(19)
(11) EP 0 671 501 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
16.01.2002 Bulletin 2002/03

(21) Application number: 95300966.9

(22) Date of filing: 15.02.1995
(51) International Patent Classification (IPC)7D06P 5/13, D06P 3/24, C09B 69/00, D06P 5/20

(54)

Method for temporarily coloring textile fibers

yerfahren zur zeitweisen Färbung von Textilfasern

Procédé pour colorer temporainement des fibres textiles


(84) Designated Contracting States:
BE DE FR GB IT

(30) Priority: 04.03.1994 US 206126

(43) Date of publication of application:
13.09.1995 Bulletin 1995/37

(73) Proprietor: Milliken & Company
Spartanburg, SC 29304 (US)

(72) Inventor:
  • Bruhnke, John David
    Spartanburg, SC 29307 (US)

(74) Representative: HOFFMANN - EITLE 
Patent- und Rechtsanwälte Arabellastrasse 4
81925 München
81925 München (DE)


(56) References cited: : 
EP-A- 0 529 162
US-A- 4 871 371
US-A- 4 981 516
US-A- 4 167 510
US-A- 4 877 411
US-A- 5 071 440
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] The present invention relates to a method for providing temporary coloration to a polyamide substrate preferably textile fiber, with a superheated steam-degradable poly(oxyalkylene) substituted methine colorant.

    [0002] Fugitive colorants which have achieved wide acceptance in the textile industry include the poly(oxyethylene) substituted colorants described in U.S. Patent Number 3,517,633. These colorants or tints are used to identify fiber types by color coding undyed fiber during the textile manufacturing process and to enhance the visibility of the fibers. After the fiber is made into a textile product, for example after having been tufted into a substrate to make carpeting, the fugitive colorant is removed by scouring with an aqueous solution. These colorants are a combination of a dyestuff radical and one or more poly(oxyethylene) groups. Suitable dyestuff radicals disclosed in the patent include nitroso, nitro, azo, diphenylmethane, triarylmethane, xanthene, acridine, methine, thiazole, indamine, azine, oxazine and anthraquinone radicals. The dyestuff radical may be attached to the poly(oxyethylene) group by an amino nitrogen.

    [0003] Normally, the fugitive colorants are applied to the fiber prior to heat setting. Textile fibers, especially thermoplastics such as nylon and polyester, are heat set during processing to provide bulk and texture to yarns made from the fibers. For example, in the Suessen process, nylon 6 continuous filament or staple fibers are dry heatset at 190° C to 195° C for 40 to 90 seconds. One of the advantages of the aforementioned poly(oxyethylene) substituted colorants is that they may generally be removed by scouring, even after such heat setting conditions.

    [0004] The removal of fugitive colorants from fibers has become increasingly difficult with the development of wet heat setting processes which employ superheated steam, such as in the Superba process. It is believed that moisture from the saturated steam disrupts the hydrogen bonding network in the polyamide fiber, thereby lowering the softening temperature and increasing the crystallization rate of the polymer. Polyamide fiber, and in particular nylon 6 fiber, tends to swell slightly in high humidity and temperature, which allows penetration of the colorant into interstices in the fiber. Consequently, even colorants which are highly water soluble become bound to the fiber upon cooling and cannot be readily removed with traditional scouring techniques.

    [0005] Also, with the advent of improved carpet dyeing techniques, such as the Kuster Dyer, scouring of the carpet with copious quantities of water is becoming unnecessary and, in fact, may be undesirable except for the necessity of removing the fugitive colorant. Furthermore, while conventional fugitive colorants have in the past generally been applied at levels below about 0.5% of colorant based upon the weight of the fiber, increasing tint levels are being used to maintain proper identification of fibers during processing. When conventional fugitive colorants are used at such higher levels, for example above about 0.5 wt.%, removal of all of the colorant may become increasingly difficult.

    [0006] Poly(oxyalkylene) substituted methine colorants have been previously employed to color polyester materials, to color liquids containing nonionic surfactants and in washable ink compositions, as disclosed in the following United States patents. In Rekers, U.S. Patent Number 4,758,243 a solution of a methine colorant is applied to a polyester fabric and the fabric is heated in a forced air oven at 190 to 210° C for fifteen minutes. The colorant was found to penetrate into the polyester material. Aqueous and non-aqueous liquids containing a nonionic surfactant and a methine colorant are shown in U.S. Patent Number 4,871,371. Suggested liquid compositions include cosmetics, inks, paper products, cleaning solutions, detergents, herbicides, gasoline, antifreeze, paint, plastics, and in the textile industry. Finally, Kluger et al., U.S. Patent Number 4,981,516 disclose washable ink compositions containing poly(oxyalkylene) substituted methine colorants.

    [0007] US Patent No 5,71440 discloses fugitive colorants containing a C=C end group. The colorant may be applied to an article to provide temporary coloration. The colorant may be subsequently decolorised by hydrolysis with an aqueous acid solution.

    [0008] EP A 0529162 discloses colorants having branched poly(oxyalkylene) substituents. The colorants are rinsed from yarn based on the colorants solubility

    SUMMARY OF THE INVENTION:



    [0009] Therefore, an object of the invention is to provide a method for temporarily coloring a textile fiber which is heat set with super heated steam. Another object of the invention is to provide a process for temporarily coloring polyamide fiber, especially nylon 6.

    [0010] Still another object of the invention is to provide a method for temporarily coloring textile fiber, where the colorant is soluble or readily dispersible in a wide variety of aqueous and non-aqueous liquids.

    [0011] Accordingly, a process is provided for temporarily coloring a polyamide textile fiber by applying a poly(oxyalkylene) substituted methine colorant to the fiber, followed by heating the fiber with superheated steam to decolorize the methine colorant. The colorant comprises a chromogen having a C=C pair, with electron withdrawing groups bonded to one member of the pair and electron donating groups bonded to the other member.

    [0012] The groups do not include a nitrogen bonded to one member of the C=C pair, except a nitro group. One of the electron donating groups is an aromatic or heteroaromatic group, preferably but not necessarily having from 1 to 6 poly(oxyalkylene) substituents having from 2 to 200 residues of C2-C4 alkylene oxides each.

    [0013] The process has the advantage that when the colored fiber is subjected to conditions of high heat and saturated humidity, which have otherwise been found to bind a colorant to the fiber, the colorant undergoes a color loss and does not permanently tint the fiber.

    [0014] Preferably the substrate is a textile fiber and from 0.01 to 3wt% of said colorant is applied thereto.

