-Diisocyanatohexan), Octamethylendiisocyanat, Decamethylendiisocyanat,
Dodecamethylendiisocyanat, Tetradecamethylendiisocyanat, Trimethylhexandiisocyanat
oder Tetramethylhexandiisocyanat, cycloaliphatische Diisocyanate wie 1,4-, 1,3- oder
1,2-Diisocyanatocyclohexan, 4,4'-Di(isocyanatocyclohexyl)methan, 1-Isocyanato-3,3,5-trimethyl-5-(isocyanatomethyl)cyclohexan
(Isophorondiisocyanat) oder 2,4- oder 2,6-Diisocyanato-1-methylcyclohexan sowie aromatische
Diisocyanate wie 2,4- oder 2,6-Toluylendiisocyanat, Tetramethylxylylendiisocyanat,
p-Xylylendiisocyanat, 2,4'- oder 4,4'-Diisocyanatodiphenylmethan, 1,3- oder 1,4-Phenylendiisocyanat,
1-Chlor-2,4-phenylendiisocyanat, 1,5-Naphthylendiisocyanat, Diphenylen-4,4'-diisocyanat,
4,4'-Diisocyanato-3,3'-dimethyldiphenyl, 3-Methyldiphenylmethan-4,4'-diisocyanat oder
Diphenylether-4,4'-diisocyanat. Es können auch Gemische der genannten Diisocyanate
vorliegen. Bevorzugt werden hiervon aliphatische Diisocyanate, insbesondere Hexamethylendiisocyanat
und Isophorondiisocyanat.
[0024] Als übliche höher funktionelle Polyisocyanate eignen sich beispielsweise Triisocyanate
wie 2,4,6-Triisocyanatotoluol oder 2,4,4'-Triisocyanatodiphenylether oder die Gemische
aus Di-, Tri- und höheren Polyisocyanaten, die durch Phosgenierung von entsprechenden
Anilin/Formaldehyd-Kondensaten erhalten werden und Methylenbrücken aufweisende Polyphenylpolyisocyanate
darstellen.
[0025] Von besonderem Interesse sind übliche aliphatische höher funktionelle Polyisocyanate
der folgenden Gruppen:
(a) Isocyanuratgruppen aufweisende Polyisocyanate von aliphatischen und/oder cycloaliphatischen
Diisocyanaten. Besonders bevorzugt sind hierbei die entsprechenden Isocyanato-Isocyanurate
auf Basis von Hexamethylendiisocyanat und Isophorondiisocyanat. Bei den vorliegenden
Isocyanuraten handelt es sich insbesondere um einfache Tris-isocyanatoalkyl- bzw.
Triisocyanatocycloalkyl-Isocyanurate, welche cyclische Trimere der Diisocyanate darstellen,
oder um Gemische mit ihren höheren, mehr als einen Isocyanuratring aufweisenden Homologen.
Die Isocyanato-Isocyanurate haben im allgemeinen einen NCO-Gehalt von 10 bis 30 Gew.-%,
insbesondere 15 bis 25 Gew.-%, und eine mittlere NCO-Funktionalität von 2,6 bis 4,5.
(b) Uretdiondiisocyanate mit aliphatisch und/oder cycloaliphatisch gebundenen Isocyanatgruppen,
vorzugsweise von Hexamethylendiisocyanat oder Isophorondiisocyanat abgeleitet. Bei
Uretdiondiisocyanaten handelt es sich um cyclische Dimersierungsprodukte von Diisocyanaten.
(c) Biuretgruppen aufweisende Polyisocyanate mit aliphatisch gebundenen Isocyanatgruppen,
insbesondere Tris (6-isocyanatohexyl)biuret oder dessen Gemische mit seinen höheren
Homologen. Diese Biuretgruppen aufweisenden Polyisocyanate haben im allgemeinen einen
NCO-Gehalt von 18 bis 25 Gew.-% und eine mittlere NCO-Funktionalität von 3 bis 4,5.
(d) Urethan- und/oder Allophanatgruppen aufweisende Polyisocyanate mit aliphatisch
oder cycloaliphatisch gebundenen Isocyanatgruppen, wie sie beispielsweise durch Umsetzung
von überschüssigen Mengen an Hexamethylendiisocyanat oder an Isophorondiisocyanat
mit einfachen mehrwertigen Alkoholen wie Trimethylolpropan, Glycerin, 1,2-Dihydroxypropan
oder deren Gemischen erhalten werden können. Diese Urethan- und/oder Allophanatgruppen
aufweisenden Polyisocyanate haben im allgemeinen einen NCO-Gehalt von 12 bis 20 Gew.-%
und eine mittlere NCO-Funktionalität von 2,5 bis 3.
(e) Oxadiazintriongruppen enthaltende Polyisocyanate, vorzugsweise von Hexamethylendiisocyanat
oder Isophorondiisocyanat abgeleitet. Solche Oxadiazintriongruppen enthaltenden Polyisocyanate
sind aus Diisocyanat und Kohlendioxid herstellbar.
(f) Uretonimin-modifizierte Polyisocyanate.
[0026] Für die erfindungsgemäße Verwendung werden aliphatische Diisocyanate und aliphatische
höher funktionelle Polyisocyanate besonders bevorzugt.
[0027] Die beschriebenen Diisocyanate und/oder höher funktionalisierten Polyisocyanate werden
zur Überführung in nicht-ionisch hydrophil modifizierte Polyisocyanate, die für die
erfindungsgemäße Verwendung besonders bevorzugt werden, mit NCO-reaktiven Verbindungen
umgesetzt, die hydrophil machende Strukturelemente mit nichtionischen Gruppen oder
mit polaren Gruppen, die nicht in Ionengruppen übergeführt werden können, enthalten.
Dabei liegt das Diisocyanat bzw. Polyisocyanat im stöchiometrischen Überschuß vor,
damit das resultierende hydrophil modifizierte Polyisocyanat noch freie NCO-Gruppen
aufweist.
