(19)
(11) EP 1 191 290 A1

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
27.03.2002  Patentblatt  2002/13

(21) Anmeldenummer: 01103827.0

(22) Anmeldetag:  15.02.2001
(51) Internationale Patentklassifikation (IPC)7F25J 3/02
(84) Benannte Vertragsstaaten:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR
Benannte Erstreckungsstaaten:
AL LT LV MK RO SI

(30) Priorität: 21.09.2000 DE 10047102

(71) Anmelder: Linde Aktiengesellschaft
65189 Wiesbaden (DE)

(72) Erfinder:
  • Corduan, Horst, Dipl.-Ing.
    82178 Puchheim (DE)
  • Rottmann, Dietrich, Dipl.-Ing.
    81737 München (DE)

(74) Vertreter: Imhof, Dietmar 
Linde AG Zentrale Patentabteilung Dr.-Carl-von-Linde-Strasse 6-14
82049 Höllriegelskreuth
82049 Höllriegelskreuth (DE)

   


(54) Regelverfahren für eine Tieftemperatur-Rektifikationsanlage


(57) Die Erfindung betrifft ein Verfahren zur Regelung der Kapazität einer Tieftemperatur-Rektifikationsanlage, bei dem ein Fluid in eine bei höherem Druck arbeitende Kolonne (1) einer Tieftemperatur-Rektifikationsanlage eingeleitet wird, welche die bei höherem Druck arbeitende Kolonne (1) und eine bei niedrigerem Druck arbeitende Kolonne (2) aufweist, und bei dem Flüssigkeit von dem Sumpf der bei höherem Druck arbeitenden Kolonne (1) in die bei niedrigerem Druck arbeitende Kolonne (2) geleitet wird. Das Verfahren ist dadurch gekennzeichnet, dass die Menge der Flüssigkeit, die aus dem Sumpf der bei höherem Druck arbeitenden Kolonne (1) entnommen wird und der bei niedrigerem Druck arbeitenden Kolonne (2) zugeführt wird, über eine Durchflussregelung (4) geregelt wird, wobei eine Stellgröße für die Durchflussregelung (4) auf eine gewünschte Durchflussmenge eingestellt ist.




Beschreibung


[0001] Die Erfindung betrifft ein Verfahren zur Regelung der Kapazität einer Tieftemperatur-Rektifikationsanlage, bei dem ein Fluid in eine bei höherem Druck arbeitende Kolonne einer Tieftemperatur-Rektifikationsanalge eingeleitet wird, welche die bei höherem Druck arbeitende Kolonne und eine bei niedrigerem Druck arbeitende Kolonne aufweist, und bei dem Flüssigkeit von dem Sumpf der bei höherem Druck arbeitenden Kolonne in die bei niedrigerem Druck arbeitende Kolonne geleitet wird.

[0002] Bekannt sind Regelverfahren zur Änderung der Kapazität einer Tieftemperatur-Rektifikationsanlage, bei denen in der bei höherem Druck arbeitenden Kolonne ein Sollwerts für den Sumpfpegel als Stellgröße eingestellt wird. Durch Änderung des Sollwerts des Sumpfpegels wird die Anlage auf eine geänderte Menge an Einsatzfluid eingestellt. Die Änderung der Kapazität wird auch Lastwechsel genannt. Bei einer mit einem Lastwechsel einhergehenden Änderung der Menge des Einsatzfluids tritt in der Rektifikationskolonne vorübergehend eine Änderung des Verhältnisses von Flüssigkeit zu Dampf (F/D-Verhältnis) auf. Diese Änderung zieht eine unerwünschte Änderung der Reinheit der Produkte nach sich. Die bekannten Regelverfahren haben daher zum Ziel, das F/D-Verhältnis möglichst konstant zu halten, so dass die Produkte der Rektifikationsanlage für verschiedene Lastfälle der Anlage die gleiche Reinheit aufweisen. Dies wird bei allen bekannten Verfahren durch eine Regelung des Sumpfpegels erreicht, die den Pegelstand als Stellgröße benutzt. Derartige Regelverfahren sind beispielsweise aus den Druckschriften EP 0 684 436 oder US 3,912,476 bekannt.

