(19)
(11) EP 0 791 746 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
26.07.2000 Bulletin 2000/30

(21) Application number: 95935325.1

(22) Date of filing: 25.10.1995
(51) International Patent Classification (IPC)7F02M 27/04
(86) International application number:
PCT/CN9500/082
(87) International publication number:
WO 9612/885 (02.05.1996 Gazette 1996/20)

(54)

FUEL-SAVING APPARATUS

BRENNSTOFFSPARVORRICHTUNG

APPAREIL D'ECONOMIE DE CARBURANT


(84) Designated Contracting States:
AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE

(30) Priority: 25.10.1994 CN 94113646

(43) Date of publication of application:
27.08.1997 Bulletin 1997/35

(73) Proprietor: Wang, Wenhao
Chaoyang District, Beijing 100028 (CN)

(72) Inventor:
  • Wang, Wenhao
    Chaoyang District, Beijing 100028 (CN)

(74) Representative: Guerre, Dominique et al
Cabinet Germain et Maureau, 12, rue Boileau, BP 6153
69466 Lyon Cedex 06
69466 Lyon Cedex 06 (FR)


(56) References cited: : 
CN-U- 2 049 269
CN-U- 2 120 189
CN-U- 2 157 990
DE-A- 4 223 628
US-A- 5 063 368
US-A- 5 348 050
CN-U- 2 103 654
CN-U- 2 140 967
CN-U- 2 170 380
US-A- 4 372 852
US-A- 5 124 045
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] The invention relates to an internal-combustion engine, more particularly, to a magnetization fuel-economizing device for an automobile fuel engine.

    [0002] In order to reduce the fuel consumption to improve combustion, there existed a method for fuel magnetization. This method causes the fuel to flow through a magnetization device for fuel so as to improve the dispersed property and atomization level of the fuel which will bring about the fuel to combust sufficiently, thus to realize the aim of fuel saving.

    [0003] The Chinese utility model application filed under n° CN-A-2120189U discloses a magnetization fuel economizer shown as Fig. 1, for an internal combustion engine, said economizer comprising a housing (1) having a longitudinal through cavity, a tube connector (6, 7) possessing a flared flow passage and being hermetically disposed in each of the two ends of said through cavity whereby each tube connector is adapted to communicate with a fuel supply pipe, a magnetization cavity disposed perpendicular to the through cavity with two permanent magnets (2, 3) disposed in it with the magnetic poles of said magnets opposed each other whereby the greater dimension of said flared flow passage is directed towards the center of said longitudinal through cavity and whereby the interval between the two permanent magnets forms a fuel passing gap having a width, said width being measured in a direction perpendicular to the axis of said longitudinal through cavity and perpendicular to said opposed magnetic poles, and, in addition, a magnetic filter cavity arranged to communicate with said longitudinal through cavity and disposed parallel to the magnetization cavity with a permanent magnet (4) in the magnetic filter cavity. The advantage of this utility model is that the permanent magnets have a higher magnetic energy product and a higher inherent coercitive force, which will cause fuel to combust sufficiently and to increase the output power of the engine through forming a stronger magnetization effect without having to superimpose a static electrical field. Meanwhile, the contents of carbon monoxide and hydrocarbons reduce, and the iron magnetic materials in the fuel will be less accumulated in the magnetic filter cavity by means of the adsorption of the magnet in this cavity.

    [0004] However, in this utility model, the arrangement of these permanent magnets cannot form a closed magnetic circuit, which will influence the intensity of magnetic field. Therefore, there exists still a need to further increase the intensity of magnetic field so as to improve the magnetization for the fuel.

    [0005] An object of the invention is to provide a new structure of the magnetization fuel-economizer to improve the above mentioned structure, which can form a closed magnetic circuit in the fuel-economizer, thus to increase the magnetic field intensity and to further improve the magnetization effect of the fuel with the results that a high combustion efficency of the fuel can be obtained ; hence the output power of the engine may be enhanced to realize a fuel saving and a exhaust gas clean up. Meanwhile, the magnetic field intensity of the magnetic filter cavity can be increased enough such that the iron magnetic materials suspended in the fuel can be totally adsorbed on this cavity and do not jam up the cavity again.