[0028] Als solche NCO-reaktive Verbindungen mit hydrophil machenden Strukturelementen kommen
vor allem hydroxylgruppenterminierte Polyether der allgemeinen Formel VII
R
8―E―(DO)
n―H (VII)
in der
- R8
- für C1- bis C20-Alkyl, insbesondere C1- bis C4-Alkyl, oder C2- bis C20-Alkenyl, Cyclopentyl, Cyclohexyl, Glycidyl, Oxethyl, Phenyl, Tolyl, Benzyl, Furfuryl
oder Tetrahydrofurfuryl steht,
- E
- Schwefel oder insbesondere Sauerstoff bezeichnet,
- D
- Propylen oder vor allem Ethylen bedeutet, wobei auch insbesondere blockweise gemischt
ethoxylierte und propoxylierte Verbindungen auftreten können, und
- n
- für eine Zahl von 5 bis 120, insbesondere 10 bis 25 steht,
in Betracht.
[0029] Der Einsatz von nicht-ionisch hydrophil modifizierten Polyisocyanaten, welche die
Polyether VII eingebaut enthalten, stellt daher auch eine bevorzugte Ausführungsform
dar.
[0030] Hierbei handelt es sich besonders bevorzugt um auf C
1- bis C
4-Alkanol gestartete Ethylenoxid- oder Propylenoxid-Polyether mit mittleren Molekulargewichten
von 250 bis 7000, insbesondere 450 bis 1500.
[0031] Man kann aus den beschriebenen Diisocyanaten und/oder höher funktionalisierte Polyisocyanaten
auch zuerst durch Umsetzung mit einem Unterschuß an hydroxylgruppenterminierten Polyestern,
an anderen hydroxylgruppenterminierten Polyethern oder an Polyolen, z.B. Ethylenglykol,
Trimethylolpropan oder Butandiol, Präpolymere erzeugen und diese Präpolymere dann
anschließend oder auch gleichzeitig mit den Polyethern VII im Unterschuß zu den hydrophil
modifizierten Polyisocyanaten mit freien NCO-Gruppen umsetzen.
[0032] Es ist auch möglich, nicht-ionisch hydrophil modifizierte Polyisocyanate aus Diisocyanat
bzw. Polyisocyanat und Polyalkylenglykolen der Formel HO―(DO)
n―H, in der D und n die oben genannten Bedeutungen haben, herzustellen. Dabei reagieren
beide endständigen OH-Gruppen des Polyalkylenglykols mit Isocyanat ab.
[0033] Die aufgezählten Arten nicht-ionisch hydrophil modifizierter Polyisocyanate sind
in den Schriften DE-A 24 47 135, DE-A 26 10 552, DE-A 29 08 844, EP-A 0 13 112, EP-A
019 844, DE-A 40 36 927, DE-A 41 36 618, EP-B 206 059, EP-A 464 781 und EP-A 516 361
näher beschrieben.
[0034] Die beschriebenen Diisocyanate und/oder höher funktionalisierten Polyisocyanate werden
zur Überführung in anionisch hydrophil modifizierte Polyisocyanate mit NCO-reaktiven
Verbindungen umgesetzt, die hydrophil machende anionische Gruppen, insbesondere Säuregruppen
wie Carboxylgruppen, Sulfonsäuregruppen oder Phosphonsäuregruppen, enthalten. Dabei
liegt das Diisocyanat bzw. Polyisocyanat im stöchiometrischen Überschuß vor, damit
das resultierende hydrophil modifizierte Polyisocyanat noch freie NCO-Gruppen aufweist.
[0035] Als solche NCO-reaktiven Verbindungen mit anionischen Gruppen kommen vor allem Hydroxycarbonsäuren
wie 2-Hydroxyessigsäure, 3-Hydroxypropionsäure, 4-Hydroxybuttersäure oder Hydroxylpivalinsäure
sowie 2,2-Bis- und 2,2,2-Tris(hydroxymethyl)alkansäuren, z.B. 2,2-Bis(hydroxymethyl)essigsäure,
2,2-Bis(hydroxymethyl)propionsäure, 2,2-Bis(hydroxymethyl)buttersäure oder 2,2,2-Tris(hydroxymethyl)essigsäure,
in Betracht. Die Carboxylgruppen können teilweise oder vollständig durch eine Base
neutralisiert sein, um in einer wasserlöslichen oder wasserdispergierbaren Form vorzuliegen.
Als Base tritt hierbei vorzugsweise ein tertiäres Amin auf, welches bekanntermaßen
gegenüber Isocyanat inert ist.
[0036] Die beschriebenen Diisocyanate und/oder höher funktionalisierten Polyisocyanate können
auch mit einer Mischung aus nicht-ionisch hydrophil modifizierenden und anionisch
hydrophobil modifizierenden Verbindungen, welche nacheinander oder gleichzeitig zugegeben
werden, umgesetzt werden, beispielsweise mit einem Unterschuß aus den Polyethern VII
und den beschriebenen Hydroxycarbonsäuren.
[0037] Die aufgezählten Arten anionisch hydrophil modifizierter Polyisocyanate sind in den
Schriften DE-A 40 01 783, DE-A 41 13 160 und DE-A 41 42 275 näher beschrieben.
[0038] Die beschriebenen Diisocyanate und/oder höher funktionalisierten Polyisocyanate werden
zur Überführung in kationisch hydrophil modifizierte Polyisocyanate mit NCO-reaktiven
Verbindungen umgesetzt, die chemisch eingebaute alkylierbare oder protonierbare Funktionen
unter Ausbildung eines kationischen Zentrums enthalten. Insbesondere sind solche Funktionen
tertiäre Stickstoffatome, welche bekanntermaßen gegenüber Isocyanat inert sind und
sich leicht quaternieren oder protonieren lassen. Bei der Umsetzung von Diisocyanat
bzw. Polyisocyanat mit diesen NCO-reaktiven Verbindungen liegen erstere im Überschuß
vor, damit das resultierende hydrophil modifizierte Polyisocyanat noch freie NCO-Gruppen
aufweist.
