[0001] The present invention relates generally to an enabling device for a motor vehicle
and, more specifically, to an enabling device for a motor vehicle that enables the
operation of the internal combustion engine thereof.
[0002] Motor vehicles are increasingly being controlled and operated by electronic componentry.
In fact, the majority of the operations of the engine and the other components, are
ultimately controlled by a single microprocessor, commonly referred to as an electronic
engine control (EEC) module.
[0003] Anti-theft systems now enable motor vehicles when attempts are being made to start
the motor vehicle without authorisation by enabling the electronic ignition and fuel
supply systems. These passive anti-theft systems have not been incorporated into the
EEC module rendering them susceptible to avoidance by simple hardwiring procedures.
Hardware brackets have been designed to prevent access to the control circuitry of
the passive anti-theft systems. These hardware brackets are, however, costly, heavy,
and do little to deter theft.
[0004] EP-A-0 372 741 describes a security system for a vehicle in which a function such
as the ignition system is controlled by an electronic control unit. The security system
includes a signal unit which can only be activated by an authorised user to send a
coded signal to the electronic control unit thereby enabling the function and allowing
the supply of high tension pulses to the engine.
[0005] Accordingly, the present invention is an enabling device for a motor vehicle comprising
an electronic engine control module having:
at least a bi-directional port and output port;
an engine control circuit operatively connected between said bi-directional port and
said output port controlling an electronic ignition and fuel system of the motor vehicle;
a passive anti-theft control circuit electrically connected to the engine control
circuit and the bi-directional port to compare a received code with a stored code;
a latch electrically connected to said passive anti-theft control circuit to selectively
enable the electronic ignition and fuel system;
and an output enable circuit electrically connected to the latch and to the output
port to enable or disable the electronic ignition and fuel system of the motor vehicle.
[0006] An advantage associated with the present invention is the ability to more fully secure
a motor vehicle from theft. Another advantage of the present invention is the elimination
of excess weight due to the hardware brackets which are used to enclose the passive
anti-theft system, which add minimal protection or security for the motor vehicle.
[0007] The invention will now be described, by way of example, with reference to the accompanying
drawings, in which:
FIG. 1 is a block diagram of an enabling device according to the present invention;
FIG. 2 is a schematic of a portion of the enabling device of FIG. 1; and
FIGs. 3A and 3B are flowcharts of a method used to operate the enabling device of
FIGs, 1 and 2.
[0008] Referring to FIG. 1, one embodiment of an enabling device, according to the present
invention, is indicated at 10. The enabling device 10 is powered by a battery 12 and
is used in conjunction with a motor vehicle (not shown) having an electronic ignition
and fuel injection system 14 and a passive anti-theft system (not shown). For purposes
of this disclosure, the system 14 includes all the components related to the fuel
system and/or the ignition system, including the transfer of fuel from the fuel system
to the ignition system. Further, the electronic ignition and fuel injection system
14 may comprise only a portion or singular component of the above-mentioned systems.
The enabling device 10 is housed within an electronic engine control (EEC) module
16. With the exception of a transceiver 18 and a transponder 20, the enabling device
10 is housed wholly between a bi-directional input port 22 and an output port 24 of
the EEC module 16. It should be appreciated by those skilled in the art that the EEC
module 16 may include a plurality of both the input ports and output ports. Only one
bi-directional input port 22 and output port 24 are shown in FIG. 1 to reduce the
details shown in FIG. 1. The transceiver 18 and transponder 20 will be discussed subsequently.
[0009] An engine control circuit 26 is located in the EEC module 16. The engine control
circuit 26 controls the electronic ignition and fuel injection system 14. It should
be appreciated by those skilled in the art that the engine control circuit 26 controls
a plurality of systems. Again, these systems are not shown as a matter of convenience.
In one embodiment, the engine control circuit 26 is a portion of microprocessor in
the EEC module 16.
[0010] A passive anti-theft (PAT) control circuit 28 is located in the EEC module 16 and
is connected to the control circuit 26 and the bi-directional input port 22. The PAT
control circuit 28 controls the passive anti-theft system (PATS), not shown. In one
embodiment, the PAT control circuit 28 is a portion of a microprocessor housed within
the EEC module 16.
[0011] The enabling device 10 includes a latch 30 which is located in the EEC module 16
and is electrically connected to the PAT control circuit 28. The latch 30 selectively
enables the electronic ignition and fuel injection system 14 through an output enable
circuit 48 and the output port 24.
