TECHNICAL FIELD
[0001] The present invention relates to a correlation detector of a radio receiver in a
CDMA (Code Division Multiple Access) system which carries out multiple access by using
a spread spectrum in mobile communications.
[0002] In particular, the present invention relates to a CDMA synchronizing circuit that
synchronizes a spreading code for despreading the received signal to a spreading code
in a received signal in CDMA communications.
BACKGROUND ART
[0003] CDMA communications perform multiple access propagation by spreading information
into wideband signals using spreading codes with rates higher than the rate of the
information, and are roughly divided into direct sequence (DS) systems that spread
modulated signals by high rate spreading codes, and frequency hopping (FH) systems.
The FH system resolves each symbol into smaller elements called chips, and translates
the chips into signals with different center frequency at a high speed. Since the
implementation of the FH system is difficult, the DS system is generally used. The
DS system recovers the original narrowband signal by despreading the wideband received
input signal at a receiving end, followed by demodulation. In the despreading process,
correlation detection is performed between the spreading code included in the received
signal and a spreading code generated at the receiving end.
[0004] Thus, the receiver for receiving the spread signal in the DS system is usually provided
with a replica (reference PN sequence) of the PN sequence (received PN sequence) in
the received signal, and establishes synchronization between the reference PN sequence
and the received PN sequence. Fig. 1 shows a conventional synchronization circuit
using a matched filter. The received signal applied to an input terminal 10 is supplied
to a memory circuit 11 with taps. The number of taps of the tapped memory circuit
11 is the same as the number of chips in a spreading code interval (that is, a processing
gain PG). The outputs of the taps of the memory circuit 11 are multiplied by the reference
spreading code stored in a tap coefficient circuit 13 by multipliers 12. The resultant
products are summed by an integrator 14, which outputs the sum from its output terminal
16 as a correlation value 15.
[0005] Using the matched filter makes it possible to quickly establish the synchronization
because the peaks of the correlation value appear at the same interval as that of
the spreading code. However, since the capacity of the tapped memory circuit 11 and
the number of the multipliers 12 increase in proportion to the processing gain, the
power consumption of the receiver will increase with the interval of the spreading
code. Therefore, the conventional synchronizing circuit is not appropriate for portable
devices or mobile devices.
[0006] Using a sliding correlation detector as shown in Fig. 2 makes possible power saving
and downsizing of the circuit. In Fig. 2, a received signal 21 inputted to the input
terminal 10 is multiplied by a spreading code, which is generated by a spreading code
replica generator 30, by a multiplier 22 to obtain the correlation between the two.
The resultant product is passed through a bandpass filter (BPF) 23, followed by peak
power detection by a square-law detector 24. The detected power is integrated over
a fixed time (normally, ± one chip interval) by an integral-dump circuit 25. The integrated
result is compared with a threshold value by a threshold value decision circuit 26
which decides that initial acquisition has been completed if the integrated result
exceeds the threshold value, and proceeds to the next step (tracking mode). If the
integrated result is less than the threshold value, the decision circuit 26 supplies
a control voltage 28 to a voltage controlled clock generator (VCCG) 29 which slides
the phase of the replica so that the phase of the spreading code generated by the
spreading code replica generator 30 is shifted by 1/N chip interval (N is a natural
number equal to or greater than one). The initial acquisition has been completed by
repeating the processing until the synchronized point is found.
[0007] According to this method, it is necessary to integrate the spreading replica over
the fixed time every time the replica is shifted by 1/N chip interval, and to detect
the synchronized point in the interval of the spreading code by comparing the integrated
result. This will lengthen the acquisition time, and hence, it is not appropriate
for a system which requires a quick acquisition.
[0008] In addition, the conventional correlation detector presents another problem in that
it provides a rather large error in maintaining (tracking) the synchronization.
[0009] Fig. 3 is a block diagram showing a conventional DLL (Delay Locked Loop) correlation
detector 44. In Fig. 3, the same functional blocks are designated by the same numerals
as in Fig. 2. The reference numeral 10 designates a spreaded signal input terminal,
102 designates a decided data output terminal, 111 denotes a multiplier, and 510 designates
a delay circuit. The correlation detector 44 calculates correlations between the input
modulated signal and code sequences formed by advancing and retarding the chip phase
of the replica by 1/N, respectively. The correlated signals are passed through bandpass
filters (BPFs) 53 and 54 which eliminate unnecessary high frequency components, and
are detected by square-law detectors 55 and 56. The squared amplitude components are
summed by an adder 57 in the opposite phase, so that an error signal voltage is obtained
which indicates an amount of a phase difference. The error signal voltage is passed
through a loop filter 58, and is fed back to a VCCG 29 to correct the phase of the
replica code sequence. The phase advance (or retardation) time δ ranges from 0 to
Tc, where Tc is the chip interval.
[0010] Applying the CDMA system to cellular communications requires high accuracy transmission
power control that keeps constant base station's received levels of signals sent from
all the mobile stations. The CDMA system can increase the capacity in terms of the
number of subscribers per frequency band as compared with the FDMA system or the TDMA
system. This is because conventional systems which employ frequency orthogonality
cannot utilize the same carrier frequencies in the contiguous cells, and even space
diversity systems cannot reuse the same frequencies within four cells.
[0011] In contrast with this, the CDMA system makes it possible to reuse the same carrier
frequency in the contiguous cells because the signals of the other communicators are
regarded as white noise. Accordingly, the CDMA system can increase the capacity in
terms of the number of subscribers as compared with the FDMA system or the TDMA system.
If the processing gain is pg, the number of spreading code sequences that completely
orthogonalize with each other is pg. This number of the code sequences, however, will
be insufficient when information data is spread by using only code sequences of one
symbol interval long. To overcome this problem, the number of the spreading codes
is increased almost infinitely by superimposing long code sequences of a very long
interval over short code sequences of one symbol interval.
[0012] Unlike M sequences that have definite autocorrelation characteristics, the autocorrelation
of Gold sequences and that of the sequences obtained by superimposing very long code
sequences over the Gold sequences will have undesired peaks of considerable amplitudes
in addition to the normal correlation peak in one symbol interval. As a result, when
the received signal level is low, a lock may be lost in the conventional delay-locked
loop using one chip interval lock. Let us formulate the operation principle of the
delay-locked loop of Fig. 3. First, the input signal is expressed by the following
equation.

where S is average signal power, c(t-τ
t) is a received spreading code including a propagation delay, m(t-τ
t) represents data modulation including the propagation delay, ω
0 is the angular frequency of a carrier, and θ(t) = θ
0 + Ω
0t is an unknown carrier phase which is represented as the sum of a constant term and
a term proportional to the Doppler frequency. The power spectrum density of n(t) is
N
0/2. δω
0 is an angular frequency error between the center frequency of a modulation signal
and a local oscillation frequency. In addition, the bandpassed expression of input
thermal noise ni(t) is given by

where N
C(t) and N
S(t) are assumed to be approximately and statistically independent and steady. The
spreading replica sequence of the advanced phase and that of the retarded phase can
be expressed as follows:

where τ̂
t is a propagation delay estimated by the DLL at the receiving side. The crosscorrelation
output of the phase detector is expressed as

where K
m is the gain of the phase detector which is assumed to be equal in both branches,
and

represents the average of a set.
[0013] Figs. 4A - 4B illustrate the autocorrelation outputs in terms of the received chip
phase error. Here,

is a normalized propagation delay error. H(s) is a lowpass expression of a transfer
function H(s) of the bandpass filter, and

is a process of a PN sequence.
[0014] The output of the square-law detector can be expressed as follows using R
PN±(x) which is a function obtained by shifting the autocorrelation function of PN by
a time period of +x.

where

Here, H/(p)×(t) expresses an output response of the BPF to x(t). If the bandwidth
BL is sufficiently smaller than the chip rate, the effect of the auto-noise caused
by the PN sequence on the loop is negligible in the first-order approximation. Neglecting
the auto-noise and the secondary harmonic caused by the square-law detection, the
input to the loop filter can be expressed by the following equation.

