FIELD OF THE INVENTION
[0001] This invention relates to a self-baking electrode and an electric arc furnace for
the production of silicon alloys and silicon metal. The invention furthermore relates
to a process for forming in situ a self-baking electrode for the production of silicon
metal and silicon alloys in an electric arc furnace.
BRIEF DESCRIPTION OF THE PRIOR ART
[0002] The use of self-baking electrodes (also called "Söderberg electrodes") for the production
of ferro-alloys has been known for about 75 years (see US Patent no. 1,440,724 of
September 1919 and US Patent no. 1,441,037 of January 1923 both in the name of Söderberg).
Self-baking electrodes basically consist of a carbon-containing material such as anthracite,
pet coke, tar and pitch, which is filled into a steel casing held in position within
an electric arc furnace by means of contact shoes and a suspension/slipping device.
The application of high electric currents plus the heat of the arc struck by the electrode
during the furnace operation develops sufficient heat to melt the material filled
into the casing and form a paste, then cokify the so-formed paste, and finally bake
the electrode.
[0003] The steel casings of the Söderberg electrodes presently in use are in majority round
in shape and provided with a series of inwardly projecting fins extending radially
towards the center of the electrode in order to provide mechanical strength to the
electrode, heat penetration within the electrode through the conductivity of the fins
and act as current conductor. The fins and the casing are typically made of regular
steel, and their amount, length and physical shape depend on what is considered optimum
for thorough baking as per each geometric design.
[0004] As the electrode is consumed during the production of silicon or ferro-alloy, both
the paste and casing have to be replaced. This is done high on top of the electrode
column so that there is sufficient static pressure for compaction, and for running
through the various stages of the temperature pattern from softening of the paste
up to the heat generated by current flow.
[0005] Consumption of the electrode is compensated by regular slipping of the electrode
through the contact shoes. The iron casing and the fins passing down the contact shoes
at each slipping burn and oxidize or melt, and thereby fall into the mix. Because
of this consumption/oxidation, the iron pick-up is of such a magnitude that the Söderberg
technology cannot be applied to produce commercial grade silicon metal where, depending
on the quality grade for Si, the Fe content has to be below 1%, below 0.5%, below
0.35% or even below 0.2%.
[0006] Therefore, so far, silicon metal has been produced exclusively by using a so-called
"pre-baked" electrode, which is an amorphous carbon or semi-graphitized electrode
produced in specific manufacturing units and then supplied in sections of typically
2 to 2.5 m length. These pre-baked electrodes, which are usually 4 to 6 times more
expensive than Söderberg electrodes, are to be connected to each other by specific
devices, which can be nipples and sockets or a system of male/female design cuts at
the ends of each section of the electrode. In operation in a silicon metal furnace,
these connections between pieces of electrodes are limiting factors for energy transfer
from one electrode to the other underneath the contact shoe.
[0007] Because of the heat and current transfer pattern, nipples and sockets are prone to
breaking with abrupt changes of power in the furnace - as caused by any type of power
shutdown - so that electrode breakages are part of undesired negative influences on
operation.
[0008] Furthermore, their strength is relatively low as compared to the Söderberg electrodes,
which do not contain the weak spots due to connectors or nipples, making it more solid
and accepting higher specific power per square section.
[0009] Therefore, reduction of electrode costs using the self-baking principle is one of
the main challenges of every silicon metal producer.
[0010] Many attempts have been undertaken to develop a type of Söderberg electrode which
would allow a cheaper production of silicon metal while meeting all the criteria for
reducing the amount of iron in the produced metal.
[0011] In the 70', Nippon Denko of Japan developed a system in which the casings and fins
usually made of steel were replaced by casings and fins made of aluminum (see Japanese
Patents nos. 951,888 and 835,596). This attempt to use aluminum for both the casing
and fins has never been used industrially, because of the lack of mechanical stability
and the substantially different conductivity of aluminum compared to steel.