[0012] Referring to FIG. 2, the latch 30 includes a first transistor 32. The latch 30 also
includes a second transistor 34. The first transistor 32 and the second transistor
34 are operatively connected to each other. More specifically, the base of the second
transistor 34 is connected to the collector of the first transistor 32. Also, the
collector 36 of the second transistor 34 is connected to the base of the first transistor
32 through a first resistor 38. The base of the first transistor 32 receives an input
from the PAT control circuit 28. The input therefrom is conditioned through the first
resistor 38, second resistor 40, third resistor 42, a first capacitor 44, and a second
capacitor 46. The second resistcr 40 is connected to the PAT control circuit 28, the
first capacitor 44 and the first resistor 38. The first capacitor 44 is also connected
to ground and the collector 36 of the second transistor 34. The third resistor 42
is connected to ground, the first resistor 38, a second capacitor 46, and the base
of the first transistor 32. The second capacitor 46 is connected to ground, the third
resistor 42, the first resistor 38, and the base of the first transistor 32. The emitter
of the first transistor 32 is connected to the power supply V
cc.
[0013] As illustrated in FIG. 1, the output enable circuit 48 is electrically connected
to the latch 30 within the EEC module 16. The output enable circuit 48 enables the
engine control circuit 26 to operate the electronic ignition and fuel injection system
14 of the motor vehicle by enabling the output port 24. More specifically the output
enable circuit 48 allows the engine control circuit 26 to operate the electronic ignition
and fuel injection system 14 by opening the output port 24.
[0014] Referring again to FIG. 2, the output enable circuit 48 includes two inputs, one
of which is connected to the collector of the first transistor 32 and the base of
the second transistor 34 of the latch 30. It should be appreciated by those skilled
in the art that the second input of this particular embodiment may not be necessary.
The second input is received from the engine control circuit 26. The input of the
output enable circuit 48 received from the latch 30 is sent to the base of a third
transistor 50 through a fourth resistor 52. The emitter of the third transistor 50
is connected to a power supply V
cc through a fifth resistor 54. The collector of the third transistor 50 is connected
to a sixth resistor 56 which is connected to the base of a fourth transistor 58. The
collector of the third transistor 50 is also connected to the collector of a fifth
transistor 60 and a starter control integrated circuit 62. The base of the fifth transistor
60 receives the input from the control circuit 26. The emitter of the fifth transistor
60 is connected to ground. The starter control integrated circuit 62 disables or enables
the starter (not shown) an is electrically connected to the starter and a third capacitor
64. The third capacitor 64 is also connected to ground. The collector of the fourth
transistor 58 is connected to the power supply V
cc through a seventh resistor 66. The collector of the fourth transistor 58 is also
connected to the injection and fuel pump control 67 and the base of a sixth transistor
68. The collector of the sixth transistor 68 is connected to the ignition control
69. The emitter of both the fourth transistor 58 and the sixth transistor 68 are connected
to ground.
[0015] When the EEC module 16 powers up (when the ignition key and ignition move from the
off position) and the applied voltage is provided, a request for the key code is sent
to the transceiver 18. The transceiver 18 amplifies the request signal and sends it
to the transponder 20. A capacitor (not shown) in the transponder 20 is charged by
the amplified request signal. Once the capacitor is charged, the transponder 20 then
sends a key code back to be received by the transceiver 18. The transceiver 18 then
sends the code received by the transponder 20 to the PAT control circuit 28 inside
the EEC module 16 through the bi-directional input port 22. In one embodiment, the
transponder 20 is physically associated with the ignition key for the motor vehicle.
[0016] Once the PAT control circuit 28 receives a code which matches a code stored in the
memory thereof, the PATS control circuit 28 sets the latch 30 to allow the operation
of the electronic ignition and fuel injection system 14. However, if the code received
by the PAT control circuit 28 does not match that which is stored in its memory, the
PAT control circuit 28 will not set the latch 30 and the operation of the electronic
ignition and fuel injection system 14 continues to be disabled because the output
enable circuit 48 will continue to prevent the output port 24 from opening so the
engine control circuit 26 cannot communicate with the electronic ignition and fuel
injection system 14.