    [0006] The present invention provides in combination that said fuel gap has a width of 0,5-2,0 mm, and that the other ends of said opposed magnetic poles of said two permanent magnets in said magnetization cavity are provided respectively with magnetic circuit sheets to form a closed magnetic circuit, and that the one end of said permanent magnet in said magnetic filter cavity is provided with a magnetic circuit sheet and the other end of said permanent magnet is opposed to a magnet circuit sheet disposed on the wall surface of said magnetic filter cavity, said wall surface being in use the bottom surface of said magnetic filter cavity, thus to form a fixed fuel passing gap between said permanent magnet and said magnetic circuit sheet, and to form a closed magnetic circuit.

    [0007] In comparison with the prior art, since the application of the fuel-economizer of the structure having magnetic circuit sheets according to the invention, it is possible to form a closed magnetic circuit in the fuel-economizer, also to enhance the instrumental magnetic field intensity and the magnetization efficiency of fuel, thus to realize the aim of fuel saving and exhaust gas clean up.

    Fig. 1 is a sectional view of a magnetization fuel-economizer according to the prior art ;

    Fig. 2 is a sectional view of the magnetization fuel-economizer according to a first embodiment of the invention ;

    Fig. 3 is a vertical view of the magnetization fuel-economizer according to the invention ;

    Fig. 4 is a vertical view of the magnetization fuel-economizer according to a second embodiment of the invention ; and

    Fig. 5 is a sectional view of the magnetization fuel-economizer according to a third embodiment of the invention.



    [0008] The invention will be described in the following through its embodiments with reference to the accompagning drawings, in which the same part is denoted by the same reference numeral.

    [0009] As shown in fig. 2, housing is denoted by the reference numeral 1, which is made of aluminum alloy. The housing 1 has a longitudinal and circular through cavity, and the inner walls of the two ends of the cavity are formed with inner threads. The housing 1 has formed on it a magnetic filter cavity and a magnetization cavity, and the two cavities are all perpendicular to and communicated with the longitudinal cavity. The two ends of the through cavity are joined hermetically with tube connectors 13 and 14 respectively. The tube connectors are made of aluminum alloy or brass. The inner flow passage of the tube connectors is shaped as one end to be a flare expanded outwardly and to connect with the fuel-economizer, and the other portion of the tube connector formed as a straight tube communicates with a fuel supply pipe, a carburetor or a fuel injection pump.

    [0010] The magnetization cavity is a circular hole perpendicular to the through cavity, with two permanent magnets 3 and 4 disposed in it with their magnetic poles opposed each other. A fuel passing gap with a width of 0.5 ~ 2.0 mm (measured in a direction perpendicular to the axis of the longitudinal through cavity and perpendicular to the opposed magnetic poles) is formed between permanent magnets 3 and 4, which may oppose each other with the N pole to N pole, or S pole to S pole, or N pole to S pole, and have the magnetic circuit sheets 7 and 8 disposed on the other ends of the opposed magnetic poles of the magnets 3 and 4 respectively, so that a closed magnetic circuit is formed.

    [0011] The magnetic filter cavity is a stepped hole communicating with the longitudinal through cavity of the housing 1 and the surface of the housing 1. A permanent magnet 2 is mounted in the magnetic filter cavity with one end of the magnet provided with a magnetic circuit sheet 6 and the other end of the magnet opposed to a magnetic circuit sheet 5 disposed on the undersurface of the magnetic filter cavity, thus to form a closed magnetic circuit. A fixed fuel passing gap is formed between the permanent magnet 2 and the magnetic circuit sheet 5. In this embodiment, the gap is of a width (measured in a direction perpendicular to the axis of the longitudinal through cavity) of about 1 ~ 5 mm, and preferably, 2 ~ 3 mm. The magnetic circuit sheet 5 is mounted in a recess of the housing on the wall surface of the magnetic filter cavity which may be realized though a shrink fit and a compression bonding of an industrial gelatin. The wall surface is in use the bottom surface of the magnetic filter cavity.