where

According to the foregoing, a normalized delay estimate of the output of the spreading
code replica generator is expressed by the following equation using e(t).

where F(s) is the transfer function of the loop filter, and K
VCC is the gain of a voltage controller in the VCCG which drives the PN sequence generator.
Placing K = Km
2 K
VCC, K represents the loop gain. Substituting equation (7) into (8),

Thus, estimated error ε
t is expressed as

[0015] Resolving the first term in the blanket of the above equation into an average value
term and modulated auto-noise term gives

where < > expresses an average in time, and

where Sm(f) is a power spectrum density of the data modulation. The M
2 term is the integral of the data modulation power spectrum density over the passband
of the filter, and indicates the data modulation power in the passband. Since the
bandwidth of the loop is much smaller than the data symbol rate, the auto-noise associated
with the second term of equation (11) is negligible.
[0016] From equation (10), the following equation is obtained.

where a dot placed over characters represents a time differential, and η is given
by

[0017] Briefly, the average of squared tracking jitter due to noise component is expressed
as follows:

where B
L is an equivalent noise bandwidth of the LPF, and Ne(t) is expressed as

where f(ε
t) represents a square-law detection curve.
[0018] Since the conventional DLL uses the square-law detector as shown in equation (15),
the noise component is also squared. This will increase the tracking jitter as shown
in equation (14).
[0019] A paper entitled "A Modified PN Code Tracking Loop" by Yost et al (IEEE Transactions
on Communications, Vol. Com-30, No. 5, May 1982) describes a non coherent PN code
tracking loop where, instead of using the sum channel as the reference, the on time
or data channel is utilised.
[0020] US patent 4468784 describes a mixer driver circuit in a code correlator for a spread
spectrum communications system. The mixer driver circuit simultaneously multiplies
an input RF signal with two phase offset digitally encoded bit streams.
[0021] US patent 4841544 describes a spread spectrum receiver which converts a received
signal into an IF signal centred about a frequency corresponding to the code fundamental
frequency offset by a Doppler shift. The IF signal is then digitised and sampled at
a local clock frequency to develop N-bit digital signals. In phase and quadrature
component signals are then derived from the digitised IF signals. The tracker uses
the component signals to track the Doppler shift, to maintain the local sampling frequency
and to maintain the local code generator in synchrony with the code of the received
signal.
DISCLOSURE OF THE INVENTION
[0022] Therefore, an object of the present invention is to provide a low power consumption
CDMA synchronising circuit capable of high speed synchronisation. Another object of
the present invention is to provide a correlation detector that can perform high accuracy
tracking capable of eliminating the square loss resulting from the emphasis of the
noise component by the square law detector, which differs from the conventional code
tracking circuit.
A first aspect of the invention provides a synchronising apparatus including a correlation
detector for maintaining synchronisation between a received signal and a despreading
code by using a correlation between the received signal and the despreading code,
the received signal being CDMA spread and the despreading code being used for despreading
the received signal, said correlation detector comprising: a spreading code replica
generating means for generating a phase advanced replica of a CDMA spreading code
with an advance phase and a phase retarded replica of the CDMA spreading code with
a retarded phase with respect to the received signal; first multiplying means for
multiplying said received signal by said phase advanced replica of the CDMA spreading
code so as to output a first correlation detection signal; and second multiplying
means for multiplying said received signal by said phase retarded replica of the CDMA
spreading code so as to output a second correlation detection signal; the apparatus
being characterised in that it comprises: carrier frequency error compensating means
for compensating for a carrier frequency error associated with said first and second
correlation detection signals; and adding means for summing in opposite phase said
first and second correlation detection signals, which have been compensated by said
carrier frequency error compensating means; an averaging circuit for averaging an
output signal of said adding means along a time axis; and wherein said spreading code
replica generating means is further operable to generate an in phase replica of said
CDMA spreading code with the same phase, and wherein the correlation detector further
comprises: third multiplying means for multiplying said received signal by said in-phase
replica of the CDMA spreading code from said spreading code replica generating means;
integrating circuit means for integrating an output signal of said third multiplier
means; automatic frequency control circuit means for detecting the carrier frequency
error based on an output of said integrating circuit means, to output it to said carrier
frequency error compensator; a demodulator for generating a decided signal of received
data based on an output signal of said automatic frequency control circuit means;
an inverse modulation circuit for inversely modulating an output signal of said averaging
circuit by the decided signal of the received data; and clock generating circuits
for generating a clock signal whose phase is controlled by an output from said inverse
modulation circuit to control said spreading code replica generator.
[0023] A second aspect of the invention provides a synchronising method using a correlation
detector for tracking between a received signal and a despreading code by the use
of a correlation between the received signal and the despreading code, the received
signal being CDMA spread and the despreading code being used for despreading the received
signal, said method comprising the steps of: generating an in-phase replica of a CDMA
spreading code with the same phase, a phase advanced replica of the CDMA spreading
code with an advance phase and a phase retarded replica of the CDMA spreading code
with a retarded phase with respect to the received signal; firstly multiplying said
received signal by said phase advanced replica of the CDMA spreading code so as to
output a first correlation detection signal; secondly multiplying said received signal
by said phase retarded replica of the CDMA spreading code so as to output a second
correlation detection signal; compensating for a carrier frequency error associated
with said first and second correlation detection signals; summing in opposite phase
said first and second correlation detection signals, which have been compensated at
said carrier frequency error compensating step; averaging an output at said summing
step along a time axis; third multiplying said received signal by said in-phase replica
of the CDMA spreading code; integrating an output at said third multiplying step;
detecting the carrier frequency error based on an output at said integrating step
so as to use it at said carrier frequency error compensating step; generating a decided
signal of received data based on an output at said integrating step; inversely modulating
an output at said averaging step by the decided signal of the received data; and controlling
a phase of a replica code to be output based on the output at said inversely modulating
step.
BRIEF DESCRIPTION OF THE DRAWINGS
[0024]
Fig. 1 is a block diagram showing a synchronizing circuit or an initial acquisition
circuit of a conventional matched filter;
Fig. 2 is a block diagram showing a conventional sliding correlator;
Fig. 3 is a block diagram showing a conventional DLL.
Figs. 4A-4C are diagrams illustrating crosscorrelation output signals in terms of
a phase error of received signal;
Fig. 5 is a block diagram showing a basic arrangement of a first embodiment of a correlation
detector in accordance with the present invention;
Fig. 6 is a block diagram showing another basic arrangement of the first embodiment
of a correlation detector in accordance with the present invention;
Fig. 7 is a block diagram showing details of hardware of the correlation detector
in accordance with the present invention; and
Fig. 8 is a block diagram showing another embodiment of a correlation detector in
accordance with the present invention.
BEST MODE FOR CARRYING OUT THE INVENTION
[0025] The best mode for carrying out the invention will now be described with reference
to the accompanying drawings.
EMBODIMENT 1
[0026] Fig. 5 shows an embodiment of the present invention. A received signal 21 applied
to the input terminal 10 is selectively supplied through a switching circuit 42 to
an initial acquisition circuit 43 consisting of a matched filter or to a correlation
detector 44. The initial acquisition circuit 43 has an arrangement similar to that
of Fig. 1. The correlation detector 44 has a function similar to the correlation detectors
of Figs. 2 and 3. When the initial acquisition has not yet been completed, the received
signal is supplied to the initial acquisition circuit (matched filter) 43 in accordance
with a switching signal 46 from an acquisition decision circuit 45, so that the correlation
detection is performed. The correlation value detected by the matched filter 43 is
compared with a threshold value in the acquisition decision circuit 45. If the correlation
value is greater than or equal to the threshold value, the acquisition decision circuit
45 decides that the initial acquisition has been completed, and changes the switching
circuit 42 using the switching signal 46. Thus, the received signal is inputted to
multipliers 47 and 48 in the correlation detector 44. The acquisition decision circuit
45 provides an initial reset signal 49 to a VCCG 29 and a spreading code replica generator
30.
[0027] The received signal 21 after the initial acquisition is multiplied by spreading codes
51 and 52 by the multipliers 47 and 48, the spreading codes being generated by the
spreading code replica generator 30, and having phases shifted forward and backward
in time by an amount T (less than one chip interval). The two products are passed
through bandpass filters (BPF) 53 and 54, and are square-law detected by square-law