[0012] Another approach was undertaken by M. Cavigli (see Italian Patent no. 606,568 of
July 1960). In this patent, it was suggested to remove the fins from the outer casing
and to adjust the relative movement of the paste with respect to the outside casing
by sliding or extruding the inner contents of the casing as a central consumable member.
Iron crosses were provided within the casing to support the electrode while it baked.
These iron crosses held the electrode while allowing a relative movement between the
casing and the electrode by either pressing or reducing the suspension weight.
This system has been in operation in one plant in Italy. It permits to reduce the iron contamination, as the slipping of the casing represents
only 1/10 of the slipping of the electrode itself. However, it does not permit to
reach the same low level in iron impurities as obtained with conventional pre-baked
electrodes.
[0013] Another approach has been undertaken by Bruff (see US Patent no. 4,527,329 of July
1985). This patent suggests to separate the baking of the paste from the one that
takes place by the application of heat through Ohm's resistance and conductivity in
and below the contact shoes. Thus, a separate baking installation is located way above
the contact shoes. Moreover, a device is provided to cut and remove the iron casing
underneath the baking system, well above the contact shoes, so that basically a shaped
pre-baked-like electrode enters the contact shoes. Tills system operates in a small
furnace of about 10MW at Elkem
Kristiansand. However, there are severe restrictions in the use for higher powered furnaces with
larger diameter electrodes, which are the manufacturing standard for cost efficiency
in the developed world.
[0014] A similar solution has also been disclosed in German Patent Application no. 4,036,133
of May 1991 in the name of E. Svana.
[0015] A further system based on a relative movement of a self-baking electrode with respect
to an external casing has been disclosed by Persson in US Patent no. 4,575,856 of
March 1986. In this patent, the iron crosses used by Cavigli in his system are replaced
by smaller graphite electrodes put concentrically into the casing. The small electrodes
are supported and moved by a separate slipping/holding device, which allows their
relative movement within the casing.
[0016] An improved system based on a "transfer" from a conventional pre-baked electrode
to one of the extruded type as described by Cavigli and Persson is described in Canadian
patent no. 2,081,295.
[0017] The disadvantages of this system mainly result from the physical strength limitations
of the graphite electrode core and its limited potential to absorb compression, tension
and bending forces as the electrode core is essentially unguided over lengths of up
to 14 m and can deviate from its vertical position for various reasons. Furthermore,
the casing which, in this system, is essentially an extrusion dye, needs to be slipped
down occasionally to compensate for heat damages between and underneath the contact
shoes. Without such periodic slipping, damages would reach high up in the contact
shoes, and liquid paste would start to drip and thereby provoke disturbances known
as "green" breakages in the Söderberg technology. The periodic slippings of the casing
do slightly contaminate the Si not only with the iron of the casing, but also with
the alloying elements used in the casing material to provide the maximum possible
heat oxidation protection. These contaminants tend to make silicon metal produced
this way unsuitable for its application in the chemical industry to produce methylchlorosilanes
out of silicon metal. Casings made of regular steel also have their disadvantages
as vital properties for functioning are decreased by heat, the furnace atmosphere
and the time they are exposed to those.
OBJECTS OF THE PRESENT INVENTION
[0018] It is an object of the present invention to provide a new and improved self-baking
electrode.
[0019] Another object of the present invention is to provide a new electrode system which
allows the production of silicon metal in a Söderberg-type furnace without any modification
to the existing slipping system or addition of another slipping system. Thanks to
the electrode according to the invention, the same furnace can produce both FeSi of
any grade and Si metal without any downtime between the gradual change from one product
to the other and each time at the lowest electrode cost.
[0020] The electrode according to the invention overcomes the problems associated with prior
art: silicon metal contamination, core breakages as a result of extrusion forces,
casing deformation, loss of production and capital expense for installation of new
slipping systems. It also provides a way to convert bigger and more efficient ferro-silicon
Söderberg-type furnaces instead of existing silicon metal furnaces with pre-baked
electrode technology.
