| (19) |
 |
|
(11) |
EP 0 663 026 B1 |
| (12) |
EUROPEAN PATENT SPECIFICATION |
| (45) |
Mention of the grant of the patent: |
|
16.01.2002 Bulletin 2002/03 |
| (22) |
Date of filing: 14.07.1993 |
|
| (86) |
International application number: |
|
PCT/NZ9300/055 |
| (87) |
International publication number: |
|
WO 9401/604 (20.01.1994 Gazette 1994/03) |
|
| (54) |
IMPROVEMENTS TO THE MANUFACTURE OF YARN SPUN ON CLOSED-END, HIGH DRAFT SPINNING SYSTEMS
VERBESSERUNGEN IN DER HERSTELLUNG VON AUF GESCHLOSSEN-END-HOCHVERZUGSSPINNSYSTEMEN
GESPONNENEM FADEN
PERFECTIONNEMENTS APPORTES A LA FABRICATION DE FILES SUR DES SYSTEMES DE FILATURE
A BOUT FERME ET A GRAND ETIRAGE
|
| (84) |
Designated Contracting States: |
|
AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE |
| (30) |
Priority: |
14.07.1992 NZ 24354392
|
| (43) |
Date of publication of application: |
|
19.07.1995 Bulletin 1995/29 |
| (73) |
Proprietor: WOOL RESEARCH ORGANISATION OF NEW ZEALAND INC. |
|
Lincoln, Canterbury 8150 (NZ) |
|
| (72) |
Inventors: |
|
- LAPPAGE, James
Christchurch 8004 (NZ)
- JOHNSON, Nigel, Anthony, Gull
Christchurch 8150 (NZ)
- HARTSHORN, Owen Leslie Roger
Burwood,
Christchurch 8004 (NZ)
|
| (74) |
Representative: Wharton, Peter Robert |
|
Urquhart-Dykes & Lord Tower House Merrion Way Leeds LS2 8PA Leeds LS2 8PA (GB) |
| (56) |
References cited: :
EP-A- 0 072 664 BE-A- 893 708 US-A- 3 102 379
|
AU-A- 3 965 978 GB-A- 1 167 156 US-A- 3 811 263
|
|
| |
|
|
|
|
| |
|
| Note: Within nine months from the publication of the mention of the grant of the European
patent, any person may give notice to the European Patent Office of opposition to
the European patent
granted. Notice of opposition shall be filed in a written reasoned statement. It shall
not be deemed to
have been filed until the opposition fee has been paid. (Art. 99(1) European Patent
Convention).
|
[0001] The invention relates to the manufacture of yarns from a well-aligned assembly of
any type of staple fibre or fibre blend.
[0002] In the manufacture of staple fibre yarns from well-aligned fibres, the constituent
fibres are processed such that they are firstly untangled and separated from each
other in a carding process and then reassembled into a continuous structure in which
the fibres are substantially mutually parallel. The parallel arrangement of the fibres
is improved in the subsequent processes of drawing or gilling, which also serve to
straighten fibres which may be individually hooked, and may be further improved during
an optional combing process which also serves to remove very short fibre, small accumulations
of fibre which may still be entangled, and pieces of non-fibrous foreign contaminant.
After a series of such processes the fibres are assembled into a long continuous rope-like
structure of the desired linear density appropriate to the particular spinning machine.
Depending on the drafting system employed on the spinning machine, the fibre assembly
may at this stage be either a sliver, or a lighter material known as roving. Roving
may or may not contain twist, but even when twist is present the fibres remain highly
parallel to each other in helical paths within the roving structure. Similarly after
spinning the fibres remain in parallel helical paths within the yarn structure.
[0003] There are a number of reasons why care is taken in the preparation of a fibre assembly
for spinning to ensure a high degree of parallelism between the fibres. Firstly, such
well-aligned slivers and rovings allow drafting (attenuations) by high ratios, commonly
in excess of 5:1, which contributes significantly to the economy of processing costs;
secondly, a maximum of fibre extent is available to contribute to the tensile strength
of the yarn; thirdly, the yarn is densely compacted, lean and smooth, which is desirable
for the manufacture of compact cloths of smooth and clear finish; and fourthly, the
finest yarn may be spun from a given fibre quality.
[0004] A yarn from such a well-aligned fibre assembly does, however, have some disadvantages.
As a fibre is drawn from the fibre assembly into the twisting zone by the drafting
means (usually a roller pair), its position relative to other fibres simultaneously
being drawn into the yarn remains substantially constant, so that as it is twisted
about other fibres in the twisting zone to form the spun yarn structure, it takes
up a helical path of substantially constant radius. Consequently, the yarn is composed
of fibres lying in parallel helical paths.