    [0012] Since the magnetic circuit sheets of the aforesaid type are applied in the magnetization cavity and the magnetic filter cavity, closed circuits of high intensity magnetic field are formed, which will enhance greatly the magnetization effect of the fuel in the fuel circuit and achieve a notable effect of fuel saving and exhaust gas clean-up.

    [0013] In this embodiment, the permanent magnets 2, 3 and 4 are made as cylindrical bodies from a material of NF30 with diameters and heights all in the range from 6 mm to 80 mm. The inherent coercive force of each permanent magnet is in the range of 18 000 000 ~ 20 000 000 ampere per meter (18 000-20 000 oersteds). After magnetizing by means of a conventional art, the magnetic field intensity of the N-pole face is in the range from 0,40 to 0,52 tesla (4 000 to 5 200 gausses).

    [0014] In this embodiment, magnetic circuit sheets 5, 6, 7 and 8 are in shapes of circular disks or cylinders with diameters from 6 to 80 mm and thicknesses or heights from 0.3 to 10 mm, and all can be made from magnet conductance material such as iron DT4 of the industrial purity level or silicon steel sheet.

    [0015] During the operation of a fuel engine, the fuel passes through the fuel supply pipe into the double cavity magnetization fuel-economizer. When the fuel flows through the fuel passing gap formed between the permanent magnet 2 and the magnetic circuit sheet 5 on the bottom of the magnetic filter cavity, the area passed by the fuel flow changes abruptly, and the flow rate of fuel changes suddenly from slowness to fastness, thus the fuel flow form substially turbulences. The molecular group structures of the fuel under the turbulent state are in collision and friction with each other and turn, from a relative stable state to a metastable state under the influence of molecular Brownian movement. Under the action of premagnetization of the closed magnetic circuit formed by the permanent magnet 2 in the magnet filter cavity with magnetic circuit sheets 5 and 6, the molecular groups under metastable state are broken up partially, the fuel particules tend to be finer and dispersed, and the iron magnet particules suspended in the fuel are adsorbed totally on the permanent magnet 2, which purify the fuel. The fuel flowed out from the above mentioned fuel passing gap moves through the longitudinal through cavity of the housing into the fuel passing gap formed between the permanent magnet 3 and 4 the magnet poles of which are opposed to each other. Now, the area passed by fuel flow in this gap changes from small to big, and again suddenly becomes very small, and the fuel which has been in a high speed turbulent state is again influenced intensively by a high density magnetic force line in the closed magnetic circuit formed by permanent magnets 3 and 4 as well as magnetic circuit sheet 7 and 8. Thus the molecular groups of metastable state are further broken up massively, the viscosity and density of the fuel are reduced, the fuel particules become smaller and easier to be dispersed, the level of fuel atomization is enhanced and the condition for fuel to combine with oxygen has been improved remarkably, so that the fuel can be combusted more sufficiently ; therefore the output power of engine can be increased and the exhaust gas is cleaned up.

    [0016] During assembly, the magnetic circuit sheets 7 and 8 are first attached respectively on the other ends of the opposed poles of permanent magnets 3 and 4, then the permanent magnets 3 and 4 are disposed in the magnetization cavity, a round block 10 is fixed on the magnetization cavity and sealed through on adhesive to prevent from leakage. The fuel passing gap between permanent magnets 3 and 4 should have a width in the range of 5 ~ 2.0 mm. Once the tube connectors 13 and 14 mounted, then the magnetic circuit sheet 5 is compression bonded through a shrink fit in the recess on the bottom of the magnetic filter cavity.

    [0017] Then, the permanent magnet is inserted into the magnetic filter cavity, so that a pole opposes to the magnetic circuit sheet 5, and a step restricts the magnet 2 in a certain position such that the fuel passing gap between magnetic circuit sheet 5 and the magnetic pole is of a width preferably in the range of 2 ~ 3 mm. Finally a cavity cover 9 is screwed down to seal and to bond the cover.

    [0018] When the magnetization fuel-economizer according to the invention is mounted on an engine, the connection position is somewhat different due to the kind of engines. When it is mounted on a gasoline engine, the fuel inlet is connected with a fuel supply pipe of gasoline pump, and the fuel outlet is connected with a carburetor and is preferably mounted directly on the carburetor. When it is mounted on a diesel engine, the fuel inlet is connected with the fuel outlet tube of the filter, and the fuel outlet is connected with the fuel injection pump and is preferably mounted directly on the fuel inlet of the fuel injection pump.

