(19)
(11) EP 0 650 836 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
05.07.2000 Bulletin 2000/27

(21) Application number: 94116902.1

(22) Date of filing: 26.10.1994
(51) International Patent Classification (IPC)7B41J 2/05

(54)

Temperature control of thermal ink-jet print heads by using synchronous non-nucleating pulses

Temperatursteuerung für thermische Tintenstrahldruckköpfe mittels Nichtnukleirungsimpulssignale

Réglage de la température pour têtes d'enregistrement thermique à jet d'encre au moyen d'impulsions de non-nucléation synchronisées


(84) Designated Contracting States:
DE FR GB IT

(30) Priority: 27.10.1993 US 144069

(43) Date of publication of application:
03.05.1995 Bulletin 1995/18

(73) Proprietor: Hewlett-Packard Company
Palo Alto, California 94304 (US)

(72) Inventors:
  • Bohorquez, Jaime H.
    Escondido, California 92025 (US)
  • Corrigan, George H.
    Corvallis, Oregon 97330 (US)

(74) Representative: Baillie, Iain Cameron et al
Ladas & Parry, Dachauerstrasse 37
80335 München
80335 München (DE)


(56) References cited: : 
EP-A- 0 390 202
EP-A- 0 511 602
EP-A- 0 475 638
EP-A- 0 600 648
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Cross-Reference to Related Applications



    [0001] The present invention is related to the following pending and commonly owned European Patent Applications: 93309242.1 and 92107065.2.

    Field of the Invention



    [0002] This invention relates generally to the field of thermal inkjet printers and more particularly to controlling the ejected ink drop volume of thermal inkjet printheads by controlling the temperature of the printhead substrate.

    Background of the Invention



    [0003] Thermal inkjet printers have gained wide acceptance. These printers are described by W.J. Lloyd and H.T. Taub in "Ink Jet Devices," Chapter 13 of Output Hardcopy Devices (Ed. R.C. Durbeck and S. Sherr, San Diego: Academic Press, 1988) and U.S. Patents 4,490,728 and 4,313,684. Thermal inkjet printers produce high quality print, are compact and portable, and print quickly and quietly because only ink strikes the paper.

    [0004] An inkjet printer forms a printed image by printing a pattern of individual dots at particular locations of an array defined for the printing medium. The locations are conveniently visualized as being small dots in a rectilinear array. The locations are sometimes "dot locations", "dot positions", or pixels". Thus, the printing operation can be viewed as the filling of a pattern of dot locations with dots of ink.

    [0005] Inkjet printers print dots by ejecting very small drops of ink onto the print medium, and typically include a movable carriage that supports one or more printheads each having ink ejecting nozzles. The carriage traverses over the surface of the print medium, and the nozzles are controlled to eject drops of ink at appropriate times pursuant to command of a microcomputer or other controller, wherein the timing of the application of the ink drops is intended to correspond to the pattern of pixels of the image being printed.

    [0006] Color thermal inkjet printers commonly employ a plurality of printheads, for example four, mounted in the print carriage to produce different colors. Each printhead contains ink of a different color, with the commonly used colors being cyan, magenta, yellow, and black. These base colors are produced by depositing a drop of the required color onto a dot location, while secondary or shaded colors are formed by depositing multiple drops of different base color inks onto the same dot location, with the overprinting of two or more base colors producing secondary colors according to well established optical principles.

    [0007] The typical thermal inkjet printhead (i.e., the silicon substrate, structures built on the substrate, and connections to the substrate) uses liquid ink (i.e., colorants dissolved or dispersed in a solvent). It has an array of precisely formed nozzles attached to a printhead substrate that incorporates an array of firing chambers which receive liquid ink from the ink reservoir. Each chamber has a thin-film resistor, known as a thermal inkjet firing chamber resistor, located opposite the nozzle so ink can collect between it and the nozzle. When electric printing pulses heat the thermal inkjet firing chamber resistor, a small portion of the ink next to it vaporizes and ejects a drop of ink from the printhead. Properly arranged nozzles form a dot matrix pattern. Properly sequencing the operation of each nozzle causes characters or images to be printed upon the paper as the printhead moves past the paper.