[0005] It will be readily understood that in a highly organised yarn structure in which
the constituent fibres lie in parallel helical paths of constant radius, there is
a very high probability that some fibres lie entirely on the yarn surface. Such fibres
are held in place by virtue of being wrapped around other fibres within the body of
the yarn and the stability of their position may be enhanced by setting (annealing)
those fibres in their helical paths. In spite of this, because of the flexible nature
of most fibres, surface fibres can be partially or completely stripped from the yarn
by the frictional action of yarn guides during winding, and particularly by the scraping
action of a loom reed during weaving. Further, the tensile strength and stability
of such yarns depend only upon inter-fibre frictional forces deriving from the internal
yarn pressure, which, in turn, derives from the helical fibre paths and fibre tension
when the yarn is placed under a tensile stress. When the yarn is subjected to a cyclically
varying stress, however, there can occur some incremental inter-fibre movement or
drafting, leading eventually to yarn breakdown by drafting. This is accentuated when
surface fibres are continually being stripped from the yarn which reduces the twist
factor and hence reduces the internal yarn pressure. Further, fibres which lie wholly
close to the yarn surface are subject to relatively few contacts with other fibres
and so are more readily able to draft rather than develop tension when under stress.
This lower level of tension in the outer fibres also leads to less inter-fibre pressure
in the interior of the yarn and a higher propensity for drafting of fibres throughout
the yarn structure. Yet another disadvantage of this structure is that many fibre
ends tend to protrude above the yarn surface. Such protruding fibre ends or hairs
can be easily snagged rendering even easier their removal from the yarn, or they can
entangle with neighbouring yarns in applications such as a weaving warp, especially
if the yarn is caused to rotate.
[0006] Yarns spun from well-aligned fibres by conventional means have a small degree of
resistance to these problems because many fibres do not remain strictly at the same
radius about the yarn axis, but may lie in a helical path of varying radius. This
variation in radial position of the fibre is known as fibre migration. Two causes
of migration which can occur during conventional spinning are described in the literature.
The
'tension mechanism' is due to the tension of fibres on the outside of the forming yarn progressively
increasing because of their greater path lengths so that they force their way inwards
to replace inner fibres which have gone slack. It has been proposed that this mechanism
is hindered by higher overall spinning tension. The
'geometric mechanism' occurs if the twisting is of a form known as the wrapped ribbon form and requires
the fibres to change their position in the ribbon emerging from the front roller nip.
In ring spinning, for example, the fibre position under the front roller nip is unlikely
to change much because of the draft employed, and so the geometric mechanism is of
little significance. These naturally occurring mechanisms of migration do not however
result in a yarn capable of withstanding the vigorous mechanical action of certain
processes such as weaving.
[0007] The weaving process includes an abrasive action on the warp by the reed and heddles,
a cyclically varying tensile stress due to the shedding and beat-up motions, and a
cyclic rotation (amounting to repeated untwisting and twisting of the yarn) due to
the rubbing action of moving machine parts. Singles yarns spun from well-aligned slivers
or rovings invariably fail during weaving by the mechanisms described above, and are
almost universally considered unsuitable for weaving as warp. In order to overcome
these deficiencies such yarns are commonly twisted together to form twofold or threefold
yarn structures to be woven as warp. The relatively loosely bound surface fibres of
a singles yarn then become bound by the other ply or plies so that they cannot be
stripped off, and yarn breakdown during weaving is substantially eliminated. For this
reason, worsted cloths are commonly woven using twofold yarns in the warp, but this
expedient introduces further disadvantages. Apart from the added cost of the two-folding
process there is a lower limit upon the weight per unit area of cloth which can be
woven which depends primarily upon the linear density of the yarn.
[0008] The plying process may be imitated at the spinning frame by combining, within the
twisting zone, two rovings initially separated in the drafting zone. GB-A-1318413
is an example of this. Superimposed on the net yarn twist is a small level of false
twist which is generated in the two drafted strands which effect the entrapment of
the surface fibres of one strand by the other strand. Further, loose surface fibres
rotating about one strand are also trapped by the other strand. While this allows
a more compact and slightly finer warp yarn to be produced it still requires two rovings
to be prepared for each yarn, and still cannot be spun as fine as a conventional singles
yarn.
[0009] As an alternative to plying the yarn it is known to apply an adhesive, usually natural
or synthetic size, to the yarn surface in order to glue loosely bound surface fibres
more securely in place, and so prevent their removal or entanglement with neighbouring
yarns during the weaving process. Preferably the size solution will penetrate into
the body of the yarn, coating all fibres to also reduce the risk of incremental drafting
under the cyclically varying forces applied during weaving. However, this expedient
has the disadvantages of the added costs of the sizing process, drying the sized yarn,
and subsequently washing off the size during finishing the woven cloth.