    [0019] Fig 4 and 5 show respectively the second and third embodiments according to the invention. They are multi-fuel circuit fuel-economizer respectively, and are suitable for large internal engines of large tonnages automobiles, tractors, locomotives and ships.

    [0020] Fig. 4 shows a multi-cavity magnetization fuel-economizer, which has in its longitudinal through cavity disposed three or more magnetization cavities arranged vertically, an parallelly to each other, in these cavities there are many pairs of permanent magnets with magnetic circuit sheets. The arrangements of permanent magnets and magnetic circuit sheets are the same as in embodiment 1. Disposing many pairs of permanent magnets is used for repeatedly magnetizing the fuel to increase the magnetization effect.

    [0021] Fig. 5 shows a multi-fuel circuit magnetization fuel-economizer. There are arranged a plurality of parallel through cavities along the longitudinal direction in the housing of the economizer. Each end of the through cavities is connected with a common inlet and outlet tube connector of the fuel tube and each through cavity has many pairs of permanent magnet with magnetic circuit sheets arranged as in the embodiment 2. This kind of fuel-economizer is especial for the magnetization of fuel in large internal combustion engine.

    [0022] By comparison with the prior art, the fuel-economizer according to the invention has the following advantages.

    1. A closed magnetic circuit has been formed in this fuel-economizer by the application of industrial purity iron or silicon steel sheet, which greatly enhances instrumental magnetic field intensity with the magnetic field intensity in the magnetic filter cavity being increased by 50 % and that in the magnetization cavity being increased by over 10 % so as to greatly improve the magnetization effect for the fuel.

    2. The application of two or more intensified stages magnetization process has a superposition effect, which may sufficiently develop the magnetization effect of high magnetic energy product and high magnetic field intensity of permanent magnets to the fuel so as to render a further fuel saving and a reduction of the emission of harmful substances. The experiments and practices show that by the invention, a fuel saving rate of 10 % ~ 25 % may be realized ; CO and HC reduces respectively 20 % ~ 80 % with CO reducting by 35 % in average and by 80 % at a maximum, HC reducing by 30 % in average and by 80% at maximum ; and the smoke density reduces by over 20 %.

    3. The magnetic filter cavity has an instrumental magnetic field intensity up to 0,6 tesla (6 000 gausses) which can be used not only to magnetize the fuel for the first stage but also to adsorb iron magnetic particules in the fuel effectively so as to protect effectively the permanent magnet in the magnetic filter cavity from accumulated iron magnetic substances.



    [0023] The embodiment according to the invention has been described with reference to the accompanying drawings. The invention may have various changements and modifications which should be included in the invention as defined in the appended claims.


    Claims

    1. A magnetization fuel-economizer for an internal combustion engine, said economizer comprising a housing (1) having a longitudinal through cavity, a tube connector (13, 14) possessing a flared flow passage and being hermetically disposed in each of the two ends of said through cavity whereby each tube connector (13, 14) is adapted to communicate with a fuel supply pipe, a magnetization cavity disposed perpendicular to the through cavity with two permanent magnets (3,4) disposed in it with the magnetic poles of said magnets (3,4) opposed each other whereby the greater dimension of said flared flow passage is directed towards the center of said longitudinal through cavity and whereby the interval between the two permanent magnets (3, 4) forms a fuel passing gap having a width, said width being measured in a direction perpendicular to the axis of said longitudinal through cavity and perpendicular to said opposed magnetic poles, and, in addition, a magnetic filter cavity arranged to communicate with said longitudinal through cavity and disposed parallel to the magnetization cavity with a permanent magnet (2) in the magnetic filter cavity characterized in that said fuel gap has a width of 0,5-2,0 mm, and in that the other ends of said opposed magnetic poles of said two permanent magnets (3,4) in said magnetization cavity are provided respectively with magnetic circuit sheets (7,8) to form a closed magnetic circuit, and in that the one end of said permanent magnet (2) in said magnetic filter cavity is provided with a magnetic circuit sheet (6) and the other end of said permanent magnet (2) is opposed to a magnet circuit sheet (5) disposed on the wall surface of said magnetic filter cavity, said wall surface being in use the bottom surface of said magnetic filter cavity, thus to form a fixed fuel passing gap between said permanent magnet (2) and said magnetic circuit sheet (5), and to form a closed magnetic circuit.
     