    DESCRIPTION OF THE PREFERRED EMBODIMENT OF THE INVENTION:



    [0015] The present process has application to a broad range of polyamide textile fibers. By way of example, and not limitation, the process may be practiced with the following fibers: aramids, including poly(m-phenyleneisophthalamide), poly-(p-benzamide) and poly-(phenyleneterephthalamide) and nylons, including nylon 6, nylon 6,6, nylon 6,10, nylon 4 and nylon 11; copolymers and terpolymers of the monomers forming such nylons; and blends of polyamide fibers. Preferably, the fibers are selected from nylon 6 and nylon 6,6.

    [0016] The fibers may be in the form of monofilament, continuous filament yarn, staple fibers or spun yarn. Alternatively, the fibers may be manufactured into a textile product such as woven or knitted fabric, nonwoven webs or felts, or carpet, carpet tiles or rugs. While it is preferable to employ the process with textile fibers and yarns, the invention is not so limited, and may be practiced on any substrate, such as molded objects made from the aforementioned thermoplastic materials.

    [0017] The colorants employed in the process are poly(oxyalkylene) substituted methine colorants, characterized by a chromogen having a C=C pair, wherein the net effect of the groups bonded to one member of the pair is to donate electrons, and the net effect of the groups bonded to the opposite member of the pair is to withdraw electrons, and one of the electron donating groups is an aromatic or hetero-aromatic group, with the proviso that the groups do not include a nitrogen bonded to one member of the C=C pair except a nitro group. Strong electron donating and withdrawing groups are preferred to facilitate subsequent decolorization of the chromogen. Examples of electron withdrawing groups include nitro, amido, halo, cyano, carbonyl, carboxy, alkyl ester, vinylic carbon, sulfonic, sulfonyl, sulfoxide, sulfinic, thio, cyclohexanedione, phenyl, naphthyl or heterocycles. Especially useful aromatic hydrocarbons include those having a nitro substituent at the para or meta position. Examples of suitable heterocyclic groups include thiophene, pyridyl, thiazole, benzathiazole, pyrazole, indene, thiazolidine, oxazolidine, dioxanedione, and furanone, especially those compounds forming a heterocyclic structure with a carbon atom of the C=C pair; examples of electron donating groups include hydrogen, C1-C4 alkyl, phenyl or naphthyl which are substituted with amino, alkoxy, halo, amido, alkyl, trifluoromethyl, preferably at the para or ortho position; 1,2,3,4-tetrahydroquinolines; 2,3-dihydroindoles; 2,3-dihydro-1,4-benzoxazines(benzomorpholines) naphthylamines; 2-aminothiophenes; phenols; naphthols; 2-aminothiazoles; indoles; imidazothiazoles; 5-pyrazolones; 2-pyridones or acetoacetarylides. Unless otherwise specified the alkyl, alkoxy and alkyl ester groups comprise from 1 to 12 carbon atoms, preferably from 1 to 4.

    [0018] The chromogen is covalently bonded to the poly(oxyalkylene) substituent by a linking group selected from N, NR, O, S, SO2, SO2N, SO2NR, CO2, CON or CONR, where R is H, C1-C12 alkyl, phenyl or benzyl. Preferably, the linking group is N, NR, O, SO2N or SO2NR. Two poly(oxyalkylene) substituents may be bonded to the chromophore through a trivalent linking group. The number of poly(oxyalkylene) chains per chromophore is from 1-6, preferably 1-4, most preferably 1, 2 or 3.

    [0019] The poly(oxyalkylene) substituent is characterized as a straight or branched chain of from 2-200 residues of C2-C4 alkylene oxides. In a preferred embodiment, the poly(oxyalkylene) substituents are primarily comprised of from 4 to 100, most preferably 8 to 75, residues of ethyleneoxide, propyleneoxide or random and block copolymers thereof. Minor amounts of glycidol, butylene oxide and other compatible monomers may also be incorporated into the substituent. For example, glycidol monomers may be incorporated into the poly(oxyalkylene) substituent to promote branching. When enhanced branching is desired, preferably from 2 to 10 glycidol units are provided per poly(oxyalkylene) chain.

    [0020] The precise identity of the end group of the poly(oxyalkylene) substituent is not believed to be critical insofar as the functioning of the colorant is concerned. For example, the end group may be selected from:

    -SH, -OH, -NH2,

    and sulfonates and sulfates of each of the members of said group, wherein R2 is H, an alkyl radical containing up to about 20 carbon atoms or carboxy-terminated alkyl radical containing up to about 20 carbon atoms, j and k are OH, OM or OR3, wherein M is a cation moiety of an alkali metal, an alkaline earth metal, transition metal, e.g., nickel, etc. or ammonium, and R3 is an alkyl radical containing up to about 20 carbon atoms. In a preferred embodiment, the end group is -OH or acetyl.

    [0021] The solubility of the poly(oxyalkylene) substituted colorant may be varied by the relative hydrophilic/oleophilic character of the poly(oxyalkylene) substituent and the end group, and the presence or absence of ionic groups on the colorant molecule.

    [0022] Synthesis of organic chromogens containing poly(oxyalkylene) substituents are disclosed in Moore et al., U.S. Patent Number 4,594,454 and Kluger et al., U.S. Patent Number 4,981,516, both of which are incorporated by reference.

    [0023] The poly(oxyalkylene) methine colorants useful in the present invention may be identified by the following general structure:

    R1 and R2 are selected from nitro, amido, halo, cyano, carbonyl, carboxy, alkyl ester, vinylic carbon, sulfonic, sulfonyl, sulfoxide, sulfinic, thio, cyclohexane-dione, phenyl, naphthyl and heterocyclic groups. Preferably, R1 and R2 are selected from nitro, amido, halo, cyano, carbonyl, carboxy, C1-C4 alkyl ester, vinylic carbon, sulfonic, and nitro substituted phenyl or R1 and R2 together form a thiophene, pyridyl, thiazole, benzathiazole, pyrazole, indane, thiazolidine, oxazolidine or furanone heterocyclic group. R3 is hydrogen or C1-C4 alkyl, preferably hydrogen. R4 is phenyl or naphthyl substituted with amino, alkoxy, halogen, amido, alkyl, or trifluoromethyl, 1,2,3,4-tetrahydroquinolines; 2,3-dihydroindoles; 2,3-dihydro-1,4-benzoxazines(benzomorpholines); naphthylamines; 2-aminothiophenes; phenols; naphthols; 2-aminothiazoles; indoles, imidazothiazoles; 5-pyrazolones; 2-pyridones or acetoacetarylides, preferably phenyl which has at least one substituent at the para or ortho position selected from amino, C1-C4 alkoxy, halo, or C1-C4 alkyl. Y is a poly(oxyalkylene) substituent covalently bonded to R1, R2, or R4; m is an integer from 1 to 6. Preferably, 1, 2 or 3 of such poly(oxyalkylene) substituents are bonded to R4. In a most preferred embodiment, R4 is phenyl and at least two of such poly(oxyalkylene) substituents are bonded to an amino group at the para position.