    [0008] Print quality is one of the most important considerations of competition in the color inkjet printer field. Since the image output of a color inkjet printer is formed of thousands of individual ink drops, the quality of the image is ultimately dependent upon the quality of each ink drop and the arrangement of the ink drops on the print medium. One source of print quality degradation is improper ink drop volume.

    [0009] Drop volume variations result in degraded print quality and have prevented the realization of the full potential of thermal ink jet printers. Drop volumes vary with the printhead substrate temperature because the two properties that control it vary with printhead substrate temperature: the viscosity of the ink and the amount of ink vaporized by a firing chamber resistor when driven with a printing pulse. Drop volume variations commonly occur during printer startup, during changes in ambient temperature, and when the printer output varies, such as a change from normal print to "black-out" print (i.e. where the printer covers the page with dots.)

    [0010] Variations in drop volume degrades print quality by causing variations in the darkness of black-and-white text, variations in the contrast of gray-scale images, and variations in the chroma, hue and lightness of color images. The chroma, hue and lightness of a printed color depends on the volume of all the primary color drops that create the printed color. If the printhead substrate temperature increases or decreases as the page is printed, the colors at the top of the page can differ from the colors at the bottom of the page. Reducing the range of drop volume variations will improve the quality of printed text, graphics, and images.

    [0011] Additional degradation in the print quality is caused by excessive amounts of ink in the larger drops. When at room temperature, a thermal ink jet printhead must eject drops of sufficient size to form satisfactory printed dots. However, previously known printheads that meet this performance requirement, eject drops containing excessive amounts of ink when the printhead substrate is warm. The excessive ink degraded the print by causing feathering of the ink drops, bleeding of ink drops having different colors, and cockling and curling of the paper. Reducing the range of drop volume variation would help eliminate this problem.

    [0012] Thermal inkjet cartridge performance can vary widely due to the temperature of the ink firing chamber and therefore the ejected ink. Due to changes of the physical constants of the ink, the nucleation dynamics and the refill characteristics of a thermal inkjet printhead due to substrate temperature, the control of the temperature is necessary to guarantee consistently good image print quality. The cartridge substrate temperature can vary due to ambient temperature, servicing (spitting) and the amount of printing done with the cartridge.

    [0013] Heating of the printhead before the start of the printing swath has been used to control substrate temperature. This method has the disadvantage of having to predict the required temperature and adjust the delivered energy at the start of the printing zone to compensate for all possible changes of temperature during the printing swath. Temperature excursions can be great and very difficult to predict. Heating during the printing swath has been tried by adding additional heating elements or additional electronics to energize the print element heaters in parallel with the printing pulses. This method adds to the cost and complexity of the control and power electronics.

    [0014] For the reasons previously discussed, it would be advantageous to have an apparatus and a method for reducing the range of temperature and drop volume variation by heating the printhead during printing swaths.

    [0015] EP-A-511602 describes a method and apparatus for controlling the temperature of thermal ink jet and thermal printheads through the use of non-printing pulses sent to the print head during printing intervals to elevate the printhead temperature. The non-printing pulses can occur at any time during a printing interval as long as they do not interfere with printing pulses. Also, multiple non-printing pulses may occur in any one printing interval.

    [0016] EP-A-0600648 (Published on 8/6/94 and having a priority date of 30/11/92) describes a method and apparatus for control of thermal ink jet printers whereby the range of drop volume variation is reduced by reducing the range of printhead temperature variation during the print cycle by keeping the printhead temperature above a reference temperature. When the printhead temperature falls below the reference temperature during the print cycle the printhead is heated with nonprinting pulses.

    Summary of the Invention



    [0017] The foregoing and other advantages are provided by the present invention which reduces the range of the drop volume variation by maintaining the temperature of the printhead substrate above a minimum value known as the reference temperature. The present invention includes a temperature sense resistor deposited around the firing chamber resistors of the printhead substrate to measure temperature. The present invention includes the steps of selecting a reference temperature that can reduce the range of drop volume variation, measuring the printhead substrate temperature, comparing the printhead substrate temperature with the reference temperature, and keeping the printhead substrate temperature above the reference temperature to reduce the range of drop volume variation.

    [0018] The present invention includes using a thermal model to estimate the amount of heat to deliver to the printhead substrate to raise its temperature to the reference temperature and delivering this energy during printing swaths.