    2. The magnetization fuel-economizer according to claim 1, wherein the two permanent magnets (3, 4) disposed in the magnetization cavity have their magnetic pole opposed each other with the N pole to N pole, or S pole to S pole, or N pole to S pole, and said magnetic circuit sheets (7, 8) are disposed on the other ends of the opposed magnetic poles.
     
    3. The magnetization fuel-economizer according to claim 1, wherein a fuel passing gap between the permanent magnetic (2) in the magnetic filter cavity and the magnetic circuit sheet (5) in the bottom surface of magnetic filter cavity is of a width from 1 mm to 5 mm, measured in a direction perpendicular to the axis of said longitudinal through cavity.
     
    4. The magnetization fuel-economizer according to claim 1, wherein the magnetic circuit sheets (5, 6, 7, 8) have the shape of a circular disk or cylinder with a diameter from 6 mm to 80 mm, and a thickness or height from 0.3 mm to 10 mm
     
    5. The magnetization fuel-economizer according to claim 1, wherein the magnetic circuit sheets can be made form a magnetic conductance material such as industrial purity iron DT 4 or silicon steel sheet.
     
    6. The magnetization fuel-economizer according to claim 1, wherein the permanent magnets (2, 3, 4) are made from the material NF30H with an inherent coercive force in the range of 18 000 000-20 000 000 ampere per meter (18 000-20 000 oersteds), and a pole face magnetic field intensity in the range of 0,40-0,52 tesla (4 000-5 200 gausses).
     
    7. The magnetization fuel-economizer according to claims 1 - 6, wherein the fuel-economizer is a multi-cavity fuel-economizer with many pairs of permanent magnets (3, 4).
     
    8. The magnetization fuel-economizer according to claims 1 - 6, wherein the fuel-economizer is a multi-circuit economizer with a plurality of through cavities.
     


    Ansprüche

    1. Magnetisierungs-Brennstoff-Sparvorrichtung für einen Verbrennungsmotor, mit einem Gehäuse (1) mit einem längsverlaufenden durchgehenden Hohlraum, mit einem Rohrverbinder (13, 14), der einen erweiterten Strömungsdurchtritt besitzt und hermetisch dicht in jeweils einem Ende des durchgehenden Hohlraums angeordnet ist, wodurch beide Rohrverbinder (13, 14) mit einer Brennstoff-Zufuhrleitung kommunizieren können, mit einem Magnetisierungshohlraum, der senkrecht zu dem durchgehenden Hohlraum angeordnet ist, und der zwei in ihm angeordnete Permanentmagnete (3, 4) aufweist, wobei die Magnetpole der Magnete (3, 4) einander gegenüberliegen, wodurch die größere Abmessung des erweiterten Strömungsdurchtritts zur Mitte des längsverlaufenden durchgehenden Hohlraums hin gerichtet ist, und wodurch der Zwischenraum zwischen den beiden Permanentmagneten (3, 4) eine Brennstoff-Durchtrittslücke mit einer Breite bildet, die in einer Richtung senkrecht zur Achse des längsverlaufenden durchgehenden Hohlraums und senkrecht zu den gegenüberliegenden Magnetpolen gemessen wird, und zusätzlich mit einem Magnetfilterhohlraum, der so ausgebildet ist, daß er mit dem längs verlaufenden durchgehenden Hohlraum kommuniziert, und der parallel zu dem Magnetisierungshohlraum angeordnet ist und mit einem Permanentmagneten (2) in dem Magnetfilterhohlraum, dadurch gekennzeichnet, daß die Brennstofflücke eine Breite von 0,5-2,0 mm aufweist, und daß die anderen Enden der gegenüberliegenden Magnetpole der beiden Permanentmagnete (3, 4) in dem Magnetisierungshohlraum mit Magnetkreis-Lagen (7, 8) versehen sind, um einen geschlossenen magnetischen Kreis zu bilden, und daß das eine Ende des Permanentmagneten (2) in dem Magnetfilterhohlraum mit einer Magnetkreis-Lage (6) versehen ist und das andere Ende des Permanentmagneten (2) einer Magnetkreis-Lage (5) gegenüberliegt, die auf der Wandfläche des Magnetfilterhohlraumes angeordnet ist, wobei die Wandfläche im Gebrauch die Bodenfläche des Magnetfilterhohlraumes ist, um so eine feste Brennstoff-Durchtrittslücke zwischen dem Permanentmagneten (2) und der Magnetkreis-Lage (5) und um einen geschlossenen magnetischen Kreis zu bilden.
     