SUMMARY OF THE INVENTION
[0021] Accordingly, the present invention relates to an in situ self-baking electrode for
the production of silicon metal and silicon alloys for use in an electric arc furnace
according to claim 1.
[0022] The present invention also relates to an electric arc furnace for the production
of silicon metal and silicon metal alloys according to claim 6.
[0023] A further object of the present invention is to propose a process for forming in
situ a self-baking electrode for the production of silicon metal and silicon alloys
in an electric arc furnace according to claim 11.
[0024] Whatever be the material used for the manufacture of the central core, such a core
in the form of bars or rods can be hollowed to allow inside cooling through injection
of di-atomic or inert gases. Such is particularly useful to control and influence
the arc at the lip of the electrode and the baking of the electrode.
[0025] In accordance with the invention, the material forming the casing is selected so
as to he electrically conductive to transfer electric power from the contact shoes
into the Söderberg paste while preventing undesired metallic contamination by either
Ti, V, Ta, Cr, Zr or Ni. Advantageously, the casing can be made of Cu or brass, or
of an aluminum alloy or aluminum of sufficient strength to support the pressure of
the filling of Söderberg paste without deformation or dents.
[0026] Such a possible selection makes the invention particularly useful to produce silicon
metal of suitable quality for application in the Rochow-direct synthesis. Indeed,
one has only to select the material forming the conductive core and supporting casing
so that the resulting metallic additions to die melting contains suitable amounts
of Al and/or Cu and/or zinc and/or tin as are required in the silicon thus produced.
[0027] Advantageously, the electrode according to the invention allows a user to switch
from the production of ferrosilicon using regular Söderberg electrodes to the production
of silicon metal using the technology described hereinabove, without any downtime,
and since no additional devices to guide the graphite core are required, switch-back
to Söderberg technology is possible and only with this technology.
[0028] As can be appreciated, an important improvement in the electrode according to the
invention lies in that the central core of the electrode which is secured to the casing
is "released" from its function of transferring compression forces for the extrusion
as for the electrode described in prior art as indicated above. Consequently, it does
not expose the core material to the risk of buckling when compressed, and thereby
of breaking. It furthermore eliminates the need for a separate slipping device to
perform the functions of the central core, and thereby the substantial costs for irreversible
retro-fitting of existing furnaces from the pre-baked carbon-electrode design to the
extruded concept as described hereinabove. Furthermore, it allows a much safer application
of a hollow core electrode, where in the case of the extruded principle, the presence
of such a central hole in the central core further weakens mechanically the core in
cross section, in particular at the level of the nipples or connectors, with an even
more pronounced susceptibility to breakages or damages in the column while performing
the extrusion increments.
[0029] A non restrictive description of a preferred embodiment will now be given with reference
to the appended drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
[0030]
Figure 1 is a side elevational view, partly in section, schematically illustrating
an electric arc furnace in which an electrode according to the present invention is
used;
Figure 2 is a side elevational cross-section view of an electrode according to a preferred
embodiment of the invention, shown above a conventional Söderberg electrode; and
Figure 3 is a cross section view of the electrode of Figure 2, taken along line II-II
in Figure 2.
DESCRIPTION OF A PREFERRED EMBODIMENT
[0031] Referring to figure 1, an electric arc furnace (2) in which an electrode (4) according
to the present invention may be employed is illustrated. The furnace (2) is of a conventional
design and may be used for smelting for example, ferrosilicon and silicon metal. As
well known in the art, the furnace (2) comprises a furnace body (6) formed of an outer
steel shell and a suitable refractory material. A curtain (8) is extending upwardly
from the furnace body (6) and it has an upper end engaged by the hood (10) or cover
of the furnace body (6). The electrode (4) extends vertically within the furnace body
(6) through an opening (12) in the hood (10). The furnace (2) comprises electric means
for providing an electric arc in the furnace (2) for smelting a charge (14) in the
furnace body (6). The electric means comprises a contact, such as a contact shoe (16),
connected to the electrode (4). The contact shoe (16) is mounted on the electrode
(4) with a conventional half-ring (18). The furnace (2) may also be provided with
a water-cooled jacket (20) for cooling the electrode (4) above the contact shoe (16).