    [0024] The poly(oxyalkylene) substituted methine colorants may be applied to textile fibers using any number of techniques well known to those skilled in the art. Typically, the colorant is diluted with water or other compatible solvent to give a concentration of about 0.2 to 60 wt.% colorant, preferably from 1 to 20 wt.% colorant, and the solution is applied to the fibers by spraying, dipping or by a kiss roll. The solvent is evaporated leaving the colorant at an add on of approximately 0.01 to 3 wt.%, preferably 0.05 to 1.0 wt.%, based on the weight of the fiber. The fiber is then ready for additional textile processing steps.

    [0025] The process of the present invention is adapted to textile fibers which eventually undergo a heat setting step, in particular heat setting with superheated steam or conditions of high heat and humidity. Heat setting is employed to provide crimp in a fiber and to retain the shape and twist of plied fibers and yarns. Previous experience with thermoplastic fibers which have been tinted with fugitive colorants has demonstrated that such conditions of high heat and humidity will cause the colorant to migrate into the interstices in the fiber and become permanently bound thereto. Similar difficulties can be anticipated with other types of fibers.

    [0026] Advantageously, the methine colorants of the present invention may be decolorized during typical wet heat setting processes employing superheated steam. Thus, even though the colorant may become permanently bound to a fiber, a degradation and a color loss occurs resulting in no visible trace of the colorant. For typical polyamide fibers, heating with superheated steam of a minimum temperature of 240° F is recommended, preferably a temperature of 250° F or greater is recommended, to affect decolorization of the subject methine colorant. In the present process, the tinted textile fiber is heated in a steam saturated environment or wet process, as distinguished from Suessen or other so-called dry heat processes. Of course, the conditions should not be so extreme as to cause melting or degradation of the fiber. In general, exposure of the fiber to the superheated steam for 10 to 15 seconds is sufficient to raise the surface temperature of the fiber and achieve decolorization. Most heatsetting applications involve exposure of the fiber to the superheated steam for 30 to 120 seconds, usually at least 45 seconds, to raise the core of the fiber above the softening temperature of the polymer.

    [0027] In one typical commercial process, nylon fiber is heatset using the Superba process. Briefly, a yarn made from the fiber is pre-steamed at about 208° F to increase bulk, followed by heatsetting at about 250-300° F, depending on the fiber type, for about 90 seconds in a heatsetting chamber with superheated steam, and finally the yarn is dried and taken up. Nylon 6 is typically treated at temperatures of 250-280° F, while nylon 6,6 is usually treated at a 10-20° F higher temperature.

    [0028] In another alternative process, heatsetting with superheated steam is accomplished in an autoclave. A typical commercial cycle for nylon 6 fiber is as follows:

    Autoclave Conditions:



    [0029] 
    Prevacuum 1 min
    Low Steam 5 min, 2 cycles, (230 °F)
    High Steam 5 min, 2 cycles, (270 °F)
    2nd High Steam 8 min, (270 °F)
    Post Vacuum 8 min
    Door Open 1 min


    [0030] The invention may be further understood by reference to the following examples, but the invention is not to be construed as being unduly limited thereby. Unless otherwise indicated, all parts and percentages are by weight.

    Example 1


    Synthesis of N,N-bis(hydroxyethylpolyoxyethylene)aniline (I)



    [0031] 



    [0032] Ninety three grams of aniline are allowed to react with 4000 grams ethylene oxide in the presence of potassium hydroxide following well known ethoxylation procedures. About 100 molar equivalents of ethylene oxide are thus added to the starting material.

    [0033] Using similar procedures, the following poly(oxyalkylene) substituted intermediates were synthesized.









    [0034] The following example demonstrates the incorporation of glycidol to increase branching in the poly(oxyalkylene) substituent.

    Example 2


    Synthesis of N,N-bis(hydroxyethylpolyoxyethylene, polyoxypropylene, polyglycidol)-m-chloroaniline (VI)



    [0035] 



    [0036] One hundred twenty seven grams of m-chloroaniline were allowed to react with 296 grams glycidol by heating the m-chloroaniline to 130 °C and dripping the glycidol in slowly under nitrogen atmosphere. The product was then allowed to react with 232 grams propylene oxide followed by 8800 grams ethylene oxide in the presence of potassium hydroxide following well known ethoxylation procedures. About 4 molar equivalents of propylene oxide and 200 molar equivalents of ethylene oxide were thus added to the starting material.

    [0037] Using similar procedures, the following poly(oxyalkylene) substituted intermediates were synthesized.





    [0038] The following examples demonstrate synthesis of the aldehyde from the corresponding poly(oxyalkylene) substituted intermediate.

    Example 3


    Synthesis of N,N-bis(acetoxyethylpolyoxyethylene)-4-formylaniline



    [0039] 



    [0040] Two hundred twenty grams of N,N-bis(hydroxyethylenepolyoxyethylene)aniline (I, where n=50) were heated in a three liter, three-necked, round-bottomed flask until the material had melted. 20 grams acetic anhydride was added to the molten material which was then heated at 100 °C and stirred for two hours. The product was then cooled and 50 mL water was added. The reaction mixture was vacuum stripped to dryness. Two hundred grams of the dried product and 100 grams N,N-dimethylformamide were charged to a three liter, three-necked, round-bottomed flask and heated to 44 °C under a nitrogen atmosphere. Seventy-five grams phosphorus oxychloride were then charged dropwise to the reaction mixture. The mixture was continuously stirred and the temperature was kept below 47 °C throughout the entire addition. The reaction was heated to 90 °C and held there for 1.5 hours. The reaction mixture was then cooled to 40 °C and then neutralized slowly with caustic. The product mixture was then vacuum stripped to dryness.

    [0041] Similarly, the following aldehydes were synthesized.














    Example 4


    Synthesis of 2-(4-bis(polyoxyethyleneacetate)aminophenyl)ethenyl-2,4-dinitrobenzene.



    [0042] 



    [0043] 2,4-Dinitrobenzene (3.6 g) is condensed with 92 g of N,N-bis(acetoxyethylpolyoxyethylene)-4-formylaniline (IX) for 3 hours at 100 °C, using morpholine (0.5 g) as catalyst. The orange product is cut to the proper absorptivity and bottled.