    2. Magnetisierungs-Brennstoff-Sparvorrichtung nach Anspruch 1, wobei die Magnetpole der beiden in dem Magnetisierungshohlraum angeordneten Permanentmagneten (3, 4) mit dem N-Pol zum N-Pol oder S-Pol zum S-Pol oder N-Pol zum S-Pol gegenüberliegen, und wobei die Magnetkreis-Lagen (7, 8) an den anderen Enden der gegenüberliegenden Magnetpole angeordnet sind.
     
    3. Magnetisierungs-Brennstoff-Sparvorrichtung nach Anspruch 1, wobei eine Brennstoff-Durchtrittslücke zwischen dem Permanentmagneten (2) in dem Magnetfilterhohlraum und der Magnetkreis-Lage (5) in der Bodenfläche des Magnetfilterhohlraums eine Breite von 1 mm bis 5 mm aufweist, gemessen in einer Richtung senkrecht zur Achse des längsverlaufenden durchgehenden Hohlraums.
     
    4. Magnetisierungs-Brennstoff-Sparvorrichtung nach Anspruch 1, wobei die Magnetkreis-Lagen (5, 6, 7, 8) die Form einer kreisförmigen Scheibe oder eines Zylinders mit einem Durchmesser von 6 mm bis 80 mm und einer Dicke oder Höhe von 0,3 mm bis 10 mm aufweisen.
     
    5. Magnetisierungs-Brennstoff-Sparvorrichtung nach Anspruch 1, wobei die Magnetkreis-Lagen aus einem Material mit magnetischer Konduktanz, wie Eisen DT 4 von industrieller Reinheit oder Siliziumstahlblech, gefertigt sein können.
     
    6. Magnetisierungs-Brennstoff-Sparvorrichtung nach Anspruch 1, wobei die Permanentmagneten (2, 3, 4) aus dem Material NF30H mit einer inhärenten Koerzitivkraft im Bereich von 18 000 000-20 000 000 Ampere pro Meter (18 000-20 000 Oersted) und einer magnetischen Flußdichte an der Pol-Stirnseite im Bereich von 0,40-0,52 Tesla (4 000-5 200 Gauß) gefertigt sind.
     
    7. Magnetisierungs-Brennstoff-Sparvorrichtung nach den Ansprüchen 1 - 6, wobei die Brennstoff-Sparvorrichtung eine Mehrfach-Hohlraum-Brennstoff-Sparvorrichtung mit vielen Permanentmagnet-Paaren (3, 4) ist.
     
    8. Magnetisierungs-Brennstoff-Sparvorrichtung nach den Ansprüchen 1 - 6, wobei die Brennstoff-Sparvorrichtung eine Mehrkreis-Sparvorrichtung mit einer Vielzahl von durchgehenden Hohlräumen ist.
     