[0010] An object of the present invention is to provide a yarn structure spun from a well-aligned
sliver or roving, in which the fibres do not lie in parallel helical paths of constant
radius and none of the fibres lie wholly on the yarn surface, and part, or parts,
of every fibre is bound within the yarn structure by part or parts of other fibres
in the yarn.
[0011] Another object of the invention is to provide in a singles yarn structure, a degree
of additional fibre migration and inter-fibre entanglement to enhance the yarn performance
by inhibiting removal of individual fibres from the yarn structure.
[0012] It is a further objective of the invention to provide a yarn structure which is resistant
to many of the problems commonly associated with yarn spun from a well-aligned sliver
or roving, such as fibre shedding during processing and loss of product appearance
due to gradual breakdown of the yarn structure in service.
[0013] Another object of the invention is to provide a singles yarn structure, spun from
a well-aligned sliver or roving, which is weavable directly as warp without the need
of sizing or plying.
[0014] A further object of the invention is to provide a method and means for modifying
the paths of fibres during, and as part of the spinning operation, so as to generate
increased levels of fibre migration within the yarn structure.
[0015] This object may be achieved in a number of ways, for example by cyclically varying
the tension of individual fibres as they enter the forming yarn; by bucking and disorienting
the fibres before they receive twist; by arranging for small groups of sub-groups,
of fibres to twist into discrete strands with false twist prior to the final convergence
of all of the fibres into the yarn with real twist; or by any combination of these
effects.
[0016] According to a first aspect of the invention, a yarn structure is provided spun from
an aligned sliver or roving, wherein fibres of the sliver or roving after spinning
do not lie in normal parallel helical paths of constant radius as the fibre geometry
is disturbed by fibres which have been caused to migrate cyclically or randomly between
the yarn surface and the interior of the yarn structure and none of the fibres lie
wholly on the yarn surface and part, or parts of every fibre is bound within the yarn
structure by part or parts of other fibres forming the yarn.
[0017] According to a second aspect of the invention there is provided a method for producing
yarn according to the above wherein migration of fibres between the interior and the
surface of the yarn is caused by cyclically varying the tension in individual fibres
at a point of twist insertion such that a proportion of the fibres are subjected to
high tension whilst simultaneously a second proportion of the fibres are subject to
low, or zero, tension.
[0018] According to a third aspect of the invention, there is provided an apparatus for
producing yarn comprising front drafting rollers to deliver a strand of fibres, said
front drafting rollers forming a nip that constrains the fibres comprising the strand
into a ribbon of finite width as they enter and emerge from the nip characterised
by an oscillating guide sited downstream of the drafting rollers which is oscillated
along a line, or within a plane, parallel to the nip of the rollers, so that when
the guide is at its extreme left-hand position a fibre emerging from the nip at the
right-hand side of the fibre stream is subjected to a high tension, whilst a fibre
emerging from the left-hand side of the nip is at a low tension, and
vice versa.
[0019] Further aspect of the invention will become apparent from the following description.
[0020] The present invention will now be described with reference to the attached drawings
in which:
Figure 1 depicts in cross-section a nip of front drafting rollers of a worsted spinning machine,
a spindle, the yarn path and an oscillating yarn guide;
Figure 2 depicts in plan the nip of the front drafting rollers, the location of fibres within
that nip, and the path of the yarn through the oscillating yarn at the extreme positions
of oscillation of the yarn guide;
Figure 3 depicts diagrammatically a short section of yarn and the path followed by two fibres
in the yarn structure;
Figure 4 depicts in cross-section the nip of front drafting rollers of a staple fibre spinning
machine, the nip of an additional pair of rollers, a zone of overfeed between the
two roller nips, and the yarn path through that zone;
Figure 5 depicts in plan the nip of front drafting rollers of a staple fibre spinning machine,
the nip of an additional pair of rollers, the location of fibres between the two nips,
the path of the fibre stream between the two nips and one possible path of one fibre
between the two nips; and
Figure 6 depicts in plan the location of fibres within the nip of front drafting rollers (or
additional rollers), spread over a wide spacing with sub-groups of fibres twisting
together under the action of false twist before all of the fibres become twisted together
to form the yarn.
[0021] Referring now to Figure 1, a drafted strand of fibres 1 is delivered by the front
drafting rollers 2 to pass through an oscillating guide 3, a pigtail guide 4, a further
yarn guide 5 (such as a ring and traveller mechanism) which guides the spun yarn 11
to be wound onto a storage package on a spindle 6.