[0039] Als derartige NCO-reaktive Verbindungen mit tertiären Stickstoffatomen kommen vorzugsweise
Aminoalkohole der allgemeinen Formel VIII
in der
- R9 und R10
- lineares oder verzweigtes C1- bis C20-Alkyl, insbesondere C1- bis C5-Alkyl, bedeuten oder zusammen mit dem N-Atom einen fünf- oder sechsgliedrigen Ring
bilden, der noch ein O-Atom oder ein tertiäres N-Atom enthalten kann, insbesondere
einen Piperidin-, Morpholin-, Piperazin-, Pyrrolidin-, Oxazolin- oder Dihydrooxazin-Ring,
wobei die Reste R2 und R3 noch zusätzlich Hydroxylgruppen, insbesondere jeweils eine Hydroxylgruppe, tragen
können, und
- R11
- eine C2- bis C10-Alkylengruppe, insbesondere eine C2- bis C6-Alkylengruppe, die linear oder verzweigt sein kann, bezeichnet,
in Betracht.
[0040] Als Aminoalkohole VIII eignen sich vor allem N-Methyldiethanolamin, N-Methyldi(iso)propanolamin,
N-Butyldiethanolamin, N-Butyldi(iso)propanolamin, N-Stearyldiethanolamin, N-Stearyldi(iso)propanolamin,
N,N-Dimethylethanolamin, N,N-Dimethyl(iso)propanolamin, N,N-Diethylethanolamin, N,N-Diethyl(iso)propanolamin,
N,N-Dibutylethanolamin, N,N-Dibutyl(iso)propanolamin, Triethanolamin, Tri(iso)propanolamin,
N-(2-Hydroxyethyl)morpholin, N-(2-Hydroxypropyl)morpholin, N-(2-Hydroxyethyl)piperidin,
N-(2-Hydroxypropyl)piperidin, N-Methyl-N'-(2-hydroxyethyl)piperazin, N-Methyl-N'-(2-hydroxypropyl)piperazin,
N-Methyl-N'-(4-hydroxybutyl)piperazin, 2-Hydroxyethyl-oxazolin, 2-Hydroxypropyl-oxazolin,
3-Hydroxypropyl-oxazolin, 2-Hydroxyethyl-dihydrooxazin, 2-Hydroxypropyl-dihydrooxazin
oder 3-Hydroxypropyl-dihydrooxazin.
[0041] Weiterhin kommen als derartige NCO-reaktive Verbindungen mit tertiären Stickstoffatomen
vorzugsweise Diamine der allgemeinen Formel IXa oder IXb
in der R
9 bis R
11 die oben genannten Bedeutungen haben und R
12 C
1- bis C
5-Alkyl bezeichnet oder mit R
9 einen fünf- oder sechsgliedrigen Ring, insbesondere einen Piperazin-Ring, bildet,
in Betracht.
[0042] Als Diamine IXa eigenen sich vor allem N,N-Dimethyl-ethylendiamin, N,N-Diethyl-ethylendiamin,
N,N-Dimethyl-1,3-diamino-2,2-dimethylpropan, N,N-Diethyl-1,3-propylendiamin, N-(3-Aminopropyl)morpholin,
N-(2-Aminopropyl)morpholin, N-(3-Aminopropyl)piperidin, N-(2-Aminopropyl)piperidin,
4-Amino-1-(N,N-diethylamino)pentan, 2-Amino-1-(N,N-dimethylamino)propan, 2-Amino-1-(N,N-diethylamino)propan
oder 2-Amino-1-(N,N-diethylamino)-2-methylpropan.
[0043] Als Diamine IXb eignen sich vor allem N,N,N'-Trimethyl-ethylendiamin, N,N,N'-Triethyl-ethylendiamin,
N-Methylpiperazin oder N-Ethylpiperazin.
[0044] Weiterhin können als NCO-reaktive Verbindungen auch Polyether(poly)ole mit eingebauten
tertiären Stickstoffatomen, die durch Propoxylierung und/oder Ethoxylierung von Aminstickstoff
aufweisenden Startermolekülen herstellbar sind, eingesetzt werden. Derartige Polyether(poly)ole
sind beispielsweise die Propoxylierungs- und Ethoxylierungsprodukte von Ammoniak,
Ethanolamin, Diethanolamin, Ethylendiamin oder N-Methylanilin.
[0045] Andere verwendbare NCO-reaktive Verbindungen sind tertiäre Stickstoffatome aufweisende
Polyester- und Polyamidharze, tertiäre Stickstoffatome aufweisende urethangruppenhaltige
Polyole sowie tertiäre Stickstoffatome aufweisende Polyhydroxypolyacrylate.
[0046] Die beschriebenen Diisocyanate und/oder höher funktionalisierten Polyisocyanate können
auch mit einer Mischung aus nicht-ionisch hydrophil modifizierenden und kationisch
hydrophil modifizierenden Verbindungen, welche nacheinander oder gleichzeitig zugegeben
werden, umgesetzt werden, beispielsweise mit einem Unterschuß aus den Polyethern VII
und den Aminoalkoholen VIII oder den Diaminen IXa bzw. IXb. Auch Mischungen aus nicht-ionisch
hydrophil modifizierenden und anionisch hydrophil modifizierenden Verbindungen sind
möglich.
[0047] Die aufgezählten Arten kationisch hydrophil modifizierter Polyisocyanate sind in
den Schriften DE-A 42 03 510 und EP-A 531 820 näher beschrieben.
[0048] Da die genannten hydrophil modifizierten Polyisocyanate (C) in der Regel in wäßrigen
Medien eingesetzt werden, ist für eine ausreichende Dispergierbarkeit der Polyisocyanate
zu sorgen. Vorzugsweise wirken innerhalb der Gruppe der beschriebenen hydrophil modifizierten
Polyisocyanaten bestimmte Umsetzungsprodukte aus Di- bzw. Polyisocyanaten und hydroxylgruppenterminierten
Polyethern (Polyetheralkoholen) wie den Verbindungen VII als Emulgatoren für diesen
Zweck.