detectors 55 and 56, in which correlation values are detected. The correlation values
are summed in the opposite phase by an adder 57. The sum is passed through a loop
filter 58, and becomes a control voltage of the VCCG 29. The clock signal generated
by the VCCG 29 regulates the phase of the spreading code replica generator 30, tracks
the synchronous point, and maintains the synchronization.
[0028] Fig. 6 illustrates an example, in which the spreading code replica generator 30I
is synchronized with the outputs of the quadrature detector 62 which detects the received
signal 21 applied to the input terminal 10. In this figure, portions corresponding
to those of Fig. 5 are designated by the same reference numerals. Suffixes I and Q
are attached to the same numerals as in Fig. 5 to represent processing circuits of
the two detected outputs I and Q of the quadrature detector 62. The detected outputs
I and Q are passed through lowpass filters 63 and 64, converted into digital signals
by A/D converters 65 and 66, and supplied to switching circuits 42I and 42Q. The outputs
of the initial acquisition circuits 43I and 43Q are square-law detected by square-law
detectors 71 and 72, summed by an adder 73, and supplied to the acquisition decision
circuit 45 which decides whether the initial acquisition is established or not.
[0029] A spreading code replica generator 30I in the correlation detector 44 generates an
advanced spreading code 51I with an advanced phase and a retarded spreading code 52I
with a retarded phase. Likewise, a spreading code replica generator 30Q generates
an advanced spreading code 51Q with the advanced phase and a retarded spreading code
52Q with the retarded phase. The detected output component I outputted from the switching
circuit 42I is multiplied by the advanced spreading code 51I and the retarded spreading
code 52I by multipliers 47I and 48I. Likewise, the detected output component Q outputted
from the switching circuit 42Q is multiplied by the advanced spreading code 51Q and
the retarded spreading code 52Q by multipliers 47Q and 48Q.
[0030] The detected correlation values with the advanced spreading codes 51I and 51Q, which
are outputted from the multipliers 47I and 47Q, are passed through bandpass filters
(BPFs) 53I and 53Q, square-law detected by square-law detectors 55I and 55Q, and are
summed by an adder 67. Similarly, the detected correlation values with the retarded
spreading codes 52I and 52Q, which are outputted from the multipliers 48I and 48Q,
are passed through bandpass filters (BPFs) 54I and 54Q, square-law detected by square-law
detectors 56I and 56Q, and are summed by an adder 68. The outputs of the adders 67
and 68 are summed in the opposite phase by the adder 57. These operations are similar
to those of Fig. 5.
[0031] According to the first embodiment, the synchronization process is separated into
an initial acquisition process, and a tracking process using the correlation detector.
The input PN sequence is acquired so that the phase difference between the input PN
sequence and the reference PN sequence is settled within a range sufficiently smaller
than ± one chip interval during the initial acquisition because the autocorrelation
of the PN sequence is established only within a range of ± one chip. The tracking
processing holds the phase difference between the input PN sequence and the reference
PN sequence within the range.
EMBODIMENT 2
[0032] Fig. 7 is a block diagram of a correlation detector of a second embodiment. In Fig.
7, the same functional blocks are designated by the same reference numerals as in
Figs. 1 - 6. As shown in Fig. 7, a signal applied to the input terminal 10 is quasi-coherent
detected by a detector 104 using a local signal generated by a local oscillator 103.
The local signal has a fixed frequency substantially equal to the center frequency
of the modulated signal. The correlation detector includes multipliers 47 and 48 for
detecting correlations between the received spreading code and replicas of the spreading
code; bandpass filters 83 and 84 for extracting only correlation detection signals
from the products; a carrier frequency error compensator 208 for compensating the
filtered output signals with a carrier frequency error signal detected by an automatic
frequency control circuit; an adder 57 for summing in the opposite phase the correlation
detection signal associated with an advanced phase replica and the correlation detection
signal associated with a retarded phase replica; a loop filter 58 for averaging the
phase error of the correlation detection; a multiplier 111 for performing correlation
detection using a replica in phase with the spreading code included in the received
signal; an integral-dump circuit 112 for integrating the output signal of the multiplier
111 over M chip intervals; an automatic frequency control circuit 213 for detecting
the carrier frequency error from the output signal of the integral-dump circuit to
compensate the carrier frequency error; a demodulator 113 for making decision of the
received data after compensating the received phase error of the signal obtained by
the correlation detection; a multiplier 114 for performing inverse modulation of the
decided data using the phase error signal outputted from the loop filter; a voltage
controlled clock generator 29 for controlling the clock phase by the phase error signal
outputted from the multiplier 114; and the spreading code replica generator 30 driven
by the clock signal outputted from the voltage controlled clock generator 29.
[0033] The modulated signal, which is down-converted by the fixed oscillation frequency
substantially equal to the center frequency of the modulated signal, is deprived of
harmonic components, and is multiplied by the replica of the spreading code in phase
with the spreading code in the modulated signal, followed by a predetermined length
of time integral. Thus, correlation peaks are detected. The correlation detection
signal undergoes decision by the demodulation circuit which performs coherent detection
or delay detection. On the other hand, the modulated signal is multiplied by the replica
of the spreading code with an advanced phase Δ with respect to the spreading code
in the modulated signal, and also multiplied by the replica of the spreading code
with a retarded phase Δ, thereby eliminating the harmonic components.
[0034] The error signals between the correlation associated with the advanced phase replica
of the spreading code and the correlation associated with the retarded phase replica
of the spreading code are added in the opposite phase by the adder 57, and its output
is integrated and averaged by the loop filter 58. This results in an error voltage
corresponding to the phase error between the spreading code in the received signal
and the replica of the spreading code. Inverse modulation by multiplying the error
voltage by the decided data outputted from the demodulator eliminates the error in
the phase error signal due to the modulated signal. A delay is inserted after the
phase error detection loop in order to match the absolute times of the processings
of the phase error detection loop and the data decision loop.
[0035] In the conventional DLL, a despread signal includes, a phase error signal component
that is a component of an error between the center frequency of the received signal
and the frequency of the local oscillator of the quadrature detector. The despread
signal also includes data modulation components and vestigial components of a carrier
signal component. To eliminate the carrier frequency offset component and the data
modulation components, the despread signal may be squared by a square-law detector.
This, however, will increase noise components because they are also squared, and the
noise components will be added to the chip phase error, thereby increasing phase jitter.
[0036] Accordingly, it is necessary to obviate the square-law detector to prevent the noise
component from increasing. In view of this, the present embodiment eliminates the
carrier frequency offset component from the despread signal by the AFC, and removes
the data modulation component by inversely modulating the demodulated and detected
signal into the despread signal.
[0037] Since the quasi-coherent detected signal includes a carrier offset signal, the detected
signal is involved with phase rotations. Consequently, the carrier offset signal must
be removed. This is achieved by detecting, by the automatic frequency control circuit
213, the offset component of the carrier signal from the correlation peaks in the
data decision loop, and by correcting the two correlation detected signals of the
chip phase error detection loop by the carrier offset signal in the opposite phase
directions.
SUPPLEMENTS
[0038] Fig. 8 is a block diagram showing detailed hardware of the correlation detector described
in the second embodiment. In this figure, the same elements are designated by the
same reference numerals as in Fig. 7. In Fig. 8, the reference numerals 304 designates
a 90-degree phase shifter, 65 and 66 designate A/D converters, 308 and 309 designate
complex multipliers, 313 designates a delay circuit, 314 designates a complex multiplier,
and 317 designates a decision circuit. The reference numeral 410 designates a carrier
frequency error compensation circuit, and 416 designates an automatic frequency control
circuit.
[0039] In the correlation detector, a received IF modulated signal is quadrature-detected
by the quadrature detector. The quadrature-detected I and Q channel signals are deprived
of harmonic components, and are converted into digital values by the A/D converters
65 and 66, followed by the correlation detection by applying complex signal processings
on I (In-phase) and Q (Quadrature) components. The correlation detection is carried
out by complex multiplication of the modulation spread signal by the I and Q components
of the replicas of the spreading code. The two replicas of the spreading code is the
same if the in-phase and quadrature components of the primary modulated signal are
spread by the same spreading code.
[0040] The operation will now be described when the primary modulation is QPSK and the secondary
modulation is BPSK. The data to be modulated are primary modulated independently by
binary data which are independently set for I and Q channels (QPSK modulation). The
I and Q channel data are spread (secondary modulated) by the same spreading codes.
The input signal to the receiver is expressed by the following equation.