    [0019] The present invention includes heating the printhead substrate during the printing of a swath by driving the firing chamber resistors with non-firing pulses synchronized with the firing pulses. The use of non-nucleating pulses synchronized with the printing pulses to control the temperature of the printhead substrate has been shown to dramatically improve the print quality of images printed at all operating conditions including the extremes of printhead parameters. By using synchronized pulses, significant cost and complexity can be reduced as compared to other controlled temperature systems.

    Brief Description of the Drawings



    [0020] 

    FIG. 1 is a block diagram of the present invention.

    FIG. 2 is a plot of the thermal model of the printhead substrate used by the preferred embodiment of the invention.

    FIG. 3 shows the temperature sense resistor for the preferred embodiment of the present invention.

    FIG. 4 shows the composite pulse waveform generated by OR-ing the heating pulses and printing pulses.


    Detailed Description of the Invention



    [0021] As discussed above, ink drop volume in an inkjet printer varies with printhead substrate temperature. The present invention reduces the range of drop volume variation by heating the printhead substrate to a reference temperature before printing begins and controlling that temperature during printing by using non-firing pulses synchronized with the firing pulses used to eject printing drops.

    [0022] FIG. 1 is a block diagram of the preferred embodiment of the present invention. The invention uses a thermal model of the printhead substrate to estimate how long to drive the printhead substrate at a particular power level to raise its temperature to the reference temperature of the printhead substrate. It consists of a printhead substrate temperature sensor 22, a cartridge temperature sensor 24 measures the ambient temperature of the cartridge, and a reference temperature generator 26. The outputs of these three devices are fed into a Thermal Model Processor/Comparator 28 which calculates the non-printing pulse width to apply to the heater resistors. Non-printing pulses are pulses that heat the printhead substrate, but are insufficient to cause nucleation by the firing chamber resistors and eject drops of ink. As used herein, the terms "non-printing," "non-firing," "heating," and "non-nucleating" pulses are synonymous. Also as used herein, firing chamber resistors 38 and heater resistors are synonymous. The output of the Synchronized OR-ing Controller 30 signals a Printhead Driver 32 when to drive the firing chamber resistors 38 with one or more packets of nonprinting pulses having the pulse width specified by the Thermal Model Processor/Comparator 28, based on input from the Print Data Memory 34 and the Printhead Position Sensor 36.

    [0023] FIG. 2 is a plot of the thermal model of the printhead substrate as described in copend'ing commonly assigned application serial number 07/983,009, filed November 30, 1992, entitled METHOD AND APPARATUS FOR REDUCING THE RANGE OF DROP VOLUME VARIATION IN THERMAL INK JET PRINTERS which is incorporated herein by reference. As set forth above, the inputs to the thermal model include the reference temperature, the cartridge temperature (i.e., the temperature of the air inside the cartridge that surrounds the printhead substrate,) and the printhead substrate temperature. The output parameter, Δt, shown in FIG. 2 is the length of time the firing chamber resistors 38 should be driven at power P to heat the printhead substrate to the reference temperature.

    [0024] FIG. 3 shows the temperature sense resistor 22 used by the invention. Temperature sense resistor 22 measures the average temperature of a printhead substrate 40 since it wraps around all nozzles 42 of printhead substrate 40. The temperature of the ink in the drop generators is the temperature of greatest interest, but this temperature is difficult to measure directly, so temperature sense resistor 22 measures it indirectly. The silicon is thermally conductive and the ink is in contact with the substrate long enough that the temperature averaged around the head is very close to the temperature of the ink by the time the printhead ejects the ink.

    [0025] The output of the printhead substrate temperature sensor 22 is compared to the reference temperature output of reference temperature generator 26 by the Thermal Model Processor/Comparator 28. If the printhead substrate temperature is less than the reference temperature, the Thermal Model Processor/Comparator 28 will enable heating pulses and send the heating pulse width to the Synchronizing OR-ing Controller 30. This process is repeated as required during the print cycle.

    [0026] The advantage of the thermal model is that the printhead substrate reaches the reference temperature with reduced iterations of measuring the printhead substrate temperature and heating the printhead substrate. However, the thermal model is part of a closed-loop system and the system may use several iterations of measuring and heating if needed.