[0003] Darüber hinaus ist es bekannt, zum Konstanthalten des F/D-Verhältnisses Pufferspeicher einzusetzen. Diese Methode ist jedoch mit einem erheblichen baulichen Aufwand verbunden.

[0004] Bekannt ist außerdem, dass nicht nur bei Kapazitätsänderungen Maßnahmen ergriffen werden müssen, um das F/D-Verhältnis konstant zu halten, sondern auch bei auftretenden Betriebsstörungen. Beispielsweise führen Schwankungen in der Luftmenge bei einer Luftzerlegungsanlage zu unterschiedlichen Flüssigkeitszuläufen in den Sumpf der bei höherem Druck arbeitenden Kolonne. Bei der bekannten Sumpfstandregelung, die den Sumpfstand konstant hält, wird die geänderte Flüssigkeitszulaufmenge auch als ebenso geänderte Flüssigkeitsablaufmenge weitergegeben. Das heißt, dass aus dem Sumpf der bei höherem Druck arbeitenden Kolonne variable Stöme in die bei niedrigerem Druck arbeitende Kolonne gelangen. Dies wirkt sich in der bei niedrigerem Druck arbeitenden Kolonne negativ aus, weil die variable Flüssigkeitsaufgabe die Rektifikation stört.

[0005] Der Erfindung liegt daher die Aufgabe zugrunde ein Verfahren zur Verfügung zu stellen, das eine Tieftemperatur-Rektifikation mit gleichbleibender Produktreinheit bei Lastwechsel, wie auch bei Betriebsstörungen mit schwankender Einsatzfluidmenge gewährleistet.

[0006] Diese Aufgabe wird erfindungsgemäß dadurch gelöst, dass die Menge der Flüssigkeit, die aus dem Sumpf der bei höherem Druck arbeitenden Kolonne entnommen wird und der bei niedriegerem Druck arbeitenden Kolonne zugeführt wird, über eine Durchflussregelung geregelt wird, wobei eine Stellgröße für die Durchflussregelung auf eine gewünschte Durchflussmenge eingestellt ist. Dabei ist als Durchflussregelung bevorzugt eine FIC-Einheit (Flow Indicated Control) als Regelungskomponente eingesetzt. Diese Einheit weist üblicherweise einen Durchflussmesser, sowie mindestens ein mit dem Durchflussmesser über eine Regelungsleitung verbundenes, ansteuerbares Ventil auf.

[0007] Bevorzugt ist die Tieftemperatur-Rektifikationsanlage eine Tieftemperatur-Rektifikationsanlage zur Luftzerlegung. Besonders bevorzugt wird zur Erhöhung der Betriebssicherheit zusätzlich zur Durchflussregelung ein Sumpfpegelanzeiger (Level Indicator) eingesetzt, dessen Zweck darin besteht, die Überschreitung eines festgelegten Maximalwerts für den Sumpfpegel anzuzeigen, sowie die Unterschreitung eines festgelegten Minimalwerts. Zweckmäßigerweise wird bei den beschriebenen Unter- bzw. Überschreitungen ein Warnsignal abgegeben.

[0008] Eine Weiterbildung der Erfindung sieht vor, dass die Tieftemperatur-Rektifikationsanlage zusätzlich zu der bei höherem Druck arbeitenden Kolonne und der bei niedrigerem Druck arbeitenden Kolonne eine Argonkolonne mit einem Kopfkondensator aufweist und Flüssigkeit von dem Sumpf der bei höherem Druck arbeitenden Kolonne in den Kopfkondensator und von dem Kopfkondensator in die bei niedrigerem Druck arbeitende Kolonne geleitet wird, wobei die Menge der Flüssigkeit, die aus dem Sumpf der bei höherem Druck arbeitenden Kolonne entnommen wird, mittels einer Durchflussregelung geregelt wird, wobei ein Ventil angesteuert wird, das die Menge an zuzuführendem Fluid in die bei niedriegerem Druck arbeitende Kolonne bestimmt, und ein Ventil angesteuert wird, das die entsprechende Menge an Fluid in den Kopfkondensator der Argonkolonne eintreten lässt.