[0022] Referring now to Figure 2, the drafted strand 1 passing through the nip 7 of the
front drafting rollers is spun into yarn 11 which then passes through the oscillating
guide 3 which is shown in its extreme positions of oscillation. At the nip 7 of the
front drafting rollers 2, the fibres comprising the drafted strand 1 are spread over
a finite distance X as they enter and emerge from the nip 7. When the oscillating
guide 3 is at its extreme left-hand position a fibre 9 emerging from the nip 7 at
the right-hand side of the fibre stream 1 is subjected to a high tension, whilst a
fibre 10 emerging from the left-hand side of the nip 7 is at low tension or slack.
The difference in tension between fibres 9 and 10 causes the fibre 9 to migrate towards
the core of the yarn 11 and the fibre 10 to migrate towards the surface of the yarn
11. When the oscillating guide 8 moves to its extreme right-hand position (dotted)
fibre 10 is now tensioned, causing it to migrate towards the core of the yarn 11,
whilst fibre 9 becomes slack causing it to migrate towards the surface of the yarn
11. All other fibres in the strand 1 between fibres 9 and 10 are also subjected to
cyclic variations of tension, causing each of them to migrate to some degree within
the body of the yarn 11, thereby disrupting the parallel fibre arrangement. Preferably
the frequency of oscillation of guide 8 is such that fibres are caused to migrate
between the surface and the core of the yarn at least three times over a distance
along the yarn equal to the mean fibre length to ensure adequate fibre entrapment.
[0023] Referring now to Figure 3 the path of a fibre 10, delivered at the left-hand side
of the fibre stream 1 in Figure 2, is depicted as a full line migrating from the surface
of the yarn 11 to the core, back to the surface and finally back to the core. A fibre
9, delivered from the right-hand side of the fibre stream in Figure 2 is depicted
as a broken line, following a similar path between the core and the surface of the
yarn, but 180° out of phase with the path of fibre 10. Thus each of the fibres 9 and
10 become bound within the yarn structure, first the one by the other then the other
by the one, successively, along the length of the yarn, and similarly acting upon
and being acted upon by every other fibre within the yarn cross-section.
[0024] Referring now to Figure 4, an additional pair of nip rollers 12, immediately downstream
of the front drafting rollers 2, is driven (by means not shown) at a surface speed
less than the delivery speed of the front drafting rollers. The drafted strand 1 is
now caused to buckle in the zone between the nips 7 and 13 of the two pairs of rollers
and to migrate to-and-fro across the nip 13 of the additional rollers 12 in order
to accommodate the lower speed of the additional rollers. Whilst fibres in the main
stream of fibres migrate to-and-fro in order to effect passage of overfed fibre through
the nips 13 of the slower rollers 12, a given fibre 14 (Figure 5) just entering the
overfeed zone can cross that zone unimpeded at the delivery speed of the front drafting
rollers 2 until it is caught up by the nip 13 of the additional rollers 12. In making
that passage unimpeded the fibre 14 has the chance to change its position relative
to the main stream of fibres 1, with the possibility of becoming located on the opposite
side of the main fibre stream as shown, or at least located with some other different
relativity. Similarly, a fibre leaving the grip of the front drafting rollers will
no longer be under the influence of the buckling action and also has the chance to
change its position relative to the main stream of fibres.
[0025] Further, fibres within the main stream may change their position relative to others
under the buckling action as a consequence of their individual nature, variations
in their bending rigidity along their length, fibre crimp and air turbulence in the
region between the two nips.
[0026] By the above means, every fibre passing through the overfeed zone has the possibility
of changing its relative position as the main fibre stream buckles, spreads under
the buckling action and is caused to migrate to-and-fro within the nip of the additional
rollers.
[0027] Referring now to Figure 6 which depicts in plan the fibres in the drafted strand
1 spread over a wide front of width X within the nip 7 of the front drafting rollers
2 (or similarly within the nip 13 of an additional pair of rollers 12), and being
drawn together by the condensing action of twist into a yarn 11. When the fibre stream
is spread over a wide enough distance X, sub-groupings 15 of fibres may form downstream
of the roller nip 7 (13), the fibres in each sub-group becoming twisted together in
separate sub-strands by false twist which generates by the action of spinning twist
under these geometrical conditions. The magnitude of this effect increases with increasing
fibre spread, so that when the fibre spread is of the order of several millimetres,
the fibre sub-strands 15 behave as separate, very fine yarns before they are finally
converged to form the yarn 11. Under these conditions some of the false twist in the
separate fibre groupings becomes entrapped with the main structure of the yarn 11,
either during build-up of the false twist or when the false twist is decaying due
to changing geometry or size of the fibre sub-group. The false twist built into the
yarn in this way will vary in both sense and intensity with an algebraic sum of zero
in an infinite length of yarn, and will serve to bind individual fibres securely within
the yarn structure. The sub-groups of fibres form and decay relatively rapidly and
randomly, and individual fibres can migrate from one sub-group to another, contributing
to two or more sub-groups within the yarn structure. Further, loose fibre ends protruding
from the surface of a fibre sub-group will rotate with the rotating sub-group under
the influence of twist insertion and will be constrained and possibly captured as
they pass between neighbouring sub-groups. These trapped loose fibre ends will thus
be bound into the yarn structure as the sub-groups converge thereby reducing yarn
hairiness as well as increasing the overall fibre binding within the yarn structure.