Retaining means are provided for retaining the electrode (4) vertically within the
furnace (2). The retaining means preferably comprises regulation cylinders (22) and
two slipping bands (24) mounted on an upper floor (26) of the furnace building and
supporting the electrode (4).
[0032] Referring more particularly to figures 2 and 3, the self- baking electrode (4) according
to the present invention comprises an elongated open ended electrically conductive
metal casing (30) for extending generally vertically within the furnace (2) in use.
This casing (30) has an upper end (31) and a bottom end (33). A central core (32)
made of a heat conductive material, made of a carbonaceous material, is disposed within
and spaced from the casing (30). The casing (30) and the central core (32) define
an annular channel (34) in which a carbonaceous electrode paste (36), preferably Söderberg
paste, can be fed, molten and baked. In other words, a carbonaceous electrode paste
(36) is surrounding the central core (32), the paste (36) being devised to cure into
a solid electrode upon heating and to bond to the central core (32).
[0033] The central core (32) can be shaped as a bar or other defined shapes and is held
centrally within the casing (30) by at least one framework (37) which prevents relative
movement of the central core (32) with respect to the casing (30) due to the paste
movement between the core (32) and the casing (30).
[0034] Preferably, the casing (30) is made of a thin-walled ordinary steel or a thicker-walled
Dural® so that the rigidity of the walls can stand the radial pressure of the filled-in
Söderberg paste (36). The filling of the Söderberg paste (36) into the electrode casing
(30) is done in a quasi continuous manner so as to minimize the "falling" height and
also the total length above the contact shoes.
[0035] In case where silicon metal is to be produced in the furnace (2), the metal casing
(30) is made of a material unalloyed with a metal selected from the group consisting
of titanium, vanadium, tantalum, chrome, zirconium and nickel, for preventing contamination
of the silicon metal to be produced in the furnace (2) with one of said metal upon
an ongoing consumption of the casing in the furnace (2).
[0036] More preferably in this case, the casing (30) is made of a metal selected from the
group consisting of copper, brass and aluminum.
[0037] As shown in figures 2 and 3, the framework (37) securing the central core (32) to
an inner surface of the casing (30) preferably comprises a pair of opposite rods (38),
each rod (38) extending generally horizontally and having a first end (40) driven
into the central core (32) and a second end (42) secured to an inner surface of the
casing (30). A bar (44) is extending through the central core (32) below the pair
of rods (38), the bar (44) having its opposite outer ends (46) projecting out from
the central core (32). The framework (37) further comprises two lateral frame members
(48), each connecting together the second end (42) of each rod (38) to a corresponding
outer end (46) of the bar (44). Referring to figure 3, two further rods (60) may preferably
be provided for preventing the central core (32) from twisting or rotating within
the casing (30). Each of said rods (60) comprises a first end (62) secured to the
central core (32) and a second end (64) secured to the inner wall of the casing (30),
the two rods (60) being tangent with the central core (32).
[0038] Although not essential, spread-out sheets (47) may be fixed to the inner surface
of the casing (30) to better prevent an extrusion of the baked paste (36) downward.
However, experiments have shown that the framework (37) alone prevents very well any
extrusion of the baked electrode (36) downward, the baked electrode (36) bonding against
the framework (37).
[0039] Referring to figure 2, a conventional Söderberg electrode (49) is illustrated below
the electrode (4) according to the present invention. This conventional Söderberg
electrode (49) comprises a casing (50) and fins (52) mounted on the inner wall of
the casing (50). A self-baked electrode (54) is formed within the casing (50) and
both the electrode (54) and casing (50) moved down in unison. This type of electrode
is well known in the art and does not need further description. As can be appreciated,
this conventional Söderberg electrode (49) may have the same diameter as the diameter
of the electrode (4) according to the invention, showing that it is possible to easily
switch from the production of ferrosilicon using a regular Söderberg electrode (49)
to the production of a silicon metal using an electrode according to the invention
without any downtime or shutdown of the whole furnace.