    [0027] The present invention, sets the reference temperature equal to TAPCT because it has the advantage of eliminating half the temperature range and half the range of drop volume variation due to temperature variation. Alternate embodiments could set the reference temperature equal to any temperature, such as above the maximum temperature, equal to the maximum temperature, somewhere between TAPCT and the maximum temperature, or below TAPCT without departing from the scope of the invention.

    [0028] Raising the reference temperature has the advantage of reducing the range of printhead substrate temperature variation and if the reference temperature equals the maximum temperature, the printhead substrate temperature will not vary at all. But raising the reference temperature places increased stress on the printhead substrate and the ink and the likelihood of increased chemical interaction of the ink and the printhead substrate. This results in decreased reliability of the printhead. Also, a printhead substrate with a higher reference temperature will require more time for heating. Another disadvantage of raising the reference temperature is that all ink jet printer designs built to date have shown a higher chance of misfiring at higher printhead substrate temperatures.

    [0029] The printhead substrate is heated to the reference temperature only during the print cycle. This has the advantage of keeping the printhead substrate at lower and less destructive temperatures for longer. The temperature of the printhead substrate is measured as it moves across the paper. If the substrate temperature is below the reference temperature the printer will send either a printing pulse if the plot requires it or a nonprinting pulse as described below.

    [0030] Another aspect of the invention, is a darkness control knob 25, shown in FIG. 1, that allows the user to change the reference temperature and thereby adjust the darkness of the print or the time required for the ink to dry according to personal preference or changes in the cartridge performance. Adjustments of the darkness control knob 25 can cause the reference temperature to exceed the maximum temperature.

    [0031] The preferred embodiment of the invention heats the printhead substrate by using packets of nonprinting pulses. The power delivered by these packets equals the number of nozzles times the frequency of the nonprinting pulses (which can be much higher than that of the printing pulses since no drops are ejected from the printhead) times the energy in each nonprinting pulse. This power parameter is used to create the thermal model shown in FIG. 2. The number of nozzles and the frequency of the nonprinting pulses are constant and set by other aspects of the printhead design. Alternate embodiments of the invention can vary the frequency of the nonprinting pulses and pulse some but not all of the nozzles without departing from the scope of the invention.

    [0032] In the preferred embodiment of the invention, the nonprinting pulses have the same voltage as the printing pulses so that the various time constants in the circuit are the same for printing pulses and nonprinting pulses. The pulse width and energy delivered by printing pulses are adjusted according to the characteristics of each particular printhead. The width of nonprinting pulses is equal to or less than .48 times the width of the printing pulse so that it has little chance of ever ejecting ink from the printhead.

    [0033] By applying non-nucleating pulses to the heater elements during periods of inactivity the substrate temperature can be controlled. The complexity of the control electronics can be significantly reduced and printhead operation can be improved if the pulses normally used to eject printing drops are reduced in width when used as heating pulses. The print pulses can be extended to the pulse width required to eject a drop when printing is required. By simple control of the pulse width of the non-nucleating pulses the temperature of the substrate can be increased or lowered as required. Increasing the pulse width increases the substrate temperature and decreasing the pulse width lowers the substrate temperature.

    [0034] Heating pulses synchronized with the printing pulses can be generated by combining (OR-ing) the data for the heating pulses and the printing pulses in the Synchronizing OR-ing Controller 30 during each firing cycle. At each firing period either the heating pulse width, or the printing pulse width is applied. By Or-ing the data, the excess heating of the substrate is only applied during the non-firing periods. This method allows all elements of the printhead to be used for both printing and warming with minimal additional electronics. By using all the elements to heat the substrate, a more even temperature over the whole substrate is achieved. FIG. 4 shows an example of the printing and heating pulses for a particular firing chamber resistor 38. The first row shows the heating pulses and the heating pulse width to be sent to the firing chamber resistor 38. The second row shows the printing pulses and the printing pulse width to be sent to the firing chamber resistor 38. The third row shows the printing pulses and heating pulses to be sent to the firing chamber resistor 38 as a result of the OR-ing process.

    [0035] In summary, the preferred embodiment uses a thermal model of the printhead substrate, having inputs of the reference temperature, the cartridge temperature, and the printhead substrate temperature, that calculates how long the firing chamber resistors 38 of the printhead substrate 40 should be driven with packets of nonprinting pulses of a specified power, to the printhead substrate during printing swaths to raise the printhead substrate temperature to the reference temperature.