The signals after multiplying the input signal of equation (3) by the replicas of
the spreading code at the receiver will be expressed as follows if a conventional
calculation method is applied.

The chip phase error signal at the output of the loop filter is expressed by the
following equation.

As shown by equation (18), since modulated signal powers of individual symbol components
are multiplied by the phase error signal in the primary QPSK modulation, the primary
modulated signal components can be eliminated by inversely modulating the I and Q
components of the data after decision into the phase error signal.
INDUSTRIAL APPLICABILITY
[0041] As described above in detail, according to the present invention, the correlation
detection during the acquisition phase which requires a high speed synchronization
is carried out in the initial acquisition circuit using a matched filter, and the
correlation detection during the tracking phase which requires power saving rather
than high speed synchronization is performed by the sliding correlation detector.
This makes it possible to achieve the high speed acquisition, and power saving during
the tracking because the power consumption of the initial acquisition circuit during
the tracking is negligible.
[0042] In addition, according to the present invention, since the tracking loop of the received
chip phase eliminates the primary modulated signal components which are included in
the phase error signal of the replica signals, components only depending on the crosscorrelation
can be extracted. This makes high accuracy tracking possible.
1. A synchronising apparatus including a correlation detector (44) for maintaining synchronisation
between a received signal and a despreading code by using a correlation between the
received signal and the despreading code, the received signal being CDMA spread and
the despreading code being used for despreading the received signal, said correlation
detector (44) comprising:
a spreading code replica generating means (30) for generating a phase advanced replica
of a CDMA spreading code with an advance phase and a phase retarded replica of the
CDMA spreading code with a retarded phase with respect to the received signal;
first multiplying means (47) for multiplying said received signal by said phase advanced
replica of the CDMA spreading code so as to output a first correlation detection signal;
and
second multiplying means (48) for multiplying said received signal by said phase retarded
replica of the CDMA spreading code so as to output a second correlation detection
signal;
the apparatus being characterised in that it comprises:
carrier frequency error compensating means (208) for compensating for a carrier frequency
error associated with said first and second correlation detection signals; and
adding means (57) for summing in opposite phase said first and second correlation
detection signals, which have been compensated by said carrier frequency error compensating
means (208);
an averaging circuit (58) for averaging an output signal of said adding means along
a time axis;
and wherein said spreading code replica generating means (30) is further operable
to generate an in phase replica of said CDMA spreading code with the same phase, and
wherein the correlation detector further comprises:
third multiplying means (111) for multiplying said received signal by said in-phase
replica of the CDMA spreading code from said spreading code replica generating means
(30);
integrating circuit means (112) for integrating an output signal of said third multiplier
means;
automatic frequency control circuit means (213) for detecting the carrier frequency
error based on an output of said integrating circuit means (112), to output it to
said carrier frequency error compensator (208);
a demodulator (113) for generating a decided signal of received data based on an output
signal of said automatic frequency control circuit means (213);
an inverse modulation circuit (114) for inversely modulating an output signal of said
averaging circuit (58) by the decided signal of the received data; and
clock generating circuits (115, 29) for generating a clock signal whose phase is controlled
by an output from said inverse modulation circuit (114) to control said spreading
code replica generator (30).
2. A synchronising apparatus in accordance with claim 1, for establishing synchronisation
between a received signal and a despreading code by using a correlation between the
received signal and the despreading code, the received signal being CDMA spread and
the despreading code being used for despreading the received signal, said synchronising
apparatus comprising:
a switching circuit (42) operable to receive the received signal;
an initial acquisition circuit means (43) for receiving an output of said switching
circuit and for taking a correlation between said output and a reference spreading
code so as to output a correlation value;
an acquisition decision circuit means (45) connected to said initial acquisition circuit
(43), for judging completion of synchronisation based on the correlation value and
for outputting the judgement result to said switching circuit means (42); and wherein
said correlation detector (44) is operable to receive another output of said switching
circuit means and to take a correlation between said other output and a reference
spreading code generated in a spreading code replica generator incorporated therein;
and
said switching circuit means (42) being operable to output a received signal to said
initial acquisition circuit means (43) at the time of asynchronism while outputting
a received signal to said correlation detector (44) after the completion of synchronisation
based on the output of said acquisition detection circuit means (45).
3. A CDMA communication apparatus provided with a synchronising apparatus in accordance
with claim 1, said CDMA communication apparatus comprising:
an orthogonal detector (62) for orthogonally detecting the CDMA spread received signal
based on two detected signals (I, Q) whose phases are orthogonal to each other;
two A/D converters (65, 66) for converting the two detected signals into digital signals,
respectively, and wherein, in said correlation detector (44):
said spreading code replica generating means comprises a spreading code replica generator
(30) for respectively generating an in-phase replica of the CDMA spreading code with
an advance phase and a phase retarded replica of the CDMA spreading code with a retarded
phase with respect to said two digital signals;
said first multiplying means comprises a first multiplier (47) for respectively multiplying
said two digital signals by said phase advance replica of the CDMA spreading code
so as to output two first correlation detection signals;
said second multiplying means comprises a second multiplier (48) for respectively
multiplying said two digital signals by said phase retarded replica of the CDMA spreading
code so as to output two second correlation detection signals;
said carrier frequency error compensating means comprises a carrier frequency error
compensator (208) for compensating for respective carrier frequency errors associated
with said two first and said two second correlation detection signals;
said third multiplying means comprises two third multipliers (111) for respectively
multiplying said two digital signals by said in-phase replica of the CDMA spreading
code from said spreading code replica generator;
said integrating circuit means comprises two integrating circuits (112) for respectively
integrating output signals of said third multipliers; and
said automatic frequency control circuit means comprises an automatic frequency control
circuit (213) for detecting the carrier frequency errors based on output of said two
integrating circuits, to output them to said carrier frequency error compensator.
4. A CDMA communication apparatus provided with a synchronising apparatus for establishing
synchronisation between a received signal and a despreading code by using a correlation
between the received signal and the despreading code, the received signal being CDMA
spread and the despreading code being used for despreading the received signal, said
CDMA communication apparatus comprising:
an orthogonal detector (62) for orthogonally detecting the CDMA spread received signal