[0040] The particular structure of the electrode according to the invention allows for a
great reduction in the volume of metal, such as steel, that is normally used for preventing
the extrusion of the self-baked electrode downwards. As a matter of fact, with the
electrode according to the invention, it is possible to obtain a silicon metal containing
less than 0.5% Fe, with a casing still made of steel.
[0041] Extensive studies of the baking pattern of both a conventional Söderberg electrode
and a compound electrode where the center of the electrode is of a solid material
having a substantially different thermal and electrical conductivity have shown that
when the electrode comprises a central core with a high conductivity, the heating
and baking pattern is higher in the contact shoe area as compared to the conventional
Söderberg technology. More specifically, baking of the paste occurs from the centre
of the high heat conducting solid core against the surrounding Söderberg paste towards
the casing. In contrast, with a conventional Söderberg electrode, baking of the paste
occurs from the casing and the fins, that is from the outside of the electrode, toward
the inside of the same, as this is not a different conductivity between the core and
the Söderberg material.
[0042] The present invention uses, in a well balanced system, the heat conductivity of the
central core (32) to bake the surrounding Söderberg paste (36). It does not necessitate
a relative movement of the baked electrode (36) with respect to its surrounding casing
(30) as is the case with the compound electrodes known in prior art and for use in
the silicon metal production.
[0043] The process for forming in situ a self-baking electrode (4) in an electric arc furnace
(2), comprises the following sequence of steps.
a) An elongated open ended electrically conductive casing is provided.
b) An elongated central core (32) of conductive heat material is disposed within and
spaced from the casing (30).
c) The central core (30) is secured to an inner surface of the casing (30) and held
centrally within the casing (30).
d) The elongated electrically conductive casing (30) is slid within the furnace (2)
for extending generally vertically therein.
e) A quantity of carbonaceous electrode paste (36) is introduced in the casing (30)
surrounding the central core (32). The paste (36) is devised to cure into a solid
electrode upon heating and to bond to the central core (32).
f) An electric arc is present in the furnace (2) in a well know manner which do not
need further description.
[0044] Preferably in step c), the central core (32) is secured to the casing (30) by driving
respectively into two opposite sides of the central core (30), a first end (40) of
a corresponding rod (38) of a pair of opposite rods (38) and then securing a second
end (42) of each of said opposite rods (38) to an inner surface of the casing (30)
such that each rod (38) is extending generally horizontally within the casing (30).
A bar (44) is inserted through the central core (32) below the two rods (38) such
that the opposite outer ends (46) of the bar (44) are projecting out from the central
core (32). The second end (42) of each rod (38) is respectively connected to a corresponding
outer end (46) of the bar (44) with a lateral frame member (48).
[0045] In the case where the electrode (4) formed is used for the production of silicon
metal, the casing (30), in step d), may preferably be slid on top of a previous Söderberg-type
self-baking electrode (49) used for the production of ferrosilicon, as shown in figure
2. In this case, the casing (30) used for the production of silicon may have substantially
the same diameter as the outer casing (50) of the Söderberg electrode (49). As mentioned
before, one can see that it is possible to easily switch from the production of ferrosilicon
using a regular Söderberg electrode (49) to the production of a silicon metal using
an electrode according to the invention without any downtime or shutdown of the whole
furnace.