[0049] Die erzielten guten Ergebnisse mit den hydrophil modifizierten Polyisocyanaten (C)
in wäßrigen Medien sind um so überraschender, da zu erwarten war, daß Isocyanate sich
in wäßrigem Milieu rasch zersetzen. Trotzdem weisen die erfindungsgemäß eingesetzten
Polyisocyanate in der wäßrigen Flotte eine Topfzeit von mehreren Stunden auf, d.h.
die vorliegenden Polyisocyanat-Dispersionen sind im Rahmen der üblichen Verarbeitungsdauer
stabil. Von einer Dispersion wird gesagt, daß sie stabil ist, wenn ihre Komponenten
ineinander dispergiert bleiben, ohne daß sie sich in diskrete Schichten trennen. Mit
dem Ausdruck "Topfzeit" ist die Zeit gemeint, während der die Dispersionen verarbeitbar
bleiben, bevor sie gelieren und abbinden. Wäßrige Isocyanat-Dispersionen gelieren
und binden ab, weil eine Reaktion zwischen dem Wasser und dem Isocyanat stattfindet,
wobei ein Polyharnstoff entsteht.
[0050] Die Mischungen aus Polyurethanen und Isocyanaten (D) werden wie die Verbindungen
(C) in der Regel in Form von wäßrigen Dispersionen, welche im wesentlichen frei von
organischen Lösungsmitteln und in den meisten Fällen frei von Emulgatoren sind, beim
erfindungsgemäßen Verfahren eingesetzt.
[0051] Unter Polyurethanen sind aus Polyisocyanaten (im weiteren auch Monomere I genannt)
und gegenüber Polyisocyanaten reaktiven Verbindungen mit mindestens einer Hydroxylgruppe
und gegebenenfalls Verbindungen mit mindestens einer primären oder sekundären Aminogruppe
aufgebaute Systeme zu verstehen. Die Polyurethane weisen in aller Regel keine freien
Isocyanatgruppen mehr auf.
[0052] Als Polyisocyanate zur Herstellung der in den Mischungen (D) enthaltenen Polyurethane
dienen übliche Diisocyanate und/oder übliche höher funktionelle Polyisocyanate wie
sie bei den hydrophil modifizierten Polyisocyanaten (C) beschrieben sind. Auch hier
werden aliphatische Diisocyanate und aliphatische höher funktionelle Polyisocyanate
bevorzugt.
[0053] Bei den weiteren Aufbaukomponenten des Polyurethans handelt es sich zunächst um Polyole
mit einem Molekulargewicht von 400 bis 6000 g/mol, vorzugsweise 600 bis 4000 g/mol
(Monomere II).
[0054] In Betracht kommen insbesondere Polyetherpolyole oder Polyesterpolyole.
[0055] Bei den Polyesterdiolen handelt es sich insbesondere um die an sich bekannten Umsetzungsprodukte
von zweiwertigen Alkoholen mit zweiwertigen Carbonsäuren. Anstelle der freien Polycarbonsäuren
können auch die entsprechenden Polycarbonsäureanhydride oder entsprechende Polycarbonsäureester
von niederen Alkoholen oder deren Gemische zur Herstellung der Polyesterpolyole verwendet
werden. Die Polycarbonsäuren können aliphatisch, cycloaliphatisch, aromatisch oder
heterocyclisch sein und gegebenenfalls, z.B. durch Halogenatome, substituiert und/oder
ungesättigt sein. Als Beispiele hierfür seien genannt: Bernsteinsäure, Adipinsäure,
Korksäure, Azelainsäure, Sebacinsäure, Phthalsäure, Isophthalsäure, Phthalsäureanhydrid,
Tetrahydrophthalsäureanhydrid, Hexahydrophthalsäureanhydrid, Tetrachlorphthalsäureanhydrid,
Endomethylentetrahydrophthalsäureanhydrid, Glutarsäureanhydrid, Maleinsäure, Maleinsäureanhydrid,
Fumarsäure, dimere Fettsäuren. Als mehrwertige Alkohole kommen z.B. Ethylenglykol,
Propylenglykol-(1,2) und -(1,3), Butandiol-(1,4), -(1,3), Butendiol-(1,4), Butindiol-(1,4),
Pentandiol-(1,5), Hexandiol-(1,6), Octandiol-(1,8), Neopentylglykol, Cyclohexandimethanol
(1,4-Bis-hydroxymethylcyclohexan), 2-Methyl-1,3-propandiol, Pentandiol-(1,5), ferner
Diethylenglykol, Triethylenglykol, Tetraethylenglykol, Polyethylenglykol, Dipropylenglykol,
Polypropylenglykol, Dibutylenglykol und Polybutylenglykole in Frage.
[0056] Geeignet sind auch Polyesterdiole auf Lacton-Basis, wobei es sich um Homo- oder Mischpolymerisate
von Lactonen, bevorzugt um endständige Hydroxylgruppen aufweisende Anlagerungsprodukte
von Lactonen bzw. Lactongemischen, wie z.B. ε-Caprolacton, β-Propiolacton, υ-Butyrolacton
und/oder Methyl-ε-caprolacton an geeignete difunktionelle Startermoleküle, z.B. die
vorstehend als Aufbaukomponente für die Polyesterpolyole genannten niedermolekularen,
zweiwertigen Alkohole handelt. Die entsprechenden Polymerisate des ε-Caprolactons
sind besonders bevorzugt. Auch niedere Polyesterdiole oder Polyetherdiole können als
Starter zur Herstellung der Lacton-Polymerisate eingesetzt sein. Anstelle der Polymerisate
von Lactonen können auch die entsprechenden, chemisch äquivalenten Polykondensate
der den Lactonen entsprechenden Hydroxycarbonsäuren eingesetzt werden.
[0057] Die - gegebenenfalls auch im Gemisch mit Polyesterdiolen - einsetzbaren Polyetherdiole,
sind insbesondere durch Polymerisation von Ethylenoxid, Propylenoxid, Butylenoxid,
Tetrahydrofuran, Styroloxid oder Epichlorhydrin mit sich selbst, z.B. in Gegenwart
von BF
3 oder durch Anlagerung dieser Verbindungen gegebenenfalls im Gemisch oder nacheinander,
an Startkomponenten mit reaktionsfähigen Wasserstoffatomen, wie Alkohole oder Amine,
z.B. Wasser, Ethylenglykol, Propylenglykol-(1,3) oder -(1,2), 4,4'-Dihydroxydiphenylpropan,
Anilin erhältlich.