    Example 5


    Synthesis of 2-(4-bis(polyoxyethyleneacetate)aminophenyl)ethenyl-3,5-dinitro-o-toluic acid.



    [0044] 



    [0045] 3,5-Dinitro-o-toluic acid (4.5 g) is condensed with 92 g of N,N-bis(acetoxyethylpolyoxyethylene)-4-formylaniline (IX) for 3 hours at 100 °C, using morpholine (2.3 g) as catalyst. The yellow product is cut to the proper absorptivity and bottled.

    Example 6


    Synthesis of 4-(2,2-dicyanoethenyl)-N,N-bis(acetoxyethylpolyoxyethylene, polyoxypropylene)aniline.



    [0046] 



    [0047] N,N-bis(acetoxyethylpolyoxyethylene, polyoxypropylene)-4-formylaniline (XIII), 59.6 g, was condensed with 1.3 g malononitrile for 3 hours at 100 °C, using morpholine (0.5 g) as catalyst. The yellow product is cut to the proper absorptivity and bottled.

    Example 7


    Synthesis of 5-(2-(4-bis(polyoxyethylene, polyoxypropyleneacetate)aminophenyl)ethenyl)-2-thioxo-4-thiazolidinone.



    [0048] 



    [0049] N,N-bis(acetoxyethylpolyoxyethylene, polyoxypropylene)-4-formylaniline (XIII), 59.6 g, was condensed with 2.7 g rhodamine for 3 hours at 100 °C, using morpholine (0.5 g) as catalyst. The yellow product is cut to the proper absorptivity and bottled.

    Example 8


    Synthesis of 2-(2-(4-bis(polyoxyethylene, polyoxypropyleneacetate)aminophenyl)ethenyl)-1,3-indandione



    [0050] 



    [0051] N,N-bis(acetoxyethylpolyoxyethylene, polyoxypropylene)-4-formylaniline (XIII), 59.6 g, was condensed with 2.9 g 1,3-indandione for 3 hours at 100 °C, using morpholine (0.5 g) as catalyst. The orange product is cut to the proper absorptivity and bottled.

    Example 9


    Synthesis of 4-(2-(4-bis(polyoxyethylene, polyoxypropyleneacetate)aminophenyl) ethenyl) -3-methyl-1-phenyl-2-pyrazolin-5-one.



    [0052] 



    [0053] N,N-bis(acetoxyethylpolyoxyethylene, polyoxypropylene)-4-formylaniline (XIII), 59.6 g, was condensed with 3.5 g 3-methyl-1-phenyl-2-pyrazolin-5-one for 3 hours at 100 °C, using morpholine (0.5 g) as catalyst. The yellow product is cut to the proper absorptivity and bottled.

    Example 10



    [0054] Synthesis of 4-(2-(4-nitrophenyl)-2-cyanoethenyl)-N,N-bis(acetoxyethylpolyoxyethylene, polyoxypropylene)aniline.



    [0055] N,N-bis(acetoxyethylpolyoxyethylene, polyoxypropylene)-4-formylaniline (XIII, where n=15, m=15), 59.6 g, was condensed with 3.2 g 4-nitrophenylacetonitrile for 3 hours at 100 °C, using morpholine (0.5 g) as catalyst. The yellow product is cut to the proper absorptivity and bottled.

    Example 11


    Synthesis of 2-(4-bis(polyoxyethylene, polyoxypropyleneacetate)aminophenyl)ethenyl-3,5-dinitro-o-toluic acid.



    [0056] 



    [0057] N,N-bis(acetoxyethylpolyoxyethylene, polyoxypropylene)-4-formylaniline (XIII), 59.6 g, was condensed with 4.5 g 3,5-dinitro-o-toluic acid for 3 hours at 100 °C, using morpholine (2.3 g) as catalyst. The yellow product is cut to the proper absorptivity and bottled.

    Example 12


    Synthesis of 5-(2-(4-bis(polyoxyethylene, polyoxypropyleneacetate)aminophenyl)ethenyl)-2,4-thiazolidinedione.



    [0058] 



    [0059] N,N-bis(acetoxyethylpolyoxyethylene, polyoxypropylene)-4-formylaniline (XIII), 59.6 g, was condensed with 2.3 g 2,4-thiazolidinedione for 3 hours at 100 °C, using morpholine (0.5 g) as catalyst. The yellow product is cut to the proper absorptivity and bottled.

    Example 13


    Synthesis of 2-(2-(4-bis(polyoxyethylene, polyoxypropyleneacetate)aminophenyl) ethenyl) -acetoacetanilide.



    [0060] 



    [0061] N,N-bis(acetoxyethylpolyoxyethylene, polyoxypropylene)-4-formylaniline (XIII), 59.6 g, was condensed with 3.5 g acetoacetanilide for 3 hours at 100 °C, using morpholine (0.5 g) as catalyst. The yellow product is cut to the proper absorptivity and bottled.

    Example 14


    Synthesis of 2-(2-(4-bis(polyoxyethylene, polyoxypropyleneacetate)aminophenyl)ethenyl)-o-acetoacetanisidide.



    [0062] 



    [0063] N,N-bis(acetoxyethylpolyoxyethylene, polyoxypropylene)-4-formylaniline (XIII, where n=15, m=15), 59.6 g, was condensed with 4.1 g o-acetoacetanisidide for 3 hours at 100 °C, using morpholine (0.5 g) as catalyst. The yellow product is cut to the proper absorptivity and bottled.

    Example 15


    Synthesis of 2-(2-(4-bis(polyoxyethylene, polyoxypropyleneacetate)aminophenyl)ethenyl)-cyanoacetic acid.



    [0064] 



    [0065] N,N-bis(acetoxyethylpolyoxyethylene, polyoxypropylene) -4-formylaniline (XIII, where n=15, m=15), 59.6 g, was condensed with 1.7 g cyanoacetic acid for 3 hours at 100 °C, using morpholine (2.3 g) as catalyst. The yellow product is cut to the proper absorptivity and bottled.

    Example 16


    Synthesis of 2-(2-(4-bis(polyoxyethylene, polyoxypropyleneacetate) aminophenyl) ethenyl) -2-cyanoacetamide.



    [0066] 



    [0067] N,N-bis(acetoxyethylpolyoxyethylene, polyoxypropylene)-4-formylaniline (XIII, where n=15, m=15), 59.6 g, was condensed with 1.7 g 2-cyanoacetamide for 3 hours at 100 °C, using morpholine (0.5 g) as catalyst. The yellow product is cut to the proper absorptivity and bottled.