[0028] Thus by this invention there is provided a variety of methods and apparatus for spinning
a yarn from a well-aligned sliver or roving in which part or parts of all of the fibres
are bound within the yarn structure by part or parts of other fibres in the yarn such
that no fibres exist lying wholly on the surface of the yarn and the fibres do not
lie in parallel helical relationships over a significant length within the yarn structure.
Thus this yarn exhibits a significantly increased resistance to abrasion, loss of
fibre or general breakdown of the yarn structure during further processing as yarn,
or during use or service in end products. The yarn is also significantly less hairy
than conventionally spun yarns with greatly increased resistance to yarn failure during
weaving, and is economically weavable.
[0029] The yarn may be spun from a single end of sliver or roving, or by drafting two or
more slivers or rovings together, side-by-side and in close contact, to improve the
yarn evenness through the effect known as doubling, or, through the rovings differing
for example in colour or fibre type, to provide an effect yarn.
[0030] Particular examples of this invention have been described and it is envisaged that
modifications and variations can take place without departing from the scope of the
appended claims.
1. A yarn structure (11) spun from an aligned sliver or roving (1), characterised in that fibres of the sliver or roving (1) after spinning do not lie in normal parallel helical
paths of constant radius as the fibre geometry is disturbed by fibres (9,10) which
have been caused to migrate cyclically or randomly between the yarn surface and the
interior of the yarn structure and none of the fibres lie wholly on the yarn surface
and part, or parts of every fibre is bound within the yarn structure by part or parts
of other fibres forming the yarn (11).
2. A yarn structure (11) spun as claimed in claim 1, in which individual fibres (9,10)
lie in paths which migrate cyclically or randomly between the surface of the yarn
structure and the interior of the yarn structure with adjacent fibres in the yarn
structure inter-entangled in sub groupings by twist, and with individual fibres contributing
to two or more separate sub-groups of fibres, so that movement or withdrawal of individual
fibres is impeded by the fibre geometry and inter-fibre entanglement.
3. A method for producing yarn (11) according to claim 1, characterised in that migration of fibres (9,10) between the interior and the surface of the yarn is caused
by cyclically varying the tension in individual fibres at a point of twist insertion
such that a proportion of the fibres are subjected to high tension whilst simultaneously
a second proportion of the fibres are subject to low, or zero, tension.
4. A method according to claim 3 wherein cyclic variations in fibre tension are realised
by withdrawing yarn (11) from front drafting, or delivery, rollers (2) at a continuously
varying angle, acute to the normal direction of withdrawal.
5. A method according to claim 4 wherein the continuously varying angle of withdrawal
of the yarn is determined by an oscillating yarn guide (3) situated downstream of
the point of twist insertion.
6. A method for producing yarn according to claim 1, comprising the steps of drafting
the fibres in a fibre stream (1) and providing an overfeed zone (7,13) through which
the drafted fibres must pass in a twistless state, with at least a proportion of the
fibres in a tensionless or overfeed condition whereby fibres (9,10) are caused to
migrate continuously between the interior and the surface of the yarn (11).
7. A method according to claim 6 including a step of causing part or parts of the fibres
entering the overfeed zone (7,13) to deviate from a straight-line path through the
zone.
8. A method according to claims 6 and 7 including a step of causing the fibre stream
(1) to buckle and spread within, and be delivered from, the overfeed zone (7,13) over
a wide front.
9. A method according to any one of claim 6 to 8 including a step of causing twist between
the fibres to form a yarn (11) downstream of the point of emergence from the overfeed
zone.
10. A method according to any one of claims 6 to 9 including causing individual fibres
(1) entering the overfeed zone (7,13) to deviate from the instantaneous path of the
main fibre stream, changing its relative position in the fibre stream.
11. A method according to any one of claims 6 to 10 including causing fibres (1) delivered
from the overfeed zone (7,13) to twist together over a short length in sub-groupings
(15) to form sub-strands of length less than the fibre length under the influence
of false-twist deriving from the spinning action and the geometrical conditions.