[0058] Der Anteil des vorstehend beschriebenen Monomeren II beträgt im allgemeinen 0,1 bis
0,8 Grammäquivalent, vorzugsweise 0,2 bis 0,7 Grammäquivalent der Hydroxylgruppe des
Monomeren II bezogen auf 1 Grammäquivalent Isocyanat des Polyisocyanats.
[0059] Bei weiteren Aufbaukomponenten des Polyurethans handelt es sich um Kettenverlängerer
oder Vernetzer mit mindestens zwei gegenüber Isocyanat reaktiven Gruppen, ausgewählt
aus Hydroxylgruppen, primären oder sekundären Aminogruppen.
[0060] Genannt seien Polyole, insbesondere Diole und Triole, mit einem Molekulargewicht
unter 400 g/mol bis 62 g/mol (Monomere III).
[0061] Insbesondere kommen die oben aufgeführten zur Herstellung der Polyesterpolyole geeigneten
Diole und Triole, sowie höher als trifunktionelle Alkohole wie Pentaerythrit oder
Sorbit in Betracht.
[0062] Der Anteil der Monomeren III beträgt im allgemeinen 0 bis 0,8, insbesondere 0 bis
0,7 Grammäquivalent, bezogen auf 1 Grammäquivalent Isocyanat.
[0063] Bei den gegebenenfalls einzusetzenden Monomeren IV handelt es sich um mindestens
difunktionelle Amin-Kettenverlängerer bzw. -vernetzer des Molgewichtsbereiches von
32 bis 500 g/mol, vorzugsweise von 60 bis 300 g/mol, welche mindestens zwei primäre,
zwei sekundäre oder eine primäre und eine sekundäre Aminogruppe enthalten.
[0064] Beispiel hierfür sind Diamine, wie Diaminoethan, Diaminopropane, Diaminobutane, Diaminohexane,
Piperazin, 2,5-Dimethylpiperazin, Amino-3-aminomethyl-3,5,5-trimethyl-cyclohexan (Isophorondiamin,
IPDA), 4,4'-Diaminodicyclohexylmethan, 1,4-Diaminocyclohexan, Aminoethylethanolamin,
Hydrazin, Hydrazinhydrat oder Triamine wie Diethylentriamin oder 1,8-Diamino-4-aminomethyloctan.
Die aminogruppenhaltigen Kettenverlängerer können auch in blockierter Form, z.B. in
Form der entsprechenden Ketimine (siehe z.B. CA-1 129 128), Ketazine (vgl. z.B. die
US-A-4 269 748) oder Aminsalze (s. US-A-4 292 226) eingesetzt sein. Auch Oxazolidine,
wie sie beispielsweise in der US-A-4 192 937 verwendet werden, stellen verkappte Polyamine
dar, die für die Herstellung der erfindungsgemäßen Polyurethane zur Kettenverlängerung
der Prepolymeren eingesetzt werden können. Bei der Verwendung derartiger verkappter
Polyamine werden diese im allgemeinen mit den Prepolymeren in Abwesenheit von Wasser
vermischt und diese Mischung anschließend mit dem Dispersionswasser oder einem Teil
des Dispersionswassers vermischt, so daß intermediär hydrolytisch die entsprechenden
Polyamine freigesetzt werden.
[0065] Bevorzugt werden Gemische von Di- und Triaminen verwendet, besonders bevorzugt Gemische
von Isophorondiamin und Diethylentriamin.
[0066] Bei den gegebenenfalls ebenfalls als Kettenverlängerer einzusetzenden Monomeren V
handelt es sich um Aminoalkohole mit einer Hydroxyl- und einer primären oder sekundären
Aminogruppe wie Ethanolamin, Isopropanolamin, Methylethanolamin oder Aminoethoxyethanol.
[0067] Der Anteil der Monomeren IV oder V beträgt jeweils vorzugsweise 0 bis 0,4, besonders
bevorzugt 0 bis 0,2 Grammäquivalent, bezogen auf 1 Grammäquivalent Isocyanat des Polyisocyanats.
[0068] Als weitere Aufbaukomponente können Verbindungen eingesetzt werden, die mindestens
eine, vorzugsweise zwei gegenüber Isocyanatgruppen reaktionsfähige Gruppen, also Hydroxyl-,
primäre oder sekundäre Aminogruppen, und außerdem im Gegensatz zu den voranstehend
beschriebenen Monomeren ionische Gruppen oder durch eine einfache Neutralisations-
oder Quaternisierungsreaktion in ionische Gruppen überführbare, potentiell ionische
Gruppen aufweisen. (Monomere VI). Durch Einführung der Monomeren VI werden die Polyurethane
selbst dispergierbar, d.h. beim Dispergieren in Wasser werden in diesem Fall keine
Dispergierhilfsmittel wie Schutzkolloide oder Emulgatoren benötigt.
[0069] Die Einführung der kationischen oder anionischen Gruppen kann durch Mitverwendung
von (potentielle) kationische oder (potentielle) anionische Gruppen aufweisende Verbindungen
mit gegenüber Isocyanat reaktionsfähigen Wasserstoffatomen erfolgen. Zu diesen Gruppen
von Verbindungen gehören z.B. tertiäre Stickstoffatome aufweisende Polyether mit vorzugsweise
zwei endständigen Hydroxylgruppen, wie sie z.B. durch Alkoxylierung von zwei an Aminstickstoff
gebundene Wasserstoffatome aufweisenden Aminen, z.B. Methylamin, Anilin, oder N,N'-Dimethylhydrazin,
in an sich üblicher Weise zugänglich sind. Derartige Polyether weisen im allgemeinen
ein zwischen 500 und 6000 g/mol liegendes Molgewicht auf.