    Example 17


    Synthesis of 2-(2-(4-bis(polyoxyethylene, polyoxypropyleneacetate)aminophenyl)ethenyl)-5,5-dimethyl-1,3-cyclohexanedione.



    [0068] 



    [0069] N,N-bis(acetoxyethylpolyoxyethylene, polyoxypropylene)-4-formylaniline (XIII, where n=15, m=15), 59.6 g, was condensed with 2.8 g 5,5-dimethyl-1,3-cyclohexanedione for 3 hours at 100 °C, using morpholine (0.5 g) as catalyst. The orange product is cut to the proper absorptivity and bottled.

    Example 18


    Synthesis of 2-(2-(4-bis(polyoxyethylene, polyoxypropylene, polyglycidolacetate)amino-m-chlorophenyl)ethenyl)-1,3-indandione.



    [0070] 



    [0071] N,N-bis(acetoxyethylpolyoxyethylene, polyoxypropylene, polyglycidol)-4-formyl-m-chloroaniline (XIV, where n=100, m=2, p=2), 102 g, was condensed with 1.6 g 1,3-indandione for 3 hours at 100 °C, using morpholine (0.5 g) as catalyst. The red product is cut to the proper absorptivity and bottled.

    Example 19


    Synthesis of 4-(2,2-dicyanoethenyl)-N,N-bis(acetoxypolyoxyethylene, polyoxypropylene, polyglycidol)-m-chloroaniline.



    [0072] 



    [0073] N,N-bis(acetoxyethylpolyoxyethylene, polyoxypropylene, polyglycidol)-4-formyl-m-chloroaniline (XIV, where n=95, m=2, p=2), 102 g, was condensed with 0.8 g malononitrile for 3 hours at 100 °C, using morpholine (0.5 g) as catalyst. The yellow product is cut to the proper absorptivity and bottled.

    Example 20


    Synthesis of 2-(2-(4-bis(polyoxyethylene, polyoxypropylene, polyglycidolacetate)-amino-m-chlorophenyl)ethenyl)-ethylcyanoacetate.



    [0074] 



    [0075] N,N-bis(acetoxyethylpolyoxyethylene, polyoxypropylene, polyglycidol)-4-formyl-m-chloroaniline (XIV, where n=95, m=2, p=2), 93 g, was condensed with 1.1 g ethylcyanoacetate for 3 hours at 100 °C, using morpholine (0.6 g) as catalyst. The yellow product is cut to the proper absorptivity and bottled.

    Example 21


    Synthesis of 4-(2,2-dicyanoethenyl)-N,N,O-tris(acetoxypolyoxyethylene, polyoxypropylene, polyglycidol)-m-aminophenol.



    [0076] 



    [0077] N,N,O-tris(acetoxyethylpolyoxyethylene, polyoxypropylene, polyglycidol)-4-formyl-m-aminophenol (XVI), 57 g, was condensed with 0.5 g malononitrile for 3 hours at 100 °C, using morpholine (0.3 g) as catalyst. The yellow product is cut to the proper absorptivity and bottled.

    Example 22


    Synthesis of 2-(2-(N,N,O-tris(polyoxyethylene, polyoxypropylene, polyglycidolacetate)-m-hydroxy-aminophenyl)ethenyl)-2-cyanoacetamide.



    [0078] 



    [0079] N,N,O-tris(acetoxyethylpolyoxyethylene, polyoxypropylene, polyglycidol)-4-formyl-m-aminophenol (XVI), 57 g, was condensed with 0.5 g 2-cyanoacetamide for 3 hours at 100 °C, using morpholine (0.4 g) as catalyst. The yellow product is cut to the proper absorptivity and bottled.

    Example 23


    Synthesis of 4-(2-(4-nitrophenyl)-2-cyanoethenyl)-N,N,O-tris(acetoxyethylpolyoxyethylene, polyoxypropylene, polyglycidol)-m-hydroxyaniline.



    [0080] 



    [0081] N,N,O-tris(acetoxyethylpolyoxyethylene, polyoxypropylene, polyglycidol)-4-formyl-m-aminophenol (XVI), 57 g, was condensed with 0.8 g 4-nitrophenylacetonitrile for 3 hours at 100 °C, using morpholine (0.3 g) as catalyst. The yellow product is cut to the proper absorptivity and bottled.

    Example 24


    Synthesis of 2-(2-(N,N,O-tris(polyoxyethylene, polyoxypropylene, polyglycidolacetate)-m-hydroxy-aminophenyl)ethenyl)-1,3-indanedione.



    [0082] 



    [0083] N,N,O-tris(acetoxyethylpolyoxyethylene, polyoxypropylene, polyglycidol)-4-formyl-m-aminophenol (XVI), 57 g, was condensed with 0.7 g 1,3-indanedione for 3 hours at 100 °C, using morpholine (0.3 g) as catalyst. The red product is cut to the proper absorptivity and bottled.

    Example 25


    Synthesis of 2-(2-(4-bis(polyoxyethyleneacetate)aminophenyl)ethenyl)-1,3-indandione.



    [0084] 



    [0085] N,N-bis(acetoxyethylpolyoxyethylene)-4-formylaniline (IX), 129 g, was condensed with 29.2 g 1,3-indandione for 3 hours at 100 °C, using morpholine (1.0 g) as catalyst. The orange product is cut to the proper absorptivity and bottled.

    Example 26


    Synthesis of 2-(2-(4-bis(polyoxyethyleneacetate)amino-m-chlorophenyl)ethenyl)-1,3-indandione.



    [0086] 



    [0087] N,N-bis(acetoxyethylpolyoxyethylene)-4-formyl-m-chloroaniline (XI), 116 g, was condensed with 11.5 g 1,3-indandione for 3 hours at 100 °C, using morpholine (0.5 g) as catalyst. The red product is cut to the proper absorptivity and bottled.

    Example 27


    Synthesis of 2-(2-(4-bis(polyoxyethyleneacetate)-2,5-dimethoxyaminophenyl)ethenyl)-ethylcyanoacetate.



    [0088] 



    [0089] N,N-bis(acetoxyethylpolyoxyethylene)-2,5-dimethoxy-4-formylaniline (XII), 115 g, was condensed with 11.3 g ethylcyanoacetate for 3 hours at 100 °C, using morpholine (1.7 g) as catalyst. The yellow product is cut to the proper absorptivity and bottled.

    Example 28


    Synthesis of 4-(2,2-dicyanoethenyl)-2,5-dimethoxy-N,N-bis(acetoxyethylpolyoxyethylene)aniline.