12. An apparatus for producing yarn according to claim 1 comprising front drafting rollers
(2) to deliver a strand of fibres (1), said front drafting rollers (2) forming a nip
(7) that constrains the fibres comprising the strand (1) into a ribbon of finite width
as they enter and emerge from the nip (7)
characterised by
an oscillating guide (3) sited downstream of the drafting rollers (2) which
is oscillated along a line, or within a plane, parallel to the nip of the rollers
(2), so that when the guide (3) is at its extreme left-hand position a fibre (9) emerging
from the nip (7) at the right-hand side of the fibre stream (1) is subjected to a
high tension, whilst a fibre (10) emerging from the left-hand side of the nip (7)
is at a low tension, and vice versa.
13. An apparatus according to claim 12 wherein the yarn guide (3) is oscillated at a frequency
sufficient to provide at least three oscillations during delivery of a yarn length
equal to the mean length of fibres in the yarn.
14. An apparatus for producing yarn according to claim 1 which comprises a pair of nip
rollers (2) and means for delivering fibres to said nip roller pair at a speed slower
than the surface speed of said nip roller pair.
15. An apparatus according to claim 14 wherein the means is a pair of rollers (12) sited
downstream of the front drafting rollers (2).
16. An apparatus according to claim 15 including means for driving one of the pair of
rollers at a surface speed slower than that of the front drafting rollers.
1. Garnstruktur (11), die aus einem ausgefluchteten Faserband oder Vorgarn (1) gesponnen
ist,
dadurch gekennzeichnet,
daß die Fasern des Faserbandes oder Vorgarnes (1) nach dem Spinnen nicht in normalen
parallelen wendelförmigen Bahnen mit konstantem Radius liegen, da die Fasergeometrie
durch Fasern (9, 10) gestört ist, die veranlaßt worden sind, zyklisch oder zufällig
zwischen der Garnoberfläche und dem Inneren der Garnstruktur zu migrieren, und daß
keine der Fasern vollständig auf der Garnoberfläche liegt und ein Teil oder Teile
von jeder Faser innerhalb der Garnstruktur von einem Teil oder Teilen von anderen
Fasern gebunden ist, welche das Garn (11) bilden.
2. Gesponnene Garnstruktur (11) nach Anspruch 1,
bei dem einzelne Fasern (9, 10) in Bahnen liegen, welche zyklisch oder zufällig zwischen
der Oberfläche der Garnstruktur und dem Inneren der Garnstruktur migrieren, wobei
benachbarte Fasern in der Garnstruktur in Untergruppen durch Zwirnen miteinander verschlungen
sind, und wobei einzelne Fasern zu zwei oder mehreren separaten Untergruppen von Fasern
beitragen, so daß eine Bewegung oder ein Herausziehen von einzelnen Fasern durch die
Fasergeometrie und die wechselseitige Verschlingung der Fasern verhindert ist.
3. Verfahren zum Herstellen eines Garnes (11) nach Anspruch 1,
dadurch gekennzeichnet,
daß die Migration von Fasern (9, 10) zwischen dem Inneren und der Oberfläche des Garnes
hervorgerufen wird durch zyklisches Variieren der Spannung in einzelnen Fasern an
einer Stelle der Drallerteilung, so daß ein Anteil der Fasern einer hohen Spannung
ausgestzt wird, während gleichzeitig ein zweiter Anteil der Fasern einer geringen
Spannung oder einer Spannung von Null ausgesetzt wird.
4. Verfahren nach Anspruch 3,
wobei die zyklischen Variationen der Faserspannung realisiert werden durch Herausziehen
des Garnes (11) aus den vorderen Streckwalzen oder Zuführungswalzen (2) unter einem
sich kontinuierlich änderenden spitzen Winkel gegenüber der normalen Richtung des
Herausziehens.
5. Verfahren nach Anspruch 4,
wobei der sich kontinuierlich ändernde Winkel beim Herausziehen des Garnes durch eine
oszillierende Garnführung (3) bestimmt wird, die sich stromabwärts von der Stelle
der Drallerzeugung befindet.
6. Verfahren zum Herstellung von Garn gemäß Anspruch 1,
das die Schritte des Streckens der Fasern in einem Faserstrom (1) und des Vorsehens
einer Voreilungszone (7, 13) umfaßt, durch welche die gestreckten Fasern in einem
ungezwirnten Zustand hindurchgehen müssen, wobei zumindest ein Anteil der Fasern in
einem spannungslosen oder Voreilungszustand ist, so daß die Fasern (9, 10) dazu veranlaßt
werden, kontinuierlich zwischen dem Inneren und der Oberfläche des Garnes (11) zu
migrieren.
7. Verfahren nach Anspruch 6,
das einen Schritt umfaßt, bei dem ein Teil oder Teile der Fasern, die in die Voreilungszone
(7, 13) eintreten, dazu veranlaßt werden, von einer geradlinigen Bahn durch die Zone
abzuweichen.