    Revendications

    1. Economiseur de carburant par magnétisation destiné à un moteur à combustion interne, cet économiseur comprenant un boîtier (1) comportant une cavité traversante longitudinale, un raccord pour tubes (13, 14) possédant un passage d'écoulement évasé et monté hermétiquement dans chacune des deux extrémités de la cavité, chaque raccord pour tubes (13, 14) étant susceptible de communiquer avec une conduite d'alimentation en carburant, une cavité de magnétisation placée perpendiculairement à la cavité traversante, avec deux aimants permanents (3, 4) disposés à l'intérieur de celle-ci, les pôles magnétiques des aimants (3, 4) étant opposés les uns aux autres, la plus grande dimension du passage d'écoulement évasé étant située du côté du centre de la cavité traversante longitudinale, et l'intervalle entre les deux aimants permanents (3, 4) formant un espace de passage du carburant ayant une certaine largeur, cette largeur étant mesurée suivant une direction perpendiculaire à l'axe de la cavité traversante longitudinale et perpendiculaire aux pôles magnétiques opposés et, en outre, une cavité pour filtre magnétique conçue pour communiquer avec la cavité traversante longitudinale et disposée parallèlement à la cavité de magnétisation, un aimant permanent (2) se trouvant dans la cavité à filtre magnétique, caractérisé en ce que l'espace de passage du carburant présente une largeur de 0,5 à 2,0 mm et en ce que les autres extrémités des pôles magnétiques opposés des deux aimants permanents (3, 4) présents dans la cavité de magnétisation sont équipées, chacune, de plaques à circuits magnétiques (7, 8), afin de former un circuit magnétique fermé, et en ce que l'une des extrémités de l'aimant permanent (2) présent dans la cavité pour filtre magnétique est équipée d'une plaque à circuit magnétique (6) et l'autre extrémité de l'aimant permanent (2) est opposée à une plaque à circuit magnétique (5) disposée sur la surface de la paroi de la cavité pour filtre magnétique, cette surface de paroi constituant, en cours d'utilisation, la surface de fond de la cavité pour filtre magnétique afin de former, ainsi, un espace fixe de passage du carburant entre l'aimant permanent (2) et la plaque à circuit magnétique (5), et afin de former un circuit magnétique fermé.
     
    2. Economiseur de carburant par magnétisation selon la revendication 1, dans lequel les pôles magnétiques des deux aimants permanents (3, 4) disposés dans la cavité de magnétisation sont opposés les uns aux autres, le pôle N étant opposé au pôle N, ou le pôle S au pôle S, ou le pôle N au pôle S, et les plaques à circuits magnétiques (7, 8) sont disposées sur les autres extrémités des pôles magnétiques opposés.
     
    3. Economiseur de carburant par magnétisation selon la revendication 1, dans lequel un espace de passage du carburant existant entre l'aimant permanent (2) présent dans la cavité pour filtre magnétique et la plaque à circuit magnétique (5) présent au niveau de la surface de fond de la cavité à filtre magnétique présente une largeur comprise entre 1 mm et 5 mm, mesurée suivant une direction perpendiculaire à l'axe de la cavité traversante longitudinale.
     
    4. Economiseur de carburant par magnétisation selon la revendication 1, dans lequel les plaques à circuits magnétiques (5, 6, 7, 8) présentent la forme d'un disque ou cylindre circulaire d'un diamètre compris entre 6 mm et 80 mm, et d'une épaisseur ou une hauteur comprise entre 0,3 mm et 10 mm.
     
    5. Economiseur de carburant par magnétisation selon la revendication 1, dans lequel les plaques à circuits magnétiques peuvent être fabriquées dans un matériau à conductance magnétique tel qu'un fer DT4 de pureté industrielle ou une tôle d'acier traitée avec un silicone.
     
    6. Economiseur de carburant par magnétisation selon la revendication 1, dans lequel les aimants permanents (2, 3, 4) sont constitués en matériau NF30H avec une force coercitive inhérente comprise entre 18 000 000 et 20 000 000 ampères par mètre (18 000-20 000 oersteds), et une intensité de champ magnétique au niveau des faces polaires comprise entre 0,040 et 0,52 tesla (4 000-5 200 gauss).
     
    7. Economiseur de carburant par magnétisation selon les revendications 1 à 6, dans lequel l'économiseur de carburant est un économiseur de carburant à cavités multiples comportant plusieurs paires d'aimants permanents (3, 4).
     
    8. Economiseur de carburant par magnétisation selon les revendications 1 à 6, dans lequel l'économiseur de carburant est un économiseur à circuits multiples comportant une pluralité de cavités traversantes.
     




    Drawing