based on two detected signals (I, Q) whose phases are orthogonal to each other;
two A/D converters (65, 66) for converting the two detected signals into digital signals,
respectively;
two switching circuits (42I, 42Q) for inputting the two digital signals, respectively;
two initial acquisition circuits (43I, 43Q) for inputting one of outputs of said two
switching circuits and taking a correlation between the output and a reference spreading
code so as to output a correlation value;
acquisition decision circuits (45) respectively connected to said two initial acquisition
circuits, for judging completion of synchronisation based on the correlation value
and for outputting the judgement result to said switching circuit; and
synchronising apparatus including a correlation detector (44) in accordance with claim
1, said correlation detector being operable to input the other output of said two
switching circuits and taking a correlation between the output and a reference spreading
code generated in a spreading code replica generator incorporated therein;
said two switching circuits (42I, 42Q) being operable to output a received signal
to said initial acquisition circuit at the time of asynchronism while outputting a
received signal to said correlation detector after the completion of synchronisation
based on the output of said acquisition decision circuit; and
wherein, in said correlation detector (44),
said spreading code replica generating means (30) is operable to generate said in-phase
replica, said phase advanced replica, and said phase retarded replica with respect
to said two digital signals;
said first multiplying means comprises two first multipliers (47) for respectively
multiplying said two digital signals by said phase advanced replica of the CDMA spreading
code so as to output first correlation detection signals;
said second multiplying means comprises two second multipliers (48) for respectively
multiplying said two digital signals by said phase retarded replica of the CDMA spreading
code so as to output second correlation detection signals;
said carrier frequency error compensating means comprises a compensator (208) operable
to compensate for respective carrier frequency errors associated with said two first
and said two second correlation detection signals;
said third multiplying means comprises two third multipliers (111) for respectively
multiplying said two digital signals by said in-phase replica of the CDMA spreading
code from said spreading code replica generator;
said integrating circuit means comprises two integrating circuits (112) for respectively
integrating output signals of said third multipliers;
and said automatic frequency control circuit means comprises an automatic frequency
control circuit (213) for detecting the carrier frequency errors based on outputs
of said two integrating circuits, to output them to said carrier frequency error compensator.
5. A synchronising method using a correlation detector for tracking between a received
signal and a despreading code by the use of a correlation between the received signal
and the despreading code, the received signal being CDMA spread and the despreading
code being used for despreading the received signal, said method comprising the steps
of:
generating an in-phase replica of a CDMA spreading code with the same phase, a phase
advanced replica of the CDMA spreading code with an advance phase and a phase retarded
replica of the CDMA spreading code with a retarded phase with respect to the received
signal;
firstly multiplying said received signal by said phase advanced replica of the CDMA
spreading code so as to output a first correlation detection signal;
secondly multiplying said received signal by said phase retarded replica of the CDMA
spreading code so as to output a second correlation detection signal;
compensating for a carrier frequency error associated with said first and second correlation
detection signals;
summing in opposite phase said first and second correlation detection signals, which
have been compensated at said carrier frequency error compensating step;
averaging an output at said summing step along a time axis;
third multiplying said received signal by said in-phase replica of the CDMA spreading
code;
integrating an output at said third multiplying step;
detecting the carrier frequency error based on an output at said integrating step
so as to use it at said carrier frequency error compensating step;
generating a decided signal of received data based on an output at said integrating
step;
inversely modulating an output at said averaging step by the decided signal of the
received data; and
controlling a phase of a replica code to be output based on the output at said inversely
modulating step.
6. A synchronising method for establishing synchronisation between a received signal
and a despreading code by using a correlation between the received signal and the
despreading code, the received signal being CDMA spread and the despreading code being
used for despreading the received signal, said synchronising method comprising the
steps of:
taking a correlation between the received signal and a reference spreading code so
as to perform initial acquisition; and
taking a correlation between the received signal and the reference spreading code
for tracking, after completion of the synchronisation, in accordance with the method
of claim 5.
1. Synchronisationsgerät mit einer Korrelationserfassungseinrichtung (44) zur Beibehaltung
einer Synchronisation zwischen einem empfangen Signal und einem Entspreizcode durch
Verwendung einer Korrelation zwischen dem CDMA-gespreizeten empfangen Signal und dem
zum Entspreizen des empfangen Signals verwendeten Entspreizcode, wobei die Korrelationserfassungseinrichtung
(44) aufweist:
einer Spreizcodekopieerzeugungseinrichtung (30) zur Erzeugung einer in der Phase voreilenden
Kopie eines CDMA-Spreizdoces mit einer voreilenden Phase und einer in der Phase nachlaufenden
Kopie eines CDMA-Spreizcodes mit einer in bezug auf das empfangene Signal nachlaufenden
Phase,
einer ersten Multiplikationseinrichtung (47) zur Multiplikation des empfangen Signals
mit der in der Phase voreilenden Kopie des CDMA-Spreizcodes derart, dass ein erstes
Korrelationserfassungssignal ausgegeben wird, und
einer zweiten Multiplikationseinrichtung (48) zur Multiplikation des empfangen Signals
mit der in der Phase nacheilenden Kopie des CDMA-Spreizcodes derart, dass ein zweites
Korrelationserfassungssignal ausgegeben wird,
wobei das Gerät dadurch gekennzeichnet ist, dass es aufweist:
eine Trägerfrequenzfehlerkompensationseinrichtung (208) zur Kompensation eines den
ersten und zweiten Korrelationserfassungssignalen zugehörigen Trägerfrequenzfehlers,
und
eine Addiereinrichtung zur Summierung, in gegenüberliegenden Phasen, der ersten und
zweiten Korrelationserfassungssignale, die durch die Frequenzfehlerkompensationseinrichtung
(208) kompensiert worden sind,
eine Durchschnittsbildungsschaltung (58) zur Bildung eines Durchschnitts eines Ausgangssignals
der Addiereinrichtung entlang einer Zeitachse,
und wobei die Spreizcodekopieerzeugungseinrichtung (30) weiterhin zur Erzeugung eines
In-Phasen-Kopie des CDMA-Spreizcodes mit derselben Phase betreibbar ist, und wobei
die Korrelationserfassungseinrichtung weiterhin aufweist:
eine dritte Multiplikationseinrichtung (111) zur Multiplikation des empfangenen Signals
mit der In-Phasen-Kopie des CDMA-Spreizcodes aus der Spreizcodekopieerzeugungseinrichtung
(30),
einer Integrierschaltungseinrichtung (112) zum Integrieren eines Ausgangssignals der
dritten Multiplikationseinrichtung,
einer automatischen Frequenzsteuerungsschaltung (213) zur Erfassung des Trägerfrequenzfehlers
auf der Grundlage eines Ausgangs der Integrierschaltungseinrichtung (112), um diesen
der Trägerfrequenzfehlerkompensationseinrichtung (208) zuzuführen,
einer Demodulationseinrichtung (113) zur Erzeugung eines Entscheidungssignals der
empfangen Daten auf der Grundlage eines Ausgangssignals der automatischen Frequenzsteuerungsschaltung
(213),
einer inversen Modulationsschaltung (114) zur inversen Modulation eines Ausgangssignals
der Durchschnittsbildungsschaltung (58) durch das Entscheidungssignal der empfangenen
Daten, und
Takterzeugungsschaltungen (115, 29) zur Erzeugung eines Taktsignals, dessen Phase