[0070] Vorzugsweise werden jedoch die ionischen Gruppen durch Mitverwendung von vergleichsweise
niedermolekularen Verbindungen mit (potentiellen) ionischen Gruppen und gegenüber
Isocyanatgruppen reaktionsfähigen Gruppen eingeführt. Beispiele hierfür sind in der
US-A 3 479 310 und 4 056 564 sowie der GB-1 455 554 aufgeführt. Auch Dihydroxyphosphonate,
wie das Natriumsalz des 2,3-Dihydroxypropan-phosphonsäure-ethylesters oder das entsprechende
Natriumsalz der nichtveresterten Phosphonsäure, können als ionische Aufbaukomponente
mitverwendet werden.
[0071] Bevorzugte (potentielle) ionische Monomere VI sind N-Akyldialkanolamine, wie z.B.
N-Methyldiethanolamin, N- Ethyldiethanolamin, Diaminosulfonate, wie das Na-Salz der
N-(2-Aminoethyl)-2-aminoethansulfonsäure, Dihydroxysulfonate, Dihydroxycarbonsäuren
wie Dimethylolpropionsäure, Diaminocarbonsäuren bzw.-carboxylate wie Lysin oder das
Na-Salz der N-(2-Aminoethyl)-2-aminoethancarbonsäure und Diamine mit mindestens einem
zusätzlichen tertiären Aminstickstoffatom, z.B. N-Methyl-bis-(3-aminopropyl)-amin.
[0072] Besonders bevorzugt werden Diamino- und Dihydroxycarbonsäuren, insbesondere das Addukt
von Ethylendiamin an Natriumacrylat oder Dimethylolpropionsäure.
[0073] Die Überführung der gegebenenfalls zunächst in das Polyadditionsprodukt eingebauten
potentiellen ionischen Gruppen zumindest teilweise in ionische Gruppen geschieht in
an sich üblicher Weise durch Neutralisation der potentiellen anionischen oder kationischen
Gruppen oder durch Quaternierung von tertiären Amin-Stickstoffatomen.
[0074] Zur Neutralisation von potentiellen anionischen Gruppen, z.B. Carboxylgruppen, werden
anorganische und/oder organische Basen eingesetzt wie Alkalihydroxide, -carbonate
oder -hydrogencarbonate, Ammoniak oder primäre, sekundäre und besonders bevorzugt
tertiäre Amine wie Triethylamin oder Dimethylaminopropanol.
[0075] Zur Überführung der potentiellen kationischen Gruppen, z.B. der tertiären Amingruppen
in die entsprechenden Kationen, z.B. Ammoniumgruppen, sind als Neutralisationsmittel
anorganische oder organische Säuren, z.B. Salz-, Phosphor-, Ameisen-, Essig-, Fumar-,
Malein-, Milch-, Wein- oder Oxalsäure oder als Quaternierungsmittel, z .B. Methylchlorid,
Methylbromid, Methyljodid, Dimethylsulfat, Benzylchlorid, Chloressigsäureester oder
Bromacetamid geeignet. Weitere Neutralisations- oder Quaternierungsmittel sind z.B.
in der US-A 3 479 310, Spalte 6, beschrieben.
[0076] Diese Neutralisation oder Quaternierung der potentiellen Ionengruppen kann vor, während,
jedoch vorzugsweise nach der Isocanat-Polyadditionsreaktion erfolgen.
[0077] Die Mengen der Monomeren VI, bei potentiellen ionengruppenhaltigen Komponenten unter
Berücksichtigung des Neutralisations- oder Quaternierungsgrades, ist geeigneterweise
so zu wählen, daß die Polyurethane einen Gehalt von 0,05 bis 2 mÄqu/g Polyurethan,
vorzugsweise von 0,07 bis 1,0 und besonders bevorzugt von 0,1 bis 0,7 mÄqu/g Polyurethan
an ionischen Gruppen aufweisen.
[0078] Gegebenenfalls werden auch monofunktionelle Amin- oder Hydroxylverbindungen als Aufbaukomponenten
mitverwendet (Monomere VII). Es handelt sich bevorzugt um einwertige Polyetheralkohole
des Molgewichtsbereiches 500 bis 10 000 g/mol, vorzugsweise von 800 bis 5 000 g/mol.
Einwertige Polyetheralkohole sind z.B. durch Alkoxylierung von einwertigen Startermolekülen,wie
z.B. Methanol, Ethanol oder n-Butanol erhältlich, wobei als Alkoxylierungsmittel Ethylenoxid
oder Gemische von Ethylenoxid mit anderen Alkylenoxiden, besonders Propylenoxid, eingesetzt
werden. Im Falle der Verwendung von Alkylenoxidgemischen enthalten diese jedoch vorzugsweise
mindestens 40, besonders bevorzugt mindestens 65 mol-% Ethylenoxid.
[0079] Durch die Monomeren VII können in den Polyurethanen somit gegebenenfalls in endständig
angeordneten Polyetherketten vorliegende Polyethylenoxidsegmente eingebaut sein, die
im Polyurethan neben den ionischen Gruppen den hydrophilen Charakter beeinflussen
und eine Dispergierbarkeit in Wasser gewährleisten oder verbessern.
[0080] Die Verbindungen der genannten Art werden bevorzugt, so man von ihnen Gebrauch macht,
in solchen Mengen eingesetzt, daß von ihnen von 0 bis 10, vorzugsweise von 0 bis 5
Gew.-% Polyethylenoxideinheiten in das Polyurethan eingebracht werden.
[0081] Weitere Beispiele von bei der Herstellung der beschriebenen Polyurethane als Monomere
I bis VII einsetzbaren Verbindungen sind z.B. in High Polymers, Vol. XVI, "Polyurethanes,
Chemistry and Technology", von Saunders-Frisch, Interscience Publishers, New York,
London, Band I, 1962, Seiten 32 bis 42 und Seiten 44 bis 54 und Band II, Seiten 5
bis 6 und 198 bis 199, beschrieben.
[0082] Als Monomere VIII, welche im Gegensatz zu den voranstehenden Monomeren ethylenisch
ungesättigte Gruppen enthalten, kommen z.B. Ester von Acryl- oder Methacrylsäure mit
Polyolen, wobei mindestens eine OH-Gruppe des Polyols unverestert bleibt, in Betracht.