1. An in situ self-baking electrode (4) suitable for the production of silicon metal
and silicon alloys for use in an electric arc furnace (2), the electrode (4) being
characterized in that it comprises:
an elongated open ended electrically conductive metal casing (30) for extending generally
vertically within the furnace (2) when in use, the casing being made of a material
unalloyed with a metal selected from the group consisting of titanium, vanadium, tantalum,
chrome, zirconium and nickel, whereby contamination of the silicon metal and silicon
alloys to be produced in the furnace with any of said metal upon an ongoing consumption
of the casing (30) in the furnace (2) is prevented;
a central core (32) disposed within and spaced from the casing (30), the central core
(32) being made of a heat conductive carbonaceous material;
at least one framework (37) within the casing (30), the framework (37) securing the
central core (32) to an inner surface of the casing (30) for holding centrally the
central core (32) within the casing (30) and for preventing an extrusion of the central
core (32) downward; and
a carbonaceous electrode paste (36) surrounding the central core (32), the paste (36)
being devised to cure into a solid electrode upon heating and to bond to the central
core (32).
2. An in situ self-baking electrode (4) as defined in claim 1, characterized in that the central core (32) is made of carbon bars connected to each other.
3. An in situ self-baking electrode (4) as defined in anyone of claims 1 and 2, characterized in that the casing (30) is made of a metal selected from the group consisting of copper,
brass and aluminum.
4. An in situ self-baking electrode (4) as defined in anyone of claims 1 to 3,
characterized in that the at least one framework (37) comprises:
a pair of opposite rods (38), each rod (38) extending generally horizontally and having
a first end (40) driven into the central core (32) and a second end (42) secured to
an inner surface of the casing (30);
a bar (44) extending through the central core (32) below the pair of rods (38) and
having opposite outer ends (46) projecting out from the central core (32); and
two lateral frame members (48), each connecting together the second end (42) of each
rod (38) to a corresponding outer end (46) of the bar (44).
5. An in situ self-baking electrode (4) as defined in anyone of claims 1 to 4, characterized in that the central core (32) is hollowed for allowing inside cooling through injection cooling
gases.
6. An electric arc furnace for the production of silicon metal and silicon alloys (2)
comprising:
a furnace body (6) containing a charge (14) to be heated;
an in situ self-baking electrode (4) comprising:
an elongated open ended electrically conductive metal casing (30) having an upper
end (31) and a bottom end (33), said casing (30) extending generally vertically within
the furnace body (6) and being free to slip vertically through a slipping mechanism
(24), and wherein said casing (30) is made of a material unalloyed with a metal selected
from the group consisting of titanium, vanadium, tantalum, chrome, zirconium and nickel
for preventing contamination of the silicon metal and silicon alloys to be produced
in the furnace with any of said metal upon an ongoing consumption of the casing (30)
in the furnace (2);
a central core (32) disposed within and spaced from the casing (30), the central core
(32) being made of heat conductive carbonaceous material;
at least one framework (37) within the casing (30), the framework (37) securing the
central core (32) to an inner surface of the casing (30) for holding centrally the
central core (32) within the casing (30) and for preventing an extrusion of the central
core (32) downward through the bottom end (33) of the casing (32);
a carbonaceous electrode paste (36) surrounding the central core (32), the paste (36)
being devised to cure into a solid electrode upon heating and to bond to the central
core (32);
means for retaining (22,24) the casing (30) in a generally vertical position within
the furnace body (6); and
electric means for generating an electric arc in the furnace, the electric means comprising
a contact (16) on the casing (30).
7. An electric arc furnace (2) as defined in claim 6, characterized in that the central core (32) is made of carbon bars connected to each other.
8. An electric arc furnace (2) as defined in anyone of claims 6 and 7, characterized in that the casing (30) is made of a metal selected from the group consisting of copper,
brass and aluminum.
9. An electric arc furnace (2) as defined in anyone of claims 6 to 8,
characterized in that the at least one framework (37) comprises:
a pair of opposite rods (38), each rod (38) extending generally horizontally and having
a first end (40) driven into the central core (32) and a second end (42) secured to
an inner surface of the casing (30);
a bar (44) extending through the central core (32) below the pair of rods (38) and
having opposite outer ends (46) projecting out from the central core (32); and
two lateral frame members (48), each connecting together the second end (42) of each
rod (38) to a corresponding outer end (46) of the bar (44).