    [0036] The foregoing description of the preferred embodiment of the present invention has been presented for the purposes of illustration and description. It is not intended to be exhaustive nor to limit the invention to the precise form disclosed. Obviously many modifications and variations are possible in light of the above teachings. The embodiments were chosen in order to best explain the best mode of the invention. Thus, it is intended that the scope of the invention be defined by the claims appended hereto.


    Claims

    1. A method for controlling print quality in an ink printer that includes a printhead having a printhead substrate (40) and ink firing resistors (38) disposed on the printhead substrate, comprising the steps of:

    selecting a reference temperature;

    measuring a temperature of the printhead substrate;

    comparing the printhead substrate temperature with the reference temperature to determine if the substrate temperature is below the reference temperature; and if so, then

    heating the printhead substrate to the reference temperature periodically during print firing operations by delivering synchronized heating pulses or printing pulses to the ink firing resistors during selected print firing periods wherein either said heating pulses or said printing pulses, but not both, occur during such a selected print firing period,wherein the step of heating includes the steps of:

    generating a heating signal that includes non-firing heating pulses;

    generating a print signal that contains printing pulses; and

    logically OR-ing the heating signal and the print signal to produce the synchronizing heating pulses and printing pulses.


     
    2. An inkjet printer comprising:

    an inkjet printhead including a substrate (40) and ink firing resistors (38) formed in an array of firing chambers on said substrate;

    a printhead substrate temperature sensor (22) to monitor an operating temperature of ink in said firing chambers of said firing resistors in order to determine an operating temperature output;

    means (26) for generating a reference temperature which constitutes a preferred predetermined minimum value for said operating temperature; and

    pulse generating means (28, 30, 32,34) responsive to said output of said printhead temperature sensor and to said reference temperature for driving each of said ink firing resistors with a print signal during a plurality of print periods, said print signal containing during each of selected print periods when said operating temperature output is below said reference temperature a single pulse that is either an ink firing print pulse or a non-firing heating pulse, wherein said pulse generating means comprises:

    means (32) for generating a heating signal that includes non-firing heating pulses;

    means (34) for generating a print signal that includes print pulses; and

    means (30,32) for logically OR-ing said heating signal and said print signal to produce said single pulse.


     
    3. The inkjet printer of Claim 2 wherein said logically OR-ing means includes a controller for synchronizing said non-firing heating pulses and said print pulses.
     
    4. The inkjet printer of Claim 2 wherein said non-firing heating pulses have a first predetermined pulse width; and which printer further includes

    a processing device (28) to change said first predetermined pulse width of said non-firing heating pulses.


     
    5. The inkjet printer of Claim 4 wherein said print pulses have a second predetermined pulse width which is greater than said first predetermined pulse width.
     
    6. The inkjet printer of Claim 5 wherein said print pulses have a second predetermined pulse width which is more than two times greater than said first predetermined pulse width.
     
    7. The inkjet printer of Claim 2 which further includes a user-activated control (25) coupled to said reference temperature generator to change the reference temperature.
     
    8. The inkjet printer of Claim 2 wherein said heating signal and said print signal have the same voltage.
     
    9. The method of Claim 1 wherein there are no non-firing heating pulses which occur at non-synchronous intervals.
     
    10. The method of Claim 9 wherein there are no non-firing heating pulses which occur at non-synchronous intervals relative to said synchronized heating pulses and printing pulses.
     
    11. The method of Claim 1 which further includes the step of generating heating pulses having a predetermined pulse width less than half of an actual pulse width for said print pulses.
     
    12. The method of Claim 1 which further includes the step of maintaining a given voltage for both said heating pulses and said printing pulses.
     
    13. The method of Claim 12 which further includes providing a variable predetermined pulse width for said heating pulses.
     
    14. The method of Claim 13 wherein said variable predetermined pulse width is based on the reference temperature, the substrate temperature, and an ambient printhead temperature.
     
    15. The method of Claim 1 wherein the inkjet printer is a swath printer, and said step of heating the printhead substrate to the reference temperature periodically occurs during the printing of a swath.
     
    16. The printer of Claim 2 wherein said printer is a swath printer, and said plurality of print periods occurs during the printing of a swath.
     