[0017] Referring to FIGs. 3A and 3B, the ignition key, which houses the transponder 20,
is inserted into the ignition key hole and turned to the start position at 70. The
control circuit 26 determines if it is in an EEC module enabled mode at 72. If so,
the latch 30 is set at 74. If not, however, the control circuit 26 requests the predetermined
code or key code at 76. The transceiver 18 sends a power signal to the transponder
20 to charge a capacitor (not shown) thereof at 77. Once the capacitor is charged,
the transponder 20 uses the charge to send the predetermined code to the transceiver
18 at 78. The transceiver 18 receives the predetermined code and sends it to the EEC
module 16 at 80. The control circuit 26 compares the predetermined code to that stored
in memory at 81. If a match is made, the latch 30 is set at 74. If not, a counter
determines if this attempt was the n
th attempt, a predetermined number of attempts such as ten (10), at 84. If not, the
EEC module 16 or, more particularly, the control circuit 26 requests the transponder
20 to send the predetermined code another time at 76. If, however, the attempt was
the tenth try, the electronic ignition and fuel injection system 14 (including the
starter solenoid) are not enabled at 86 preventing the operation of the motor vehicle
at 88.
[0018] Returning to diamond 82, if the predetermined code matches the code stored in the
memory, an EEPROM in one embodiment, the latch is set at block 74. The electronic
ignition and fuel injection system 14 is enabled at 90 and the motor vehicle is allowed
to start in run at 92. The control circuit 26 continues to compare the predetermined
code to the code stored in memory at 94. If, at diamond 96, the codes match, the codes
are compared again at block 94. This loop continues until the ignition key is turned
to the off position. If the codes do not match at this point, the control circuit
enters an EEC module disabled mode at 98. An indicator, such as an light emitting
diode in one embodiment, will alert the occupants of the motor vehicle that the motor
vehicle is operating without the use of the enabling device.
1. An enabling device for a motor vehicle comprising
an electronic engine control module (16) having: at least a bi-directional port (22)
and output port (24);
an engine control circuit (26) operatively connected between said bi-directional port
(22) and said output port, and controlling an electronic ignition and fuel system
(14) of the motor vehicle;
a passive anti-theft control circuit (28) electrically connected to the engine control
circuit (26) and the bi-directional port (22) to compare a received code with a stored
code;
a latch (30) electrically connected to said passive anti-theft control circuit (28)
to selectively enable the electronic ignition and fuel system (14);
and an output enable circuit (48) electrically connected to the latch (30) and to
the output port (24) to enable or disable the electronic ignition and fuel system
(14) of the motor vehicle.
2. An enabling device as claimed in claim 1,
including a transceiver (18) transmitting a power signal and receiving a predetermined
code.
3. An enabling device as claimed in claim 2,
including a transponder (20) receiving the power signal from said transceiver (18)
and emitting the predetermined code to be received by said transceiver.
4. An enabling device as claimed in claim 1, 2 or 3,
wherein said latch (30) includes a first transistor (32) and a second transistor (34),
said first transistor operatively connected to said second transistor.
5. An enabling device as claimed in claim 4, wherein each of said first and second transistors
(32,34) includes a collector, a base, and an emitter, said base of said second transistor
(34) operatively connected to said collector of said first transistor (32).
6. An enabling device as claimed in claim 5,
including a third transistor (50) operatively connected to said latch and a starter
control circuit (62).
7. An enabling device as claimed in claim 6,
including a fourth transistor (58) operatively connected to said third transistor
(50).
8. An enabling device as claimed in claim 7,
including a fifth transistor (60) operatively connected to said engine control circuit
(26) and the starter control circuit (62).
1. Eine Aktivierungsvorrichtung für ein Kraftfahrzeug, das ein elektronisches Motorsteuermodul
(16) enthält, mit:
- mindestens einer bidirektionalen Öffnung bzw. Port (22) und einer Ausgangsöffnung
bzw. Ausgangsport (24);
- einer Motorsteuerschaltung (26), die im Betrieb zwischen der besagten bidirektionalen
Öffnung (22) und der besagten Ausgangsöffnung verbunden ist und die ein elektronisches
Zünd- und Kraftstoffsystem (14) des Kraftfahrzeugs steuert;
- einer passiven Anti-Diebstahl-Steuerschaltung (28), die elektrisch mit der Motorsteuerschaltung
(26) und der bidirektionalen Öffnung (22) verbunden ist, um einen empfangenen Kode
mit einem gespeicherten Kode zu vergleichen;
- einem Riegel (30), der elektrisch mit der besagten passiven Anti-Diebstahl-Steuerschaltung
(28) verbunden ist, um wahlweise das elektronische Zünd- und Kraftstoffsystem (14)
zu aktivieren;
- und einer Ausgangsaktivierungs-Schaltung (48), die elektrisch mit dem Riegel (30)
und der Ausgangsöffnung (24) verbunden ist, um das elektronische Zünd- und Kraftstoffsystem
(14) des Kraftfahrzeugs zu aktivieren oder zu desaktivieren.