Besonders geeignet sind Hydroxyalkyl(meth)acrylate der Formel HO(CH
2)
mOOC(R
12)C=CH
2 (m = 2 bis 8; R
12 = H, CH
3) und ihre Stellungsisomeren, Mono(meth)acrylsäureester von Polyetherdiolen, wie z.B.
bei den Monomeren II aufgeführt, Trimethylolpropanmono- und di(meth)acrylat, Pentaerythritdi-
und -tri(meth)acrylat oder Reaktionsprodukte von Epoxidverbindungen mit (Meth)acrylsäure,
wie sie z.B. in der US-A-357 221 genannt sind. Besonders geeignet sind die Addukte
von (Meth)acrylsäure an Bisglycidylether von Diolen wie z.B. Bisphenol A oder Butandiol.
[0083] Verwendbar sind auch Addukte von (Meth)acrylsäure an epoxidierte Diolefine wie z.B.
3,4-Epoxycyclohexylmethyl-3', 4'-epoxycyclohexancarboxylat.
[0084] Durch Einbau der Monomeren VIII kann, falls gewünscht, das Polyurethan thermisch
oder photochemisch, gegebenenfalls in Gegenwart eines Initiators, nachträglich gehärtet
werden.
[0085] Im allgemeinen liegt der Anteil der ethylenisch ungesättigten Gruppen unter 0,2 mol
pro 100 g Polyurethan.
[0086] Insgesamt wird der Anteil der Aufbaukomponenten vorzugsweise so gewählt, daß die
Summe der gegenüber Isocyanat reaktiven Hydroxylgruppen und primären oder sekundären
Aminogruppen 0,9 bis 1,2, besonders bevorzugt 0,95 bis 1,1, bezogen auf 1 Isocyanatgruppe,
beträgt.
[0087] Die Herstellung der beschriebenen Polyurethane, insbesondere als Dispersionen, kann
nach den üblichen Methoden, wie sie z.B. in den oben angeführten Schriften beschrieben
sind, erfolgen.
[0088] Bevorzugt wird in einem inerten, mit Wasser mischbaren Lösungsmittel, wie Aceton,
Tetrahydrofuran, Methylethylketon oder N-Methylpyrrolidon aus den Monomeren I und
II und gegebenenfalls III, V, VI, VII und VIII, falls VI keine Aminogruppen enthält,
das Polyurethan oder, falls eine weitere Umsetzung mit aminofunktionellen Monomeren
IV oder VI beabsichtigt ist, ein Polyurethanprepolymer mit noch endständigen Isocyanatgruppen
hergestellt.
[0089] Die Reaktionstemperatur liegt im allgemeinen zwischen 20 und 160°C, vorzugsweise
zwischen 50 und 100°C.
[0090] Zur Beschleunigung der Reaktion der Diisocyanate können die üblichen Katalysatoren,
wie Dibutylzinndilaurat, Zinn-II-octoat oder Diazabicyclo-(2,2,2)-octan, mitverwendet
sein.
[0091] Das erhaltene Polyurethanprepolymer kann, gegebenenfalls nach (weiterer) Verdünnung
mit Lösungsmitteln der oben genannten Art, bevorzugt mit Lösungsmitteln mit Siedepunkten
unter 100°C, bei einer Temperatur zwischen 20 und 80°C mit aminofunktionellen Verbindungen
der Monomeren VI und gegebenenfalls IV weiter umgesetzt werden.
[0092] Die Überführung potentieller Salzgruppen, z.B. Carboxylgruppen, oder tertiärer Aminogruppen,
welche über die Monomeren VI in das Polyurethan eingeführt wurden, in die entsprechenden
Ionen erfolgt durch Neutralisation mit Basen oder Säuren oder durch Quaternisierung
der tertiären Aminogruppen vor oder während dem Dispergieren des Polyurethans in Wasser.
[0093] Nach der Dispergierung kann das organische Lösungsmittel, falls sein Siedepunkt unterhalb
dem des Wasser liegt, abdestilliert werden. Gegebenenfalls mitverwendete Lösungsmittel
mit einem höheren Siedepunkt können in der Dispersion verbleiben.
[0094] Der Gehalt des Polyurethans in den Dispersionen kann insbesondere zwischen 5 und
70 Gewichtsprozent, bevorzugt zwischen 20 bis 50 Gew.-%, bezogen auf die Dispersionen,
liegen.
[0095] Den Dispersionen können übliche Hilfsmittel, z.B. Verdicker, Thixotropiermittel,
Oxidations- und UV- Stabilisatoren oder Trennmittel, zugesetzt werden.
[0096] Hydrophobe Hilfsmittel, die unter Umständen nur schwierig homogen in der fertigen
Dispersion zu verteilen sind, können auch nach der in US-A 4 306 998 beschriebenen
Methode dem Polyurethan oder dem Prepolymer bereits vor der Dispergierung zugesetzt
werden.
[0097] Als Isocyanate, der zweiten Komponente in den Mischungen (D), eignen sich im Prinzip
alle Verbindungen mit mindestens einer freien Isocyanatgruppe. Besondere Bedeutung
haben hier die üblichen Diisocyanate, die üblichen höher funktionellen Polyisocyanate,
wie sie bei den hydrophil modifizierten Polyisocyanaten (C) beschrieben sind, sowie
die unter (C) beschriebenen hydrophil mofifizierten Polyisocyanate selbst. Aber auch
Monoisocyanate wie Phenylisocyanat oder Tolylisocyanate sind geeignet.
[0098] Die genannten Polyurethane und die genannten Isocyanate liegen in der Regel als Mischungen
im Gew.-Verhältnis von 10:90 bis 90:10, insbesondere 25:75 bis 75:25, vor allem 40:60
bis 60:40, vor.
[0099] In einer bevorzugten Ausführungsform setzt man als Verbindungen (D) Mischungen aus
Polyesterurethanen und aliphatischen Diisocyanaten, aliphatischen höher funktionellen
Polyisocyanaten oder hydrophil modifizierten Polyisocyanaten im Gew.-Verhältnis von
10:90 bis 90:10 ein.