    Ansprüche

    1. Ein Verfahren zum Steuern der Druckqualität in einem Tintendrucker, der einen Druckkopf mit einem Druckkopfsubstrat (40) und Tintenabfeuerwiderständen (38), die auf dem Druckkopfsubstrat angeordnet sind, aufweist, mit folgenden Schritten:

    Auswählen einer Bezugstemperatur;

    Messen einer Temperatur des Druckkopfsubstrats;

    Vergleichen der Druckkopfsubstrattemperatur mit der Bezugstemperatur, um zu bestimmen, ob die Substrattemperatur unterhalb der Bezugstemperatur ist; und wenn dies der Fall ist, dann

    Heizen des Druckkopfsubstrats auf die Bezugstemperatur periodisch während der Druckabfeueroperationen durch Liefern von synchronisierten Heizpulsen oder Druckpulsen zu den Tintenabfeuerwiderständen während ausgewählten Druckabfeuerperioden, wobei entweder die Heizpulse oder die Druckpulse, jedoch nicht beide, während einer derartigen ausgewählten Druckabfeuerperiode auftreten, wobei der Schritt des Heizens folgende Schritte aufweist:

    Erzeugen eines Heizsignals, das Nicht-Abfeuerheizpulse aufweist;

    Erzeugen eines Drucksignals, das Druckpulse enthält; und

    logisches ODER-Verknüpfen des Heizsignals und des Drucksignals, um die sychronisierenden Heizpulse und Druckpulse zu erzeugen.


     
    2. Ein Tintenstrahldrucker mit folgenden Merkmalen:

    einem Tintenstrahldruckkopf, der ein Substrat (40) und Tintenabfeuerwiderstände (38), die in einem Array von Abfeuerkammern auf dem Substrat gebildet sind, aufweist;

    einem Druckkopfsubstrattemperatursensor (22), um eine Betriebstemperatur von Tinte in den Abfeuerkammern der Abfeuerwiderstände zu überwachen, um ein Betriebstemperaturausgangssignal zu bestimmen;

    einer Einrichtung (26) zum Erzeugen einer Bezugstemperatur, die einen bevorzugten vorbestimmten minimalen Wert für die Betriebstemperatur bildet; und

    einer Pulserzeugungseinrichtung (28, 30, 32, 34), die auf das Ausgangssignal des Druckkopftemperatursensors und die Bezugstemperatur anspricht, zum Treiben jedes der Tintenabfeuerwiderstände mit einem Drucksignal während einer Mehrzahl von Druckperioden, wobei das Drucksignal während jeder der ausgewählten Druckperioden, wenn das Betriebstemperaturausgangssignal unterhalb der Bezugstemperatur ist, einen einzelnen Puls enthält, der entweder ein Tintenabfeuerdruckpuls oder ein Nicht-Abfeuerheizpuls ist, wobei die Pulserzeugungseinrichtung folgende Merkmale aufweist:

    eine Einrichtung (32) zum Erzeugen eines Heizsignals, das Nicht-Abfeuerheizpulse aufweist;

    eine Einrichtung (34) zum Erzeugen eines Drucksignals, das Druckpulse aufweist; und

    eine Einrichtung (30, 32) zum logischen ODER-Verknüpfen des Heizsignals und des Drucksignals, um den einzelnen Puls zu erzeugen.


     
    3. Der Tintenstrahldrucker gemäß Anspruch 2, bei dem die logische ODER-Verknüpfungs-Einrichtung eine Steuerung zum Synchronisieren der Nicht-Abfeuerheizpulse und der Druckpulse aufweist.
     
    4. Der Tintenstrahldrucker gemäß Anspruch 2, bei dem die Nicht-Abfeuerheizpulse eine erste vorbestimmte Pulsbreite aufweisen, und bei dem der Drucker ferner folgendes Merkmal aufweist:

    eine Verarbeitungsvorrichtung (28), um die erste vorbestimmte Pulsbreite der Nicht-Abfeuerheizpulse zu ändern.


     
    5. Der Tintenstrahldrucker gemäß Anspruch 4, bei dem die Druckpulse eine zweite vorbestimmte Pulsbreite aufweisen, die größer als die erste vorbestimmte Pulsbreite ist.
     