    [0090] 



    [0091] N,N-bis(acetoxyethylpolyoxyethylene)-2,5-dimethoxy-4-formylaniline (XII, where n=10), 115 g, was condensed with 6.6 g malononitrile for 3 hours at 100 °C, using morpholine (1.7 g) as catalyst. The yellow product is cut to the proper absorptivity and bottled.

    Example 29


    Synthesis of 5-(2-(4-bis(polyoxyethyleneacetate)-2,5-dimethoxyaminophenyl)ethenyl)-2,2-dimethyl-1,3-dioxane-4,6-dione



    [0092] 



    [0093] N,N-bis(acetoxyethylpolyoxyethylene)-2,5-dimethoxy-4-formylaniline (XII), 115 g, was condensed with 14.4 g 2,2-dimethyl-1,3-dioxane-4,6-dione for 3 hours at 100 °C, using morpholine (1.7 g) as catalyst. The orange product is cut to the proper absorptivity and bottled.

    Example 30


    Synthesis of 2-(2-(4-bis(polyoxyethyleneacetate)-2,5-dimethoxyaminophenyl)ethenyl)-1,3-indandione.



    [0094] 



    [0095] N,N-bis(acetoxyethylpolyoxyethylene)-2,5-dimethoxy-4-formylaniline (XII), 115 g, was condensed with 14.6 g 1,3-indandione for 3 hours at 100 °C, using morpholine (1.7 g) as catalyst. The red product is cut to the proper absorptivity and bottled.

    Example 31



    [0096] Synthesis of 4-(2,2-dicyanoethenyl)-N,N-bis(acetoxyethylpolyoxyethylene)aniline.



    [0097] N,N-bis(acetoxyethylpolyoxyethylene)-4-formylaniline (IX), 89 g, was condensed with 0.7 g malononitrile for 3 hours at 100 °C, using morpholine (0.5 g) as catalyst. The yellow product is cut to the proper absorptivity and bottled.

    Example 32


    Synthesis of 4-(2-(4-nitrophenyl)-2-cyanoethenyl)-N,N-bis(acetoxyethylpolyoxyethylene)aniline.



    [0098] 



    [0099] N,N-bis(acetoxyethylpolyoxyethylene)-4-formylaniline (IX), 150 g, was condensed with 5.3 g 4-nitrophenylacetonitrile for 3 hours at 100 °C, using morpholine (0.5 g) as catalyst. The yellow product is cut to the proper absorptivity and bottled.

    Example 33


    Synthesis of 4-(2-(4-bis(polyoxyethylene)aminophenyl)ethenyl)-3-methyl-1-phenyl-2-pyrazolin-5-one.



    [0100] 



    [0101] N,N-bis(acetoxyethylpolyoxyethylene)-4-formylaniline (IX), 124 g, was condensed with 5.2 g 3-methyl-1-phenyl-2-pyrazolin-5-one for 3 hours at 100 °C, using morpholine (0.5 g) as catalyst. The yellow product is cut to the proper absorptivity and bottled.

    Example 34


    Synthesis of 2-(2-(4-bis(polyoxyethyleneacetate)aminophenyl)ethenyl)-ethylcyanoacetate



    [0102] 



    [0103] N,N-bis(acetoxyethylpolyoxyethylene)-4-formylaniline (IX), 11.8 g, was condensed with 1.1 g ethylcyanoacetate for 3 hours at 100 °C, using morpholine (0.6 g) as catalyst. The yellow product is cut to the proper absorptivity and bottled.

    [0104] The colorants (tints) were tested on Allied-Signal, Inc. nylon 6 fiber (Type 715, 15 denier staple) by spraying a 2 wt.% solution of colorant in water and drying (under ambient conditions/oven) to leave approximately 0.5 wt.% add on of colorant, based on the dry weight of the fiber. Next, the colored fiber was subjected to heatsetting procedures in an autoclave following the cycle outlined below.

    Autoclave Conditions:



    [0105] 
    Prevacuum 1 min
    Low Steam 5 min, 2 cycles, 110 °C (230 °F)
    High Steam 5 min, 2 cycles, 132 °C (270 °F)
    2nd High Steam 8 min, 132 °C (270 °F)
    Post Vacuum 8 min
    Door Open 1 min
    The fibers were graded "no fading" if the coloration remained on the fiber, and "faded" if the coloration of the fiber was essentially unnoticeable by visual observation.

    [0106] The subject methine colorants were then compared to the Versatint® textile fiber tints available from Milliken Chemical, a division of Milliken & Company, Spartanburg, SC, USA, which represent the state of the art for fugitive tints.






    Claims

    1. A method of providing temporary coloration to a polyamide substrate, comprising the steps of:

    (a) applying a poly(oxyalkylene) substituted methine colorant to said substrate wherein said colorant having from 1 to 6 poly(oxyalkylene) substituents having from 2 to 200 residues of C2-C4 alkylene oxides each, comprises a chromogen having a C=C pair, wherein the net effect of the groups bonded to one member of the pair is to donate electrons, and the net effect of the groups bonded to the opposite member of the pair is to withdraw electrons,and one of the electron donating groups is an aromatic or hetero-aromatic group, having from 1 to 6 poly(oxyalkylene) substituents having from 2 to 200 residues of C2-C4 alkylene oxides each, with the proviso that the groups do not include a nitrogen bonded to one member of the C=C pair except a nitro group; and

    (b) thereafter heating said substrate with superheated steam to a temperature of 115°C or more to degrade said colorant and decolorise said substrate.


     
    2. A method as claimed in claim 1 of providing temporary coloration to a polyamide substrate, comprising the steps of: applying a poly(oxyalkylene) substituted methine colorant to said substrate wherein said colorant has the formula:

    wherein R1 and R2 are selected from nitro, amido, halo, cyano, carbonyl, carboxy, alkyl ester, vinylic carbon, sulfonic, sulfonyl, sulfoxide, sulfinic, thio, cyclohexane-dione, phenyl and naphthyl, or R1 and R2 together form a thiophene, pyridyl, thiazole, benzathiazole, pyrazole, indane, thiazolidine, oxazolidine or furanone heterocyclic group; R3 is hydrogen or C1-C4 alkyl; R4 is phenyl or naphthyl substituted with amino, alkoxy, halogen, amido, alkyl, or trifluoromethyl, or a 1,2,3,4,-tetrahydroquinoline; 2,3-dihydroindole; 2,3-dihydro-1,4-benzoxazine (benzomorpholine); naphthylamine; 2-aminothiophene; phenol; naphthol; 2-aminothiazole; indole, imidazothiazole; 5-pyrazolone; 2-pyridone or acetoacetarylide; Y is a poly(oxyalkylene) substituent covalently bonded to R1, R2, or R4 by a linking group selected from the group consisting of N, NR, O, S, SO2, SO2N, SO2NR, CO2, CON and CONR, where R is H, C1-C12alkyl, phenyl or benzyl Y having from 2 to 200 residues of C2-C4 alkylene oxides and m is an integer from 1 to 6; maintaining said colorant on said substrate to provide coloration for a desired length of time; and thereafter heating said substrate with superheated steam to a temperature of 115°C or more, to degrade said colorant and decolorise said substrate.
     