durch einen Ausgang der inversen Modulationsschaltung (114) gesteuert wird, um den
Spreizcodekopiegenerator (30) zu steuern.
2. Synchronisationsgerät nach Anspruch 1, zum Aufbau einer Synchronisation zwischen einem
empfangenen Signal und einem Entspreizcode unter Verwendung einer Korrelation zwischen
dem empfangenen Signal und dem Entspreizcode, wobei das empfangene Signal CDMA-gespreizt
ist und der Entspreizcode zum Entspreizen des empfangenen Signal verwendet wird, wobei
das Synchronisationsgerät aufweist:
eine Schalt-Schaltung (42), die zum Empfang des empfangenen Signals betreibbar ist,
einer Anfangsbeschaffungsschaltungseinrichtung (43) zum Empfang eines Ausgangs der
Schalt-Schaltung und zur Vornahme einer Korrelation zwischen dem Ausgang und einem
Referenzspreizcode, um einen Korrelationswert auszugeben,
einer Beschaffungsentscheidungsschaltungseinrichtung (45), die mit der Anfangsbeschaffungsschaltung
(43) verbunden ist, zur Beurteilung des Abschlusses der Synchronisation auf der Grundlage
des Korrelationswerts und zur Ausgabe des Beurteilungsergebnisses zu der Schalt-Schaltung
(42), und wobei
die Korrelationserfassungseinrichtung (44) zum Empfang eines anderen Ausgangs der
Schalt-Schaltungseinrichtung und zum Vornehmen einer Korrelation zwischen dem anderen
Ausgang und einem Referenzspreizcodes betreibbar ist, der in einer darin eingebauten
Spreizcodekopieerzeugungseinrichtung erzeugt wird, und
die Schalt-Schaltungseinrichtung (42) zur Ausgabe eines empfangenen Signals zu der
Anfangsbeschaffungsschaltungseinrichtung (43) zum Zeitpunkt einer Asynchronisation
betreibbar ist, während ein empfangenes Signal zu der Korrelationserfassungseinrichtung
(44) nach dem Abschluss der Synchronisation auf der Grundlage des Ausgangs der Beschaffungserfassungsschaltungseinrichtung
(45) ausgegeben wird.
3. CDMA-Übertragungsgerät, das mit einem Synchronisationsgerät gemäß Patentanspruch 1
versehen ist, wobei das CDMA-Übertragungsgerät aufweist:
eine Orthogonalerfassungseinrichtung (62) zur orthogonalen Erfassung des CDMA-gespreizten
empfangen Signals auf der Grundlage zweier erfasster Signale (I, Q), deren Phasen
zueinander orthogonal sind,
zwei A/D-Wandler (65, 66) zur jeweiligen Umwandlung der zwei erfassten Signale in
digitale Signale, und wobei in der Korrelationserfassungseinrichtung (44)
die Spreizcodekopieerzeugungseinrichtung einen Spreizcodekopiegenerator (30) zur jeweiligen
Erzeugung einer In-Phasen-Kopie des CDMA-Spreizcodes mit einer voreilenden Phase und
einer in der Phase nachlaufenden Kopie des CDMA-Spreizcodes mit einer nachlaufenden
Phase in bezug auf die zwei digitalen Signale aufweist,
die erste Multiplikationseinrichtung einen ersten Multiplizierer (47) zur jeweiligen
Multiplikation der zwei digitalen Signale mit der in der Phase voreilenden Kopie des
CDMA-Spreizcodes aufweist, um zwei erste Korrelationserfassungssignale auszugeben,
die zweite Multiplikationseinrichtung einen zweiten Multiplizierer (48) zur jeweiligen
Multiplikation der zwei digitalen Signale mit der in der Phase nachlaufenden Kopie
des CDMA-Spreizcodes aufweist, um zwei zweite Korrelationserfassungssignale auszugeben,
die Trägerfrequenzfehlerkompensationseinrichtung einen Trägerfrequenzfehlerkompensator
(208) zur Kompensation der jeweiligen den zwei ersten und zwei zweiten Korrelationserfassungssignalen
zugehörigen Trägerfrequenzfehlern aufweist,
die dritte Multiplikationseinrichtung zwei dritte Multiplizierer (111) zur jeweiligen
Multiplikation der zwei digitalen Signale mit der In-Phasen-kopie des CDMA-Spreizcodes
aus dem Spreizcodekopiegenerator aufweist,
die Integrierschaltungseinrichtung zwei Integrierschaltungen (112) zur jeweiligen
Integration der Ausgangssignale der dritten Multiplizierer aufweist, und
die automatische Frequenzsteuerungsschaltung eine automatische Frequenzsteuerungsschaltung
(213) zur Erfassung der Trägerfrequenzfehler auf der Grundlage des Ausgangs der zwei
Integrierschaltungen aufweist, um diese zu dem Trägerfrequenzfehlerkompensator auszugeben.
4. CDMA-Übertragungsgerät, das mit einem Synchronisationsgerät zum Aufbau einer Synchronisation
zwischen einem empfangenen Signal und einem Entspreizcode unter Verwendung einer Korrelation
zwischen dem empfangenen Signal und dem Entspreizcode versehen ist, wobei das empfangene
Signal CDMA-gespreizt ist und der Entspreizcode zum Entspreizen des empfangenen Signal
verwendet wird, wobei das CDMA-Übertragungsgerät aufweist:
eine Orthogonalerfassungseinrichtung (62) zur orthogonalen Erfassung des CDMA-Spreizempfangssignal
auf der Grundlage zweier erfasster Signale (I, Q), deren Phasen zueinander orthogonal
sind,
zwei A/D-Wandler (65, 66) zur jeweiligen Umwandlung der zwei erfassten Signale in
digitale Signale,
zwei Schalt-Schaltungen (42I, 42Q) zur jeweiligen Eingabe der zwei digitalen Signale,
zwei Anfangsbeschaffungsschaltungen (43I, 43Q)) zum Empfang eines der Ausgänge der
zwei Schalt-Schaltungen und zur Vornahme einer Korrelation zwischen dem Ausgang und
einem Referenzspreizcode, um einen Korrelationswert auszugeben,
Beschaffungsentscheidungsschaltungen (45), die jeweils mit den zwei Anfangsbeschaffungsschaltungen
verbunden sind, zur Beurteilung des Abschlusses der Synchronisation auf der Grundlage
des Korrelationswerts und zur Ausgabe des Beurteilungsergebnisses zu der Schalt-Schaltung,
und wobei
das Synchronisationsgerät eine Korrelationserfassungseinrichtung gemäß Patentanspruch
1 aufweist, wobei die Korrelationserfassungseinrichtung zum Empfang eines anderen
Ausgangs der Schalt-Schaltungseinrichtung und zum Vornehmen einer Korrelation zwischen
dem anderen Ausgang und einem Referenzspreizcodes betreibbar ist, der in einem darin
eingebauten Spreizcodekopiegenerator erzeugt wird, und
die zwei Schalt-Schaltungseinrichtung (42I, 42Q) zur Ausgabe eines empfangenen Signals
zu der Anfangsbeschaffungsschaltungseinrichtung (43) zum Zeitpunkt einer Asynchronisation
betreibbar ist, während ein empfangenes Signal zu der Korrelationserfassungseinrichtung
(44) nach dem Abschluss der Synchronisation auf der Grundlage des Ausgangs der Beschaffungserfassungsschaltungseinrichtung
(45) ausgegeben wird, und
wobei in der Korrelationserfassungseinrichtung (44)
die Spreizcodekopieerzeugungseinrichtung (30) zur Erzeugung der In-Phasen-Kopie, einer
in der Phase vorauseilenden Kopie und einer in der Phase nachlaufenden Kopie bezug
auf die zwei digitalen Signale betreibbar ist,
die erste Multiplikationseinrichtung zwei erste Multiplizierer (47) zur jeweiligen
Multiplikation der zwei digitalen Signale mit der in der Phase voreilenden Kopie des
CDMA-Spreizcodes aufweist, um zwei erste Korrelationserfassungssignale auszugeben,
die zweite Multiplikationseinrichtung einen zweiten Multiplizierer (48) zur jeweiligen
Multiplikation der zwei digitalen Signale mit der in der Phase nachlaufenden Kopie
des CDMA-Spreizcodes aufweist, um zwei zweite Korrelationserfassungssignale auszugeben,
die Trägerfrequenzfehlerkompensationseinrichtung einen Kompensator (208) aufweist,
der zur Kompensation der jeweiligen den zwei ersten und zwei zweiten Korrelationserfassungssignalen
zugehörigen Trägerfrequenzfehlern betreibbar ist,
die dritte Multiplikationseinrichtung zwei dritte Multiplizierer (111) zur jeweiligen
Multiplikation der zwei digitalen Signale mit der In-Phasen-Kopie des CDMA-Spreizcodes
aus dem Spreizcodekopiegenerator aufweist,
die Integrierschaltungseinrichtung zwei Integrierschaltungen (112) zur jeweiligen
Integration der Ausgangssignale der dritten Multiplizierer aufweist, und
die automatische Frequenzsteuerungsschaltung eine automatische Frequenzsteuerungsschaltung
(213) zur Erfassung der Trägerfrequenzfehler auf der Grundlage des Ausgangs der zwei
Integrierschaltungen aufweist, um diese zu dem Trägerfrequenzfehlerkompensator auszugeben.
5. Synchronisationsverfahren unter Verwendung einer Korrelationserfassungseinrichtung
zum Nachführen zwischen einem empfangen Signal und einem Entspreizcode durch Verwendung
einer Korrelation zwischen dem empfangen Signal und dem zum Entspreizen des empfangen
Signals verwendeten Entspreizcodes, wobei das Verfahren die Schritte aufweist:
Erzeugen einer In-Phasen-Kopie eines CDMA-Spreizcodes mit derselben Phase, einer in
der Phase vorauseilenden Kopie des CDMA-Spreizdoces mit einer voreilenden Phase und
einer in der Phase nachlaufenden Kopie eines CDMA-Spreizcodes mit einer nachlaufenden