2. Eine Aktivierungsvorrichtung nach Anspruch 1, mit einem Sender/ Empfänger (18), der
ein Energiesignal überträgt und einen vorbestimmten Kode empfängt.
3. Eine Aktivierungsvorrichtung nach Anspruch 2, die einen durch Impulse gesteuerten
Sender/Empfänger (20) enthält, der das Energiesignal vom besagten Sender/Empfänger
(18) empfängt und den vorbestimmten Kode sendet, der vom besagten Sender/Empfänger
empfangen werden soll.
4. Eine Aktivierungsvorrichtung nach Anspruch 1, 2 oder 3, in der der besagte Riegel
(30) einen ersten Transistor (32) und einen zweiten Transistor (34) enthält, wobei
der erste Transistor funktionell mit dem besagten zweiten Transistor verbunden ist.
5. Eine Aktivierungsvorrichtung nach Anspruch 4, in der der besagte erste und der besagte
zweite Transistor (32, 34) jeweils einen Kollektor, eine Basis und einen Sender enthalten,
wobei die besagte Basis des besagten zweiten Transistors (34) funktionell mit dem
besagten Kollektor des besagten ersten Transistors (32) verbunden ist.
6. Eine Aktivierungsvorrichtung nach Anspruch 5, mit einem dritten Transistor (50), der
funktionell mit dem besagten Riegel und einer Startersteuereinheit (62) verbunden
ist.
7. Eine Aktivierungsvorrichtung nach Anspruch 6, mit einem vierten Transistor (58), der
funktionell mit dem besagten dritten Transistor (50) verbunden ist.
8. Eine Aktivierungsvorrichtung nach Anspruch 7, mit einem fünften Transistor (60), der
funktionell mit der besagten Motorsteuerschaltung (26) und der Startersteuerschaltung
(62) verbunden ist.
1. Dispositif d'activation destiné à un véhicule à moteur comprenant un module électronique
de commande de moteur (16) comportant :
au moins un port bidirectionnel (22) et un port de sortie (24),
un circuit de commande de moteur (26) relié de façon fonctionnelle entre ledit port
bidirectionnel (22) et ledit port de sortie, et commandant un système électronique
d'allumage et de carburant (14) du véhicule à moteur,
un circuit de commande antivol passif (28) relié électriquement au circuit de commande
de moteur (26) et au port bidirectionnel (22) afin de comparer un code reçu à un code
mémorisé,
un circuit à verrouillage (30) relié électriquement audit circuit de commande antivol
passif (28) afin de valider sélectivement le système électronique d'allumage et de
carburant (14),
et un circuit de validation de sortie (48) relié électriquement au circuit à verrouillage
(30) et au port de sortie (24) afin de valider ou de désactiver le système électronique
d'allumage et de carburant (14) du véhicule à moteur.
2. Dispositif de validation selon la revendication 1, comprenant un émetteur-récepteur
(18) émettant un signal de puissance et recevant un code prédéterminé.
3. Dispositif de validation selon la revendication 2, comprenant un répondeur (20) recevant
le signal de puissance provenant dudit émetteur-récepteur (18) et émettant le code
prédéterminé devant être reçu par ledit émetteur-récepteur.
4. Dispositif de validation selon la revendication 1, 2 ou 3, dans lequel ledit circuit
à verrouillage (30) comprend un premier transistor (32) et un second transistor (34),
ledit premier transistor étant relié de façon fonctionnelle audit second transistor.
5. Dispositif de validation selon la revendication 4, dans lequel chacun desdits premier
et second transistors (32, 34) comprend un collecteur, une base, et un émetteur, ladite
base du second transistor (34) étant reliée de façon fonctionnelle audit collecteur
dudit premier transistor (32).
6. Dispositif de validation selon la revendication 5, comprenant un troisième transistor
(50) relié de façon fonctionnelle audit circuit à verrouillage et à un circuit de
commande de démarreur (62).
7. Dispositif de validation selon la revendication 6, comprenant un quatrième transistor
(58) relié de façon fonctionnelle audit troisième transistor (50).
8. Dispositif de validation selon la revendication 7, comprenant un cinquième transistor
(60) relié de façon fonctionnelle audit circuit de commande de moteur (26) et au circuit
de commande de démarreur (62).