8. Verfahren nach Anspruch 6 und 7,
das einen Schritt umfaßt, bei dem der Faserstrom (1) dazu gebracht wird, sich innerhalb
der Voreilungszone (7, 13) über eine breite Front zu verziehen und zu verteilen, und
aus dieser zugeführt zu werden.
9. Verfahren nach einem der Ansprüche 6 bis 8,
das einen Schritt umfaßt, bei dem ein Verzwirnen zwischen den Fasern zur Bildung eines
Garnes (11) stromabwärts von der Stelle des Austritts aus der Voreilungszone hervorgerufen
wird.
10. Verfahren nach einem der Ansprüche 6 bis 9,
das einen Schritt umfaßt, bei dem einzelne Fasern (1), die in die Voreilungszone (7,
13) eintreten, dazu gebracht werden, von ihrer momentanen Bahn des Hauptfaserstromes
abzuweichen, wobei sie ihre relative Position in dem Faserstrom ändern.
11. Verfahren nach einem der Ansprüche 6 bis 10,
das einen Schritt umfaßt, bei dem die aus der Voreilungszone (7, 13) gelieferten Fasern
(1) dazu gebracht werden, sich über eine kurze Länge in Teilgruppen (15) zu verzwirnen,
um Teilstränge mit geringerer Länge als der Faserlänge unter dem Einfluß einer Vordrehung
zu bilden, was sich aus der Spinnwirkung und den geometrischen Zuständen ergibt.
12. Vorrichtung zum Herstellung von Garn
gemäß Anspruch 1,
die vordere Streckwalzen (2) aufweist, um einen Strang von Fasern (1) zu liefern,
wobei die vorderen Streckwalzen (2) einen Walzenspalt (7) bilden, der die Fasern,
welche den Strang (1) bilden, in einem Band mit endlicher Breite einspannt, wenn sie
in den Walzenspalt (7) eintreten und aus diesem austreten,
gekennzeichnet durch
eine oszillierende Führung (3), die sich stromabwärts von den Streckwalzen (2) befindet
und die längs einer Linie, oder innerhalb einer Ebene, parallel zu dem Walzenspalt
der Walzen (2) oszilliert, so daß dann, wenn die Führung (3) sich in ihrer extrem
linken Stellung befindet, eine aus dem Walzenspalt (7) austretende Faser (9) auf der
rechten Seite des Faserstromes (1) einer hohen Spannung ausgesetzt ist, während eine
Faser (10), die auf der linken Seite des Walzenspaltes (7) austritt, einer geringen
Spannung ausgesetzt ist, und umgekehrt.
13. Vorrichtung nach Anspruch 12,
wobei die Garnführung (3) mit einer Frequenz oszilliert, die ausreichend ist, um für
mindestens drei Oszillationen während der Zuführung einer Garnlänge zu sorgen, welche
gleich der mittleren Länge von Fasern in dem Garn ist.
14. Vorrichtung zum Herstellen von Garn gemäß Anspruch 1,
die ein Paar von Walzenspaltwalzen (2) sowie eine Einheit aufweist, um die Fasern
dem Paar von Walzenspaltwalzen mit einer Geschwindigkeit zuzuführen, die geringer
ist als die Oberflachengeschwindigkeit des Paares von Walzenspaltwalzen.
15. Vorrichtung nach Anspruch 14,
wobei die Einrichtung ein Paar von Walzen (12) aufweist, die sich stromabwärts von
den vorderen Streckwalzen (2) befinden.
16. Vorrichtung nach Anspruch 15,
die eine Einrichtung aufweist, um eine von dem Paar von Walzen mit einer Oberflachengeschwindigkeit
anzutreiben, die geringer ist als die der vorderen Streckwalzen.
1. Structure formant fil (11) filée à partir d'un ruban ou d'une mèche (1) aligné, caractérisée en ce que les fibres du ruban ou de la mèche (1), après filage, ne s'étendent pas selon des
trajectoires hélicoïdales parallèles normales de rayon constant car la géométrie des
fibres est perturbée par des fibres (9,10) qui ont été poussées à migrer de manière
cyclique ou aléatoire entre la surface du fil et l'intérieur de la structure formant
fil et aucune des fibres ne s'étend entièrement à la surface du fil et une ou des
partie (s) de chaque fibre est liée à l'intérieur de la structure formant fil par
une ou des partie (s) d'autres fibres formant le fil (11).
2. Structure formant fil (11) filée selon la revendication 1, dans laquelle des fibres
simples (9,10) s'étendent suivant des trajectoires qui migrent de manière cyclique
ou aléatoire entre la surface de la structure formant fil et l'intérieur de la structure
formant fil, des fibres adjacentes dans la structure formant fil étant entremêlées
entre elles en sous-groupes par torsion, et des fibres simples contribuant à constituer
deux sous-groupes distincts de fibres ou plus, de telle sorte que le déplacement ou
l'étirage des fibres individuelles est empêché par la géométrie des fibres et l'enchevêtrement
entre les fibres.