[0009] Besonders vorteilhaft wird der Öffnungsgrad der beiden Ventile mittels einer Split-Range-Regelung vorgegeben. Dabei erfolgt eine Aufteilung der aus dem Sumpf entnommenen Flüssigkeitsmenge. Vorteilhaft wird die Verteilung der Menge auf die beiden Ventile in Anteilen vorgegeben. Bei einer Änderung der Durchflussmenge passen sich die Ventilstellungen entsprechend ihrer Anteile automatisch an.

[0010] Zweckmäßigerweise werden der Sumpf und das anschließende Leitungsnetz in der bei höherem Druck arbeitenden Kolonne, sowie gegebenenfalls im Kopfkondensator der Argonkolonne als Flüssigkeitspuffer bei Laständerungen eingesetzt. Damit wird das konstanthalten des F/D-Verhältnisses erleichtert. Mit Vorteil wird auch eine Kombination von beidem als Pufferspeicher eingesetzt.

[0011] Die Erfindung weist den Vorteil auf, dass auch bei Schwankungen der Einsatzfluidmenge nur eine konstante Flüssigkeitsmenge aus dem Sumpf der bei höherem Druck arbeitenden Kolonne entnommen wird. Dadurch bleibt die Flüsigkeitsaufgabe in die bei niedrigerem Druck arbeitende Kolonne konstant und ungestört. Die Rektifikation in der bei niedrigerem Druck arbeitenden Kolonne bleibt unverändert gut. Die Produktreinheit bleibt erhalten. Die Änderung der Einsatzfluidmenge macht sich jeweils nur in einer Änderung des Sumpfpegels bemerkbar, der somit in bestimmten Grenzen fallen oder steigen kann, ohne dass das störende Auswirkungen auf die Rektifikation hat.

[0012] Des Weiteren ist eine Durchflussregelung eine einfach, mit geringem Aufwand an Bauteilen zu realisierende, zuverlässige Regelungsmethode.

[0013] Im folgenden soll die Erfindung anhand von in den Figuren schematisch dargestellten Ausführungsbeispielen näher erläutert werden:
Figur 1
zeigt einen Ausschnitt einer Tieftemperatur-Rektifikationsanlage, die zur Durchführung des erfindungsgemäßen Verfahrens eine FIC-Regelung aufweist.
Figur 2
zeigt einen Ausschnitt einer Tieftemperatur-Rektifikationsanlage mit Argonkolonne, wobei zur Durchführung des erfindungsgemäßen Verfahrens eine FIC-Regelung vorgesehen ist, die zwei Ventile ansteuert.


[0014] Im einzelnen ist in der Figur 1 eine bei höherem Druck arbeitende Kolonne 1, eine bei niedrigerem Druck arbeitende Kolonne 2, ein Unterkühler 3, sowie eine FIC-Regelung 4 (Flow Indicated Control 4), ein Ventil 5, sowie eine Regelungsleitung 6 gezeigt. Die aus dem Sumpf der bei höherem Druck arbeitenden Kolonne 1 entnommene Flüssigkeit wird über den Unterkühler 3 zu der FIC-Regelung 4 geleitet, die einen Durchflussmesser aufweist. Der Durchfluss und die sich daraus ergebende Einspeisung über das Ventil 5 in die bei niedrigerem Druck arbeitende Kolonne 2 wird so geregelt, dass das F/D-Verhältnis in der Kolonne 2 auch bei sich ändernder Einsatzluftmenge konstant bleibt. Mit besonderem Vorteil wird der Durchfluss des Fluids gemessen nachdem das Fluid den Unterkühler 3 passiert hat. Zur Erhöhung der Sicherheit ist im Bereich des Sumpfes der bei höherem Druck arbeitenden Kolonne 1 vorteilhaft ein Sumpfpegelanzeiger 7 (Level Indicator 7) angebracht, der bei Überschreitung eines festgelegten Maximalwerts für den Sumpfpegel sowie bei Unterschreitung eines festgelegten Minimalwerts ein Signal abgibt.