Phase in bezug auf das empfangene Signal,
erstes Multiplizieren des empfangen Signals mit der in der Phase vorauseilenden Kopie
des CDMA-Spreizcodes derart, dass ein erstes Korrelationserfassungssignal ausgegeben
wird,
zweites Multiplizieren des empfangen Signals mit der in der Phase nacheilenden Kopie
des CDMA-Spreizcodes derart, dass ein zweites Korrelationserfassungssignal ausgegeben
wird,
Kompensieren eines den ersten und zweiten Korrelationserfassungssignalen zugehörigen
Trägerfrequenzfehlers,
Summieren, in gegenüberliegenden Phasen, der ersten und zweiten Korrelationserfassungssignale,
die durch die Frequenzfehlerkompensationseinrichtung (208) kompensiert worden sind,
Bilden eines Durchschnitts eines Ausgangssignals in dem Summierschritt entlang einer
Zeitachse,
drittes Multiplizieren des empfangenen Signals mit der In-Phasen-Kopie des CDMA-Spreizcodes,
Integrieren eines Ausgangssignals in dem Multiplizierschritt,
Erfassen des Trägerfrequenzfehlers auf der Grundlage eines Ausgangs in dem Integrierschritt,
um diesen in dem Trägerfrequenzfehlerkompensationsschritt zu verwenden,
Erzeugen eines Entscheidungssignals der empfangen Daten auf der Grundlage eines Ausgangssignals
in dem Integrierschritt,
inverses Modulieren eines Ausgangssignals der Durchschnittsbildungsschaltung (58)
durch das Entscheidungssignal der empfangenen Daten, und
Steuern einer Phase eines auszugebenen Kopiecodes auf der Grundlage des Ausgangs in
dem Inversmodulationsschritt.
6. Synchronisationsverfahren zum Aufbau einer Synchronisation zwischen einem empfangen
Signal und einem Entspreizcode unter Verwendung einer Korrelation zwischen dem empfangen
Signal und dem Entspreizcode, wobei das empfangene Signal CDMA-gespreizt ist und der
Entspreizcode zum Entspreizen des empfangenen Signal verwendet wird, wobei das Synchronisationsverfahren
die Schritte aufweist:
Vornehmen einer Korrelation zwischen dem empfangenen Signal und einem Referenzspeizcode
zur Durchführung einer anfänglichen Beschaffung, und
Vornehmen einer Korrelation zwischen dem empfangenen Signal dem Referenzspreizcode
zur Nachführung, nach Abschluss der Synchronisation, entsprechend dem Verfahren gemäß
Patentanspruch 5.
1. Dispositif de synchronisation comportant un détecteur (44) de corrélation destiné
à maintenir une synchronisation entre un signal reçu et un code de désétalement en
utilisant une corrélation entre le signal reçu et le code de désétalement, le signal
reçu étant étalé par CDMA et le code de désétalement étant utilisé pour désétaler
le signal reçu, le détecteur (44) de corrélation comportant :
des moyens (30) de production de duplications du code d'étalement pour produire une
duplication avancée en phase d'un code d'étalement par CDMA ayant une phase d'avance
et une duplication retardée en phase du code d'étalement par CDMA ayant une phase
retardée par rapport au signal reçu ;
des premiers moyens (47) de multiplication destinés à multiplier le signal reçu par
la duplication avancée en phase du code d'étalement par CDMA de manière à émettre
en sortie un premier signal de détection de corrélation ; et
des deuxièmes moyens (48) de multiplication destinés à multiplier le signal reçu par
la duplication retardée en phase du code d'étalement par CDMA de manière à émettre
en sortie un second signal de détection de corrélation ;
le dispositif étant caractérisé en ce qu'il comporte :
des moyens (208) de compensation d'erreur de fréquence de porteuse destinés à compenser
une erreur de fréquence de porteuse associée aux premier et second signaux de détection
de corrélation ; et
des moyens (57) d'addition destinés à sommer en phase opposée les premier et second
signaux de détection de corrélation, qui ont été compensés par les moyens (208) de
compensation d'erreur de fréquence de porteuse ;
un circuit (58) de formation de moyenne destiné à moyenner un signal de sortie des
moyens d'addition le long d'un axe du temps ;
et dans lequel les moyens (30) de production de duplications du code d'étalement peuvent
en outre fonctionner pour produire une duplication en phase du code d'étalement par
CDMA ayant la même phase, et dans lequel le détecteur de corrélation comporte en outre
:
des troisièmes moyens (111) de multiplication destinés à multiplier le signal reçu
par la duplication en phase du code d'étalement par CDMA provenant des moyens (30)
de production de duplications du code d'étalement ;
des moyens (112) de circuit d'intégration destinés à intégrer un signal de sortie
des troisièmes moyens multiplicateurs ;
des moyens (213) de circuit de commande automatique de fréquence destinés à détecter
l'erreur de fréquence de porteuse sur la base d'une sortie des moyens (112) de circuit
d'intégration, pour émettre celle-ci en sortie vers le compensateur (208) d'erreur
de fréquence de porteuse ;
un démodulateur (113) destiné à produire un signal décidé de données reçues sur la
base d'un signal de sortie des moyens (213) de circuit de commande automatique de
fréquence ;
un circuit (114) de modulation inverse destiné à moduler en inverse un signal de sortie
du circuit (58) de formation de moyenne par le signal décidé des données reçues ;
et
des circuits (115, 29) de production d'horloge destinés à produire un signal d'horloge
dont la phase est commandée par une sortie du circuit (114) de modulation inverse
pour commander le générateur (30) de duplications du code d'étalement.
2. Dispositif de synchronisation conformément à la revendication 1, pour établir une
synchronisation entre un signal reçu et un code de désétalement en utilisation une
corrélation entre le signal reçu et le code de désétalement, le signal reçu étant
étalé par CDMA et le code de désétalement étant utilisé pour désétaler le signal reçu,
le dispositif de synchronisation comportant :
un circuit (42) de commutation pouvant fonctionner pour recevoir le signal reçu ;
des moyens (43) de circuit d'acquisition initiale destinés à recevoir une sortie du
circuit de commutation et destinés à prendre une corrélation entre la sortie et un
code d'étalement de référence de manière à émettre en sortie une valeur de corrélation
;
des moyens (45) de circuit de décision d'acquisition connectés au circuit (43) d'acquisition
initiale, pour juger l'achèvement de la synchronisation sur la base de la valeur de
corrélation et pour émettre en sortie le résultat du jugement aux moyens (42) de circuit
de commutation ; et dans lequel
le détecteur (44) de corrélation peut fonctionner pour recevoir un autre signal de
sortie des moyens de circuit de commutation et prendre une corrélation entre l'autre
signal de sortie et un code d'étalement de référence produit dans un générateur de
duplications du code d'étalement incorporé en son sein ; et
les moyens (42) de circuit de commutation pouvant fonctionner pour émettre en sortie
un signal reçu vers les moyens (43) de circuit d'acquisition initiale à l'instant
d'une absence de synchronisation tout en émettant en sortie un signal reçu vers le
détecteur (44) de corrélation après l'achèvement de la synchronisation sur la base
du signal de sortie des moyens (45) de circuit de détection d'acquisition.
3. Dispositif de communication par CDMA muni d'un dispositif de synchronisation conformément
à la revendication 1, le dispositif de communication par CDMA comportant
un détecteur (62) orthogonal pour détecter de manière orthogonale le signal reçu étalé
par CDMA fondé sur deux signaux (I, Q) détectés dont les phases sont orthogonales
l'une à l'autre ;
deux convertisseurs (65, 66) analogiques/numériques pour convertir les deux signaux
détectés en signaux numériques respectivement, et dans lequel dans le détecteur (44)
de corrélation :
les moyens de production de duplications du code d'étalement comportent un générateur
(30) de duplications du code d'étalement pour respectivement produire une duplication
en phase du code d'étalement par CDMA ayant une phase d'avance et une duplication
retardée en phase du code d'étalement par CDMA ayant une phase retardée par rapport
aux deux signaux numériques ;
les premiers moyens de multiplication comportent un premier multiplicateur (47) pour
respectivement multiplier les deux signaux numériques par la duplication d'avance
de phase du code d'étalement par CDMA de manière à émettre en sortie deux premiers
signaux de détection de corrélation ;