[0100] Die Verbindungen (A) bis (D) können beim erfindungsgemäßen Verfahren zur Herstellung
von Cellulosefasern generell in einem wäßrigen System, vorzugsweise in wäßriger Lösung
oder Emulsion, zur Anwendung gelangen, wobei das wäßrige System im allgemeinen, bezogen
auf das Gewicht des wäßrigen Systems, 0,1 bis 20 Gew.-%, vorzugsweise 0,5 bis 10 Gew.-%,
der Verbindungen (A) bis (D) aufweist.
[0101] Die Herstellverfahren für aus Lösungsmittel gesponnene Cellulosefasern laufen in
der Regel in 4 Stufen ab.
- Stufe 1:
- Lösen der Cellulose in einem mit Wasser mischbaren Lösungsmittel
- Stufe 2:
- Extrudieren der Lösung durch eine Düse unter Bildung der Faservorstufe
- Stufe 3:
- Behandlung der Faservorstufe mit Wasser um Lösungsmittel zu entfernen und die Cellulosefaser
auszubilden
- Stufe 4:
- Trocknung der Faser
[0102] Als Lösungsmittel in Stufe 1 wird vorzugsweise N-Methylmorpholin-N-oxid verwendet.
[0103] Die feuchte Faser, die in Stufe 3 erhalten wird, wird als nichtgetrocknete Faser
bezeichnet und weist in der Regel, bezogen auf das Trockengewicht der Faser, 120 bis
150 Gew.-% Wasser auf.
[0104] Der Wassergehalt der getrockneten Faser beträgt im allgemeinen, bezogen auf das Trockengewicht
der Faser, 60 bis 80 Gew.-%.
[0105] Die erfindungsgemäße Behandlung mit den Verbindungen (A) bis (D) kann entweder an
der feuchten Faser (während oder nach Stufe 3) oder an der getrockneten Faser (nach
Stufe 4) erfolgen. Es ist aber auch eine Behandlung im Stadium der Faserherstellung
(Stufe 2), z.B. in einem Fällbad, möglich.
[0106] Wenn die Behandlung an der feuchten Faser erfolgt, so kann dies beispielsweise durch
Zugabe des wäßrigen Systems der Verbindungen (A) bis (D) zu einem zirkulierenden Bad
geschehen, das die Faservorstufe enthält. Die Faservorstufe kann dabei z.B. als Stapelfaser
vorliegen.
[0107] Wenn die Behandlung an der getrockneten Faser erfolgt, so kann diese z.B. als Stapelfaser,
Vlies, Garn, Maschenware oder Gewebe vorliegen. Die Behandlung der Fasern in diesem
Fall kann z.B. in wäßriger Flotte erfolgen.
[0108] Im Gegensatz zu der in der EP-A-538 977 beschriebenen Methode kann im erfindungsgemäßen
Verfahren auf die Anwesenheit von Alkali verzichtet werden.
[0109] Die Behandlung wird in der Regel bei einer Temperatur von 20 bis 200°C, vorzugsweise
40 bis 180°C, vorgenommen. Dabei erfolgt eine chemische Reaktion der Verbindungen
(A) bis (D) mit den Hydroxygruppen der Cellulose, wobei auch eine chemische Verknüpfung
zwischen Hydroxygruppen verschiedener Cellulose-Fibrillen möglich ist. Dadurch wird
die Stabilität der Faser erhöht.
[0110] Die Zeitdauer der Behandlung beträgt üblicherweise 1 Sekunde bis 20 Minuten, vorzugsweise
5 bis 60 Sekunden und insbesondere 5 bis 30 Sekunden.
[0111] Beim Imprägnierverfahren kann die Behandlung sowohl bei Raumtemperatur (20°C) mit
anschließender Trocknung bis 100°C als auch bei Durchführung von Kondensationen bei
Temperaturen bis zu 200°C, insbesondere bei 150 bis 180°C, erfolgen.
[0112] Die Behandlung der feuchten oder getrockneten Faser kann mit 0,1 bis 10 Gew.-%, vorzugsweise
0,2 bis 5 Gew.-%, insbesondere 0,2 bis 2 Gew.-%, jeweils bezogen auf das Trockengewicht
der Faser, der Verbindungen (A) bis (D) erfolgen. In manchen Fällen kann es jedoch
auch vorteilhaft sein, die genannten Mengen noch zu erhöhen, z.B. bis auf ca. 20 Gew.-%.
[0113] Bei der Behandlung können weitere hierbei übliche Hilfsmittel in den hierfür üblichen
Mengen mitverwendet werden. Insbesondere sind hier Antimigrationsmittel, beispielsweise
auf Basis von Oxethylierungsprodukten, zu erwähnen.
[0114] Bei der erfindungsgemäßen Verwendung der Verbindungen (A) und/oder (B) kann die Reaktivität
dieser Mittel durch Zusatz katalytischer Mengen von Lewis-Säuren wie MgCl
2, ZnCl
2, AlCl
3, BF
3 oder Systemen wie MgCl
2/NaBF
4 oder MgSO
4/NaBF
4/LiCl oder von anorganischen oder organischen Säuren oder entsprechenden sauren Salzen,
z.B. HCl, H
2SO
4, H
3PO
4, p-Toluolsulfonsäure, Methansulfonsäure, NaHSO
4, NaH
2PO
4, (NH)
4HSO
4 oder Trialkylamin-Hydrochlorid, oder von anderen vernetzend wirkenden anorganischen
Salzen, z.B. Nitraten oder Teraalkylammoniumsalzen, den Prozeßerfordernissen angepaßt,
d.h. in der Regel erhöht werden.
[0115] Wie bereits ausgeführt, können die Verbindungen (A) bis (D) gegenüber den in der
EP-A-538 977 beschriebenen Verbindungen rein thermisch (ohne Alkali) fixiert werden,
wodurch sie sich optimal in den Faserherstellungsprozeß integrieren lassen. Die Anfärbbarkeit
der so behandelten Fasern mit allen üblichen Cellulosefaserfarbstoffen, auch Reaktivfarbstoffen,
ist in der Regel möglich.
[0116] Unter Anwendung der in der EP-A-538 977 beschriebenen Testmethoden, auf die hier
ausdrücklich Bezug genommen wird, können vorteilhafte Ergebnisse erzielt werden.