[0015] Die Figur 2 zeigt zusätzlich zu den bereits im Abschnitt über die Figur 1 beschriebenen Komponenten eine Argonkolonne 8, einen Kopfkondensator 9 der Argonkolonne 8, sowie eine zweite Regelungsleitung 10, die ein zweites Ventil 11 ansteuert, durch das die Zufuhrmenge an Fluid in den Kopfkondensator 9 der Argonkolonne 8 eingespeist wird. Die FIC-Regelung 4 ist in diesem Beispiel als Split-Range-Regelung 4 ausgeführt, wodurch sichergestellt ist, dass die Aufteilung der aus dem Sumpf entnommenen Flüssigkeitsmenge auf die beiden Ventile 5, 11 bei einer Änderung der Durchflussmenge durch die FIC-Einheit so angepasst wird, dass sich die Ventilstellungen entsprechend ihren Fluidanteilen automatisch nachregeln.


Ansprüche

1. Verfahren zur Regelung der Kapazität einer Tieftemperatur-Rektifikationsanlage, bei dem ein Fluid in eine bei höherem Druck arbeitende Kolonne (1) einer Tieftemperatur-Rektifikationsanlage eingeleitet wird, welche die bei höherem Druck arbeitende Kolonne (1) und eine bei niedrigerem Druck arbeitende Kolonne (2) aufweist, und bei dem Flüssigkeit von dem Sumpf der bei höherem Druck arbeitenden Kolonne (1) in die bei niedrigerem Druck arbeitende Kolonne (2) geleitet wird, dadurch gekennzeichnet, dass die Menge der Flüssigkeit, die aus dem Sumpf der bei höherem Druck arbeitenden Kolonne (1) entnommen wird und der bei niedrigerem Druck arbeitenden Kolonne (2) zugeführt wird, über eine Durchflussregelung (4) geregelt wird, wobei eine Stellgröße für die Durchflussregelung (4) auf eine gewünschte Durchflussmenge eingestellt ist.
 
2. Vefahren nach Anspruch 1, dadurch gekennzeichnet, dass die Tieftemperatur-Rektifikationsanlage eine Tieftemperatur-Rektifikationsanlage zur Luftzerlegung ist.
 
3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass die Tieftemperatur-Rektifikationsanlage zusätzlich zu der bei höherem Druck arbeitenden Kolonne (1) und der bei niedrigerem Druck arbeitenden Kolonne (2) eine Argonkolonne (8) mit einem Kopfkondensator (9) aufweist und Flüssigkeit von dem Sumpf der bei höherem Druck arbeitenden Kolonne (1) in den Kopfkondensator (9) und von dem Kopfkondensator (9) in die bei niedrigerem Druck arbeitende Kolonne (2) geleitet wird, wobei die Menge der Flüssigkeit, die aus dem Sumpf der bei höherem Druck arbeitenden Kolonne (1) entnommen wird, mittels einer Durchflussregelung (4) geregelt wird, wobei ein Ventil (5) angesteuert wird, das die Menge an zuzuführendem Fluid in die bei niedrigerem Druck arbeitende Kolonne (2) bestimmt, und ein Ventil (11) angesteuert wird, das die entsprechende Menge an Fluid in den Kopfkondensator (9) der Argonkolonne (8) eintreten lässt.
 
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass der Öffnungsgrad der beiden Ventile (5, 11) mittels einer Split-Range-Regelung (4) vorgegeben wird.
 




Zeichnung










Recherchenbericht