    6. Der Tintenstrahldrucker gemäß Anspruch 5, bei dem die Druckpulse eine zweite vorbestimmte Pulsbreite aufweisen, die mehr als zweimal größer als die erste vorbestimmte Pulsbreite ist.
     
    7. Der Tintenstrahldrucker gemäß Anspruch 2, der ferner eine Benutzer-aktivierte Steuerung (25) aufweist, die mit dem Bezugstemperaturgenerator gekoppelt ist, um die Bezugstemperatur zu ändern.
     
    8. Der Tintenstrahldrucker gemäß Anspruch 2, bei dem das Heizsignal und das Drucksignal die gleiche Spannung aufweisen.
     
    9. Das Verfahren gemäß Anspruch 1, bei dem es keine Nicht-Abfeuerheizpulse gibt, die bei nicht-synchronen Intervallen auftreten.
     
    10. Das Verfahren gemäß Anspruch 9, bei dem es keine Nicht-Abfeuerheizpulse gibt, die bei nicht-synchronen Intervallen relativ zu den synchronisierten Heizpulsen und Druckpulsen auftreten.
     
    11. Das Verfahren gemäß Anspruch 1, das ferner den Schritt des Erzeugens von Heizpulsen mit einer vorbestimmten Pulsbreite aufweist, die kleiner als die Hälfte einer tatsächlichen Pulsbreite für die Druckpulse ist.
     
    12. Das Verfahren gemäß Anspruch 1, das ferner den Schritt des Beibehaltens einer gegebenen Spannung für sowohl die Heizpulse als auch die Druckpulse aufweist.
     
    13. Das Verfahren gemäß Anspruch 12, das ferner das Liefern einer variablen vorbestimmten Pulsbreite für die Heizpulse aufweist.
     
    14. Das Verfahren gemäß Anspruch 13, bei dem die variable vorbestimmte Pulsbreite auf der Bezugstemperatur, der Substrattemperatur und einer Umgebungsdruckkopftemperatur basiert.
     
    15. Das Verfahren gemäß Anspruch 1, bei dem der Tintenstrahldrucker ein Banddrucker ist, und bei dem der Schritt des Heizens des Druckkopfsubstrats auf die Bezugstemperatur während des Druckens eines Bands periodisch auftritt.
     
    16. Der Drucker gemäß Anspruch 2, bei dem der Drucker ein Banddrucker ist, und bei dem die Mehrzahl von Druckperioden während des Druckens eines Bands auftritt.
     


    Revendications

    1. Procédé de commande de la qualité d'impression dans une imprimante à encre comprenant une tête d'impression possédant un substrat de tête d'impression (40) et des résistances de déclenchement d'encre (38) disposées sur le substrat de tête d'impression, comprenant les étapes suivantes :

    - la sélection d'une température de référence;

    - la mesure d'une température du substrat de tête d'impression ;

    - la comparaison de la température de substrat de tête d'impression avec la température de référence pour déterminer si la température de substrat est inférieure à la température de référence ; et si oui,

    - le chauffage du substrat de tête d'impression à la température de référence de façon périodique lors des opérations de déclenchement d'impression pour délivrer des impulsions de chauffage ou des impulsions d'impression synchronisées aux résistances de déclenchement d'encre lors de périodes sélectionnées de déclenchement d'impression, soit lesdites impulsions de chauffage, soit lesdites impulsions d'impression mais pas les deux ont lieu lors d'une telle période sélectionnée de déclenchement d'impression, l'étape de chauffage comprenant les étapes suivantes :

    - la génération d'un signal de chauffage comprenant les impulsions de chauffage de non-déclenchement ;

    - la génération d'un signal d'impression contenant des impulsions d'impression ; et

    - la combinaison logique OU du signal de chauffage et du signal d'impression afin de produire les impulsions de chauffage et les impulsions d'impression en synchronisation.