les deuxièmes moyens de multiplication comportent un deuxième multiplicateur (48)
pour respectivement multiplier les deux signaux numériques par la duplication retardée
en phase du code d'étalement par CDMA de manière à émettre en sortie deux deuxièmes
signaux de détection de corrélation ;
les moyens de compensation d'erreur de fréquence de porteuse comportent un compensateur
(208) d'erreur de fréquence de porteuse pour compenser pour des erreurs de fréquence
de porteuse respectives associées aux dits deux premiers signaux de détection de corrélation
et auxdits deuxièmes signaux de détection de corrélation ;
des troisièmes moyens multiplicateurs comportent deux troisièmes multiplicateurs (111)
destinés à respectivement multiplier lesdits deux signaux numériques par la duplication
en phase du code d'étalement par CDMA provenant du générateur de duplications du code
d'étalement ;
les moyens de circuit d'intégration comportent des circuits (112) d'intégration destinés
à respectivement intégrer des signaux de sortie des trois multiplicateurs ; et
les moyens de circuit de commande automatique de fréquence comportent un circuit (213)
de commande automatique de fréquence destiné à détecter des erreurs de fréquence de
porteuse sur la base de la sortie des deux circuits d'intégration, pour les émettre
en sortie vers le compensateur d'erreur de fréquence de porteuse.
4. Dispositif de communication par CDMA muni d'un dispositif de synchronisation pour
établir une synchronisation entre un signal reçu et un code de désétalement en utilisant
une corrélation entre le signal reçu et le code de désétalement, le signal reçu étant
étalé par CDMA et le code de désétalement étant utilisé pour désétaler le signal reçu,
le dispositif de communication par CDMA comportant :
un détecteur (62) orthogonal destiné à détecter de manière orthogonale le signal reçu
étalé par CDMA sur la base de deux signaux (I, Q) détectés dont les phases sont orthogonales
l'une à l'autre ;
deux convertisseurs (65, 66) analogiques/numériques destinés à convertir les deux
signaux détectés en des signaux numériques, respectivement ;
deux circuits (42I, 42Q) de commutation destinés à entrer les deux signaux numériques,
respectivement ;
deux circuits (43I, 43Q) d'acquisition initiale destinés à entrer l'un des signaux
de sortie des deux circuits de commutation et à prendre une corrélation entre la sortie
et un code d'étalement de référence de manière à émettre en sortie une valeur de corrélation
;
des circuits (45) de décision d'acquisition respectivement connectés auxdits deux
circuits d'acquisition initiale, pour juger l'achèvement de la synchronisation sur
la base de la valeur de corrélation et pour émettre en sortie le résultat de jugement
au circuit de commutation ; et
un dispositif de synchronisation comportant un détecteur (44) de corrélation conformément
à la revendication 1, le détecteur de corrélation pouvant fonctionner pour entrer
l'autre signal de sortie des deux circuits de commutation et prendre une corrélation
entre le signal de sortie et un code d'étalement de référence produit dans un générateur
de duplications du code d'étalement incorporé en son sein ;
les deux circuits (42I, 42Q) de commutation pouvant fonctionner pour émettre en sortie
un signal reçu vers le circuit d'acquisition initiale à l'instant d'une absence de
synchronisation, tout en émettant en sortie un signal reçu vers le détecteur de corrélation
après l'achèvement de la synchronisation sur la base du signal de sortie du circuit
de décision d'acquisition ; et
dans lequel dans le détecteur (44) de corrélation, les moyens (30) de production de
duplications du code d'étalement peuvent fonctionner pour produire la duplication
en phase, la duplication avancée en phase et la duplication retardée en phase par
rapport auxdits deux signaux numériques ;
les premiers moyens de multiplication comportent deux premiers multiplicateurs (47)
destinés à multiplier respectivement les deux signaux numériques par la duplication
avancée en phase du code d'étalement par CDMA de manière à émettre en sortie les premiers
signaux de détection de corrélation ;
les deuxièmes moyens de multiplication comportent deux deuxièmes multiplicateurs (48)
destinés à respectivement multiplier les deux signaux numériques par la duplication
retardée en phase du code d'étalement par CDMA de manière à émettre en sortie des
deuxièmes signaux de détection de corrélation ;
les moyens de compensation d'erreur de fréquence de porteuse comportent un compensateur
(208) pouvant fonctionner pour compenser des erreurs de fréquence de porteuse respectives
associées aux deux premiers signaux de détection de corrélation et aux deux deuxièmes
signaux de détection de corrélation ;
les troisièmes moyens de multiplication comportent deux troisièmes multiplicateurs
(111) destinés respectivement à multiplier les deux signaux numériques par la duplication
en phase du code d'étalement par CDMA provenant du générateur de duplications du code
d'étalement ;
les moyens de circuit d'intégration comportant deux circuits (112) d'intégration destinés
respectivement à intégrer des signaux de sortie des troisièmes multiplicateurs ;
les moyens de circuit de commande automatique de fréquence comportant un circuit (213)
de commande automatique de fréquence destiné à détecter des erreurs de fréquence de
porteuse sur la base des signaux de sortie des deux circuits d'intégration, pour les
émettre en sortie vers le compensateur d'erreur de fréquence de porteuse.
5. Procédé de synchronisation utilisant un détecteur de corrélation pour effectuer un
suivi entre un signal reçu et un code de désétalement par l'utilisation d'une corrélation
entre le signal reçu et le code de désétalement, le signal reçu étant étalé par CDMA
et le code de désétalement étant utilisé pour désétaler le signal reçu, le procédé
comprenant les étapes qui consistent à :
produire une duplication en phase d'un code d'étalement par CDMA ayant la même phase,
une duplication avancée en phase du code d'étalement par CDMA ayant une phase d'avance
et une duplication retardée en phase du code d'étalement par CDMA ayant une phase
retardée par rapport au signal reçu ;
multiplier premièrement le signal reçu par la duplication avancée en phase du code
d'étalement par CDMA de manière à émettre en sorte un premier signal de détection
de corrélation ;
multiplier deuxièmement le signal reçu par la duplication retardée en phase du code
d'étalement par CDMA de manière à émettre en sortie un deuxième signal de détection
de corrélation ;
compenser une erreur de fréquence de porteuse associée aux premiers et deuxièmes signaux
de détection de corrélation ;
sommer en phase opposée les premier et deuxième signaux de détection de corrélation
qui ont été compensés à l'étape de compensation d'erreur de fréquence de porteuse
;
calculer la moyenne d'un signal de sortie à l'étape de sommation le long d'un axe
temporel ;
multiplier troisièmement le signal reçu par la duplication en phase du code d'étalement
par CDMA ;
intégrer un signal de sortie à la troisième étape de multiplication ;
détecter l'erreur de fréquence de porteuse sur la base d'un signal de sortie à l'étape
d'intégration de manière à l'utiliser à l'étape de compensation d'erreur de fréquence
de porteuse ;
produire un signal décidé de données reçues sur la base d'un signal de sortie à l'étape
d'intégration ;
moduler en inverse un signal de sortie à l'étape de calcul de la moyenne par le signal
décidé des données reçues ; et
commander une phase d'un code de duplication pour qu'il soit émis en sortie sur la
base du signal de sortie à l'étape de modulation en inverse.
6. Procédé de synchronisation pour établir une synchronisation entre un signal reçu et
un code de désétalement en utilisant une corrélation entre le signal reçu et le code
de désétalement, le signal reçu étant étalé par CDMA et le code de désétalement étant
utilisé pour désétaler le signal reçu, le procédé de synchronisation comportant les
étapes qui consistent à :
prendre une corrélation entre le signal reçu et un code d'étalement de référence de
manière à effectuer une acquisition initiale ; et
prendre une corrélation entre le signal reçu et le code d'étalement de référence pour
effectuer un suivi, après achèvement de la synchronisation, conformément au procédé
de la revendication 5.