3. Procédé destiné à produire un fil (11) selon la revendication 1,
caractérisé en ce que la migration des fibres (9,10) entre l'intérieur et la surface du fil est obtenue
en faisant varier de manière cyclique la tension dans les fibres individuelles à un
point d'insertion de la torsion de sorte qu'une partie des fibres est soumise à une
tension élevée alors que parallèlement une deuxième partie des fibres est soumise
à une tension faible, voire nulle.
4. Procédé selon la revendication 3 dans lequel les variations cycliques de tension des
fibres sont obtenues en étirant le fil (11) à partir des cylindres étireurs ou d'alimentation
(2) suivant un angle aigu par rapport au sens normal d'étirage qui varie en permanence.
5. Procedéselon la revendication 4, dans lequel l'angle d'étirage du fil qui varie en
permanence est déterminé par un guide fil oscillant (3) situé en aval du point d'insertion
de la torsion.
6. Procédé destiné à produire un fil selon la revendication 1, comprenant les étapes
destinées à étirer les fibres en une mèche de fibres (1) et former une zone de suralimentation
(7, 13) à travers laquelle les fibres étirées doivent passées dans un état non torsadé,
au moins une partie des fibres n'étant pas sous tension ou étant en suralimentation,
état selon lequel les fibres (9,10) sont poussées à migrer en permanence entre l'intérieur
et la surface du fil (11).
7. Procédé selon la revendication 6, comprenant l'étape destinée à entrainer une ou des
partie(s) de fibres à pénétrer dans la zone de suralimentation (7, 13), pour dévier
d'une trajectoire en ligne droite à travers la zone.
8. Procédé selon les revendications 6 et 7, comprenant une étape destinée à entraîner
la mèche de fibres (1) à se déformer et s'étendre à l'intérieur de la zone de suralimentation
(7,13) et être alimentée à partir de cette dernière sur un large front.
9. Procédé selon l'une quelconque des revendications 6 à 8, comprenant une étape destinée
à obtenir une torsion entre les fibres pour former un fil (11) en aval du point d'émergence
de la zone de suralimentation.
10. Procédé selon l'une quelconque des revendications 6 à 9, comprenant une étape destinée
à pousser des fibres simples (1) pénétrant dans la zone de suralimentation (7,13)
à dévier de la trajectoire instantanée du ruban principal de fibres, modifiant leur
position relative dans la mèche de fibres.
11. Procédé selon l'une quelconque des revendications 6 à 10, comprenant l'étape destinée
en entraîner les fibres (1) alimentées à partir de; la zone de suralimentation (7,13)
à se tordre ensemble sur une courte longueur en sous-groupes (15) afin de former des
sous-mèches d'une longueur inférieure à la longueur des fibres sous l'influence d'une
fausse torsion dérivant de l'action de filage et des conditions géométriques.
12. Appareil pour produire un fil selon la revendication 1 comprenant des cylindres étireurs
(2) pour livrer une mèche de fibres (1), lesdits cylindres étireurs (2) formant un
point de pinçage (7) qui contraint les fibres comprenant la mèche (1) en un ruban
de largeur finie alors qu'elles pénètrent et émergent du point de pinçage (7)
caractérisé par
un guide oscillant (3) placé en aval des cylindres étireurs (2), lequel oscille
suivant une ligne, ou dans un plan, parallèle au point de pinçage des cylindres (2),
de sorte que lorsque le guide (3) est dans sa position extrême gauche, une fibre (9)
émergeant du point de pinçage (7) du côté droit de la mèche de fibres (1) est soumise
à une forte tension, alors qu'une fibre (10) émergeant du côté gauche du point de
pinçage (7) est sous faible tension, et vice versa.
13. Appareil selon la revendication 12, dans lequel le guide fil (3) oscille à une fréquence
suffisante pour atteindre au moins trois oscillations pendant l'alimentation d'un
fil d'une longueur égale à la longueur moyenne des fibres du fil.
14. Appareil pour produire un fil selon la revendication 1, lequel comprend une paire
de cylindres de pinçage (2) et des moyens pour alimenter les fibres à ladite paire
de cylindres de pinçage à une vitesse inférieure à la vitesse de surface de ladite
paire de cylindres de pinçage.
15. Appareil selon la revendication 14, dans lequel les moyens sont une paire de cylindres
(12), placés en aval des cylindres étireurs (2).
16. Appareil selon la revendication 15, comprenant des moyens pour entraîner un des cylindres
de la paire à une vitesse de surface inférieure à celle des cylindres étireurs.