     
    2. Imprimante à jet d'encre comprenant :

    - une tête d'impression à jet d'encre comprenant un substrat (40) et des résistances de déclenchement d'encre (38) formées selon une rangée de chambres de déclenchement sur ledit substrat ;

    - un capteur de température de substrat de tête d'impression (22) pour contrôler une température de fonctionnement de l'encre dans lesdites chambres de déclenchement desdites résistances de déclenchement de façon à déterminer une sortie de température de fonctionnement ;

    - un moyen (26) pour générer une température de référence constituant une valeur minimale prédéterminée préférée pour ladite température de fonctionnement ; et

    - des moyens de génération d'impulsions (28, 30, 32, 34) sensibles à ladite sortie dudit capteur de température de tête d'impression et à ladite température de référence pour attaquer chacune desdites résistances de déclenchement d'encre à l'aide d'un signal d'impression lors d'une pluralité de périodes d'impression, ledit signal d'impression contenant, lors de chacune des périodes sélectionnées d'impression lorsque ladite sortie de temperature de fonctionnement est inférieure à ladite température de référence, une impulsion unique qui est soit une impulsion d'impression de déclenchement d'encre, soit une impulsion de chauffage de non-déclenchement, ledit moyen de génération d'impulsions comprenant :

    - un moyen (32) pour générer un signal de chauffage comprenant les impulsions de chauffage de non-déclenchement ;

    - un moyen (34) pour générer un signal d'impression comprenant des impulsions d'impression ; et

    - un moyen (30, 32) pour la bascule logique OU dudit signal de chauffage et dudit signal d'impression pour produire ladite impulsion unique.


     
    3. Imprimante à jet d'encre selon la revendication 2, dans laquelle ledit moyen de combinaison logique OU comprend une unité de commande pour la synchronisation desdites impulsions de chauffage de non-déclenchement et desdites impulsions d'impression.
     
    4. Imprimante à jet d'encre selon la revendication 2, dans laquelle lesdites impulsions de chauffage de non-déclenchement ont une première largeur d'impulsion prédéterminée, et imprimante comprenant de plus un dispositif de traitement (28) pour modifier ladite première largeur prédéterminée d'impulsion desdites impulsions de chauffage de non-déclenchement.
     
    5. Imprimante à jet d'encre selon la revendication 4, dans laquelle lesdites impulsions d'impression présentent une seconde largeur prédéterminée d'impulsion qui est supérieure à ladite première largeur prédéterminée d'impulsion.
     
    6. Imprimante à jet d'encre selon la revendication 5, dans laquelle lesdites impulsions d'impression ont une seconde largeur prédéterminée d'impulsion qui est plus de deux fois supérieure à ladite première largeur prédéterminée d'impulsion.
     
    7. Imprimante à jet d'encre selon la revendication 2, comprenant de plus une commande activée par l'utilisateur (25) couplée audit générateur de température de référence afin de modifier la température de référence.
     
    8. Imprimante à jet d'encre selon la revendication 2, dans laquelle ledit signal de chauffage et ledit signal d'impression ont la même tension.
     
    9. Procédé selon la revendication 1, selon lequel aucune impulsion de chauffage de non-déclenchement ne survient selon des intervalles non synchrones.
     
    10. Procédé selon la revendication 9, selon lequel aucune impulsion de chauffage de non-déclenchement n'a lieu selon des intervalles non synchrones par rapport auxdites impulsions de chauffage et impulsions d'impression synchronisées.
     
    11. Procédé selon la revendication 1, comprenant de plus une étape de génération d'impulsions de chauffage ayant une largeur prédéterminée d'impulsion inférieure à la moitié d'une largeur réelle d'impulsion pour lesdites impulsions d'impression.
     
    12. Procédé selon la revendication 1, comprenant de plus une étape de maintien d'une tension donnée pour à la fois lesdites impulsions de chauffage et lesdites impulsions d'impression.
     
    13. Procédé selon la revendication 12, comprenant de plus la prévision d'une largeur prédéterminée variable d'impulsion pour lesdites impulsions de chauffage.
     
    14. Procédé selon la revendication 13, selon lequel ladite largeur prédéterminée variable d'impulsion est basée sur la température de référence, la température de substrat et une température ambiante de tête d'impression.
     
    15. Procédé selon la revendication 1, selon lequel l'imprimante à jet d'encre est une imprimante à andains, et ladite étape de chauffage du substrat de tête d'impression à la température de référence a lieu de façon périodique lors de l'impression d'un andain.
     
    16. Procédé selon la revendication 2, selon lequel ladite imprimante est une imprimante à andains, et ladite pluralité de périodes d'impression ont lieu lors de l'impression d'un andain.
     




    Drawing