    3. The method of Claim 1 or Claim 2 wherein said substrate is a textile fiber and from 0.01 to 3 wt % of said colorant is applied thereto.
     
    4. The method of any one of the preceding claims wherein said substrate is a textile fiber and from 0.05 to 1 wt % of said colorant is applied thereto.
     
    5. The method of either one of Claim 3 and Claim 4 wherein said textile fiber is selected from the group consisting of nylon 6 and nylon 6,6.
     
    6. The method of any one of Claims 3 to 5 wherein said textile fiber is heated to a temperature of 115°C or more for fifteen seconds.
     
    7. The method of any one of the preceding Claims wherein said colorant comprises from 1 to 3 of said poly(oxyalkylene) substituents, and wherein said substituents comprise from 4 to 100 residues of C2-C4 alkylene oxides each.
     
    8. The method of any one of Claims 2 to 7 wherein R1 is selected from the group consisting of nitro, amido, halo, cyano, carbonyl, carboxy, C1-C4 alkyl ester, vinylic carbon, sulfonic, and nitro substituted phenyl, or R1 and R2 together form a thiophene, pyridyl, thiazole, benzathiazole, pyrazole, indane, thiazolidine, oxazolidine or furanone heterocyclic group; R3 is hydrogen; R4 is phenyl with at least one substituent at the para or ortho position selected from amino, C1-C4 alkoxy, halo, or C1-C4 alkyl; Y is bonded to R4 by a N or O linking group and has from 4 to 100 residues of said alkylene oxides and m is 1, 2 or 3.
     


    Ansprüche

    1. Ein Verfahren zum temporären Färben eines Polyamidsubstrates, bestehend aus den folgenden Schritten:

    (a) Auftragen eines mit Poly(oxyalkylen) substituerten Methinfarbstoffes auf das Substrat, wobei der Farbstoff, der 1 bis 6 Poly(oxyalken)-Substituenten mit jeweils 2 bis 200 Rückständen von C2-C4-Alkylenoxiden aufweist, ein Chromogen umfaßt, das ein C=C-Paar aufweist, wobei die Nutzwirkung der Gruppen, die mit dem einen Teil des Paares verbunden sind, darin besteht, Elektronen abzugeben, und die Nutzwirkung der Gruppen, die mit dem anderen Teil des Paares verbunden sind, darin besteht, Elektronen abzuziehen, und eine der elektronenabgebenden Gruppen eine aromatische oder heteroaromatische Gruppe ist, die 1 bis 6 Poly(oxyalkylen)-Substituenten mit jeweils 2 bis 200 Rückständen von C2-C4-Alkylenoxiden aufweist, mit der Bedingung, daß die Gruppen nicht einen Stickstoff, der mit einem Teil des C=C-Paares verbunden ist, mit Ausnahme einer Nitrogruppe, enthalten; und

    (b) darauffolgendes Erhitzen des Substrates mit überhitztem Dampf auf eine Temperatur von 115 °C oder mehr, um den Farbstoff abzubauen und das Substrat zu entfärben.


     
    2. Verfahren gemäß Anspruch 1 zum temporären Färben eines Polyamidsubstrates, bestehend aus den folgenden Schritten:

    Auftragen eines mit Poly(oxyalkylen) substituierten Methinfarbstoffes auf das Substrat, wobei der Farbstoff folgende Formel aufweist:

    wobei R1 und R2 aus Nitro, Amido, Halo, Cyan, Carbonyl, Carboxy, Alkylester, Vinylkohlenstoff, Sulfon, Sulfonyl, Sulfoxid, Sulfin, Thio, Cyclohexan-dion, Phenyl und Naphthyl ausgewählt sind oder R1 und R2 zusammen eine heterocyclische Thiophen, Pyridyl, Thiazol, Benzathiazol, Pyrazol, Indan, Thiazolidin, Oxazolidin oder Furanon-Gruppe bilden; R3 ein Wasserstoff oder C1-C4-Alkyl ist; R4 Phenyl oder Naphthyl ist, das mit Amino, Alkoxy, Halogen, Amido, Alkyl oder Trifluoromethyl substituiert ist, oder ein 1, 2, 3, 4-Tetrahydrochinolin ist; 2, 3-Dihydroindole; 2, 3-Dihydro-1, 4-Benzoxazin (Benzomorpholin); Naphtylamin; 2-Aminothiapen; Phenol; Naphthol; 2-Aminothiazol; Indol; Imidazothiazol; 5-Pyrazolon; 2-Pyridon oder Acetoacetarylid ist; Y eine Poly(oxyalkylen)-Substituente ist, die kovalent mittels einer Verbindungsgruppe, die aus der aus N, NR, O, S, SO2, SO2N, SO2NR, CO2, CON und CONR bestehenden Gruppe ausgewählt ist, mit R1, R2 oder R4 verbunden ist, wobei R H, C1-C12-Alkyl, Phenyl oder Benzyl-Y mit 2 bis 200 Rückständen von C2-C4-Alkylenoxiden ist und m eine ganze Zahl von 1 bis 6 ist;

    Erhalten des Farbstoffes auf dem Substrat, um eine Farbgebung für einen gewünschten Zeitraum bereitzustellen; und darauffolgendes Erhitzen des Substrates mit überhitztem Dampf auf eine Temperatur von 115 °C oder mehr, um den Farbstoff abzubauen und das Substrat zu entfärben.


     
    3. Verfahren gemäß Anspruch 1 oder Anspruch 2, wobei das Substrat eine Textilfaser ist und 0,01 bis 3 Gew.-% des Farbstoffes darauf aufgetragen werden.
     
    4. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei das Substrat eine Textilfaser ist und 0,05 bis 1 Gew.-% des Farbstoffes darauf aufgetragen wird.
     
    5. Verfahren gemäß Anspruch 3 oder Anspruch 4, wobei die Textilfaser aus der aus Nylon 6 und Nylon 6,6 bestehenden Gruppe ausgewählt wird.
     
    6. Verfahren gemäß einem der Ansprüche 3 bis 5, wobei die Textilfaser für fünfzehn Sekunden auf eine Temperatur von 115 °C oder mehr erhitzt wird.
     
    7. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei der Farbstoff 1 bis 3 der Poly(oxyalkylen)-Substituenten umfaßt und wobei die Substituenten jeweils 4 bis 100 Rückstände der C2-C4-Alkylenoxide enthalten.
     
    8. Verfahren gemäß einem der Ansprüche 2 bis 7, wobei R1 aus der aus Nitro, Amido, Halo, Cyan, Carbonyl, Carboxy, C1-C4-Alkylester, Vinylkohlenstoff, Sulfon und mit Nitro substituiertem Phenyl bestehenden Gruppe ausgewählt ist oder R1 und R2 zusammen eine heterocyclische Thiophen-, Pyridyl-, Thiazol-, Benzathiazol-, Pyrazol-, Indan-, Thiazolidin-, Oxazolidin- oder Furanon-Gruppe bilden; R3 Wasserstoff ist; R4 ein Phenyl mit mindestens einer aus Amino, C1-C4-Alkoxy, Halo oder C1-C4-Alkyl ausgewählten Substituenten in der Para- oder Orthostellung ist; Y mittels einer N- oder O-Verbindungsgruppe mit R4 verbunden ist und 4 bis 100 Rückstände der Alkylenoxide aufweist und m 1, 2 oder 3 ist.
     


    Revendications

    1. Un procédé de coloration temporaire d'un substrat en polyamide, comprenant les étapes consistant :

    (a) à appliquer sur ledit substrat un colorant au méthine substitué poly(oxyalkylène) dans lequel ledit colorant, ayant de 1 à 6 substituants poly(oxyalkylène) qui ont chacun de 2 à 200 résidus d'oxydes d'alkylène C2-C4, comprend un chromogène ayant une paire C=C, dans lequel l'effet global des groupes liés à un élément de la paire est de donner des électrons, et l'effet global des groupes liés à l'élément opposé de la paire est d'attirer des électrons, et l'un des groupes donneurs d'électrons est un groupe aromatique ou hétéro-aromatique, ayant de 1 à 6 substituants poly(oxyalkylène) qui ont chacun de 2 à 200 résidus d'oxydes d'alkylène C2-C4, à la condition que les groupes ne comportent pas d'azote lié à l'un des éléments de la paire C=C, si ce n'est un groupe nitro ; et

    (b) à chauffer par la suite ledit substrat avec de la vapeur surchauffée à une température de 115 °C ou plus afin d'altérer ledit colorant et de décolorer ledit substrat.


     
    2. Un procédé de coloration temporaire d'un substrat en polyamide, tel que revendiqué dans la revendication 1, comprenant les étapes consistant : à appliquer sur ledit substrat un colorant au méthine substitué poly(oxyalkylène) dans lequel ledit colorant a la formule :

    dans laquelle R1 et R2 sont sélectionnés parmi le nitro, amido, halo, cyano, carbonyl, carboxy, ester d'alkyle, carbone vinylique, sulfonique, sulfonyle, sulfoxyde, sulfinique, thio, cyclohexanedione, phényle et naphtyle, ou R1 et R2 forment ensemble un groupe hétérocyclique thiophène, pyridyle, thiazole, benzathiazole, pyrazole, indane, thiazolidine, oxazolidine ou furanone ; R3 est de l'hydrogène ou de l'alkyle C1-C4; R4 est du phényle ou du naphtyle substitué par un amino, un alkoxy, un halogène, un amido, un alkyle, un trifluorométhyle ou un 1,2,3,4-tétrahydroquinoline; 2,3-dihydroindole ; 2,3-dihydro-1,4-benzoxazine (benzomorpholine) ; naphtylamine ; 2-aminothiophène ; phénol ; naphtol ; 2-aminothiazole ; indole, imidazothiazole ; 5-pyrazolone ; 2-pyridone ou acétoacétarylide ; Y est un substituant poly(oxyalkylène) lié par covalence à R1, R2 ou R4 par un groupe d'enchaînement sélectionné dans le groupe composé de N, NR, O, S, SO2, SO2N, SO2NR, CO2, CON et CONR, où R est H, de l'alkyle C1-C12, du phényle ou du benzyle, Y ayant de 2 à 200 résidus d'oxydes d'alkylène C2-C4, et m est un entier allant de 1 à 6 ; à maintenir ledit colorant sur ledit substrat pendant un laps de temps souhaité afin de le colorer ; et à chauffer par la suite ledit substrat avec de la vapeur surchauffée à une température de 115 °C ou plus afin d'altérer ledit colorant et de décolorer ledit substrat.
     
    3. Le procédé de la revendication 1 ou de la revendication 2 dans lequel ledit substrat est une fibre textile sur laquelle il est appliqué de 0,01 à 3 % en poids dudit colorant.
     
    4. Le procédé d'une quelconque des revendications précédentes dans lequel ledit substrat est une fibre textile sur laquelle il est appliqué de 0,05 à 1 % en poids dudit colorant.
     
    5. Le procédé de l'une ou l'autre des revendications 3 et 4 dans lequel ladite fibre textile est sélectionnée dans le groupe composé de nylon 6 et de nylon 6,6.
     
    6. Le procédé d'une quelconque des revendications 3 à 5 dans lequel ladite fibre textile est chauffée à une température de 115 °C ou plus pendant quinze secondes.
     
    7. Le procédé d'une quelconque des revendications précédentes dans lequel ledit colorant comprend de 1 à 3 desdits substituants poly(oxyalkylène) et dans lequel lesdits substituants comprennent chacun de 4 à 100 résidus d'oxydes d'alkylène C2-C4.
     
    8. Le procédé d'une quelconque des revendications 2 à 7 dans lequel R1 est sélectionné dans le groupe composé de nitro, amido, halo, cyano, carbonyl, carboxy, ester d'alkyle C1-C4, carbone vinylique, sulfonique et phényle substitué nitro, ou R1 et R2 forment ensemble un groupe hétérocyclique thiophène, pyridyle, thiazole, benzathiazole, pyrazole, indane, thiazolidine, oxazolidine ou furanone ; R3 est de l'hydrogène ; R4 est du phényle pourvu, au niveau de la position para ou ortho, d'au moins un substituant sélectionné parmi l'amino, l'alkoxy C1-C4, l'halo ou l'alkyle C1-C4; Y est lié à R4 par un groupe d'enchaînement N ou O et a de 4 à 100 résidus desdits oxydes d'alkylène et m est 1, 2 ou 3.