10. An electric arc furnace (2) as defined in anyone of claims 6 to 9, characterized in that the central core (32) is hollowed for allowing inside cooling through injection cooling
gases.
11. A process for forming in situ a self-baking electrode (4) for the production of silicon
metal and silicon alloys in an electric arc furnace (2), the process comprising the
steps of:
a) providing an elongated open ended electrically conductive metal casing (30) made
of a material unalloyed with a metal selected from the group consisting of titanium,
vanadium, tantalum, chrome, zirconium and nickel for preventing contamination of the
silicon metal and silicon alloys to be produced in the furnace with any of said metal
upon an ongoing consumption of the casing (30) in the furnace (2);
b) disposing a central core (32) of carbonateous heat conductive material within and
spaced from the casing (30);
c) securing the central core (32) to an inner surface of the casing (30) and holding
it centrally within the casing (30);
d) sliding generally vertically the elongated electrically conductive casing (30)
within the furnace (2);
e) introducing a quantity of carbonaceous electrode paste (36) in the casing (30)
so that said paste (36) surrounds the central core (32), the paste (36) being devised
to cure into a solid electrode upon heating and to bond to the central core (32);
and
f) contacting the casing (30) to an electric power source; and
g) generating with said electric power source an electric arc into the furnace (2).
12. A process as defined in claim 11, wherein step c) comprises the steps of:
- driving respectively into two opposite sides of the central core (32) a first end
(40) of a corresponding rod (38) of a pair of opposite rods (38) and securing a second
end (42) of each of said opposite rods (38) to an inner surface of the casing (30)
such that each rod (38) is extending generally horizontally within the casing (30);
- inserting a bar (44) through the central core (32) below said two rods (38) and
such that opposite outer ends (46) of said bar (44) are projecting out from the central
core (32); and
- connecting together with a respective lateral member (48), the second end (42) of
each rod (38) to a corresponding outer end (46) of the bar (44).
13. A process as defined in claim 12, wherein:
- in step d), the casing (30) is connected on top of a previous Söderberg-type self-baking
electrode (49) used for the production of ferrosilicon, said Söderberg electrode (49)
comprising an outer casing (50); and in that
- the casing (30) of the electrode (4) that is formed has substantially the same diameter
as said outer casing (50) of the Söderberg electrode (49).
1. In situ selbstabbrennende Elektrode (4), geeignet für die Herstellung von Siliziummetall
und Siliziumlegierungen, zur Verwendung in einem elektrischen Lichtbogenofen (2),
wobei die Elektrode (4)
dadurch gekennzeichnet ist, dass sie umfaßt:
einen länglichen, an den Enden offenen, elektrisch leitfähigen Metallmantel (30) zum
sich im Wesentlichen vertikalen Erstrecken in dem Ofen (2) bei Verwendung, wobei der
Mantel aus einem unlegierten Material mit einem aus der Gruppe bestehend aus Titan,
Vanadium, Tantal, Chrom, Zirkon und Nickel ausgewählten Metall gefertigt ist, wodurch
eine Verunreinigung des in dem Ofen herzustellenden Siliziummetalls und der in dem
Ofen herzustellenden Siliziumlegierungen durch eines dieser Metalle bei dem fortlaufenden
Abbrand des Mantels (30) im Ofen (2) verhindert ist;
einen im und mit Abstand zum Mantel (30) angeordneten mittigen Kern (32), der aus
einem wärmeleitfähigen, kohlenstoffhaltigen Material gefertigt ist;
mindestens einen Rahmen (37) im Mantel (30), der den mittigen Kern (32) an einer Innenoberfläche
des Mantels (30) sichert, um den mittigen Kern (32) im Mantel (30) mittig zu halten
und
um ein Ausstoßen des mittigen Kerns (32) nach unten zu verhindern; und
eine den mittigen Kern (32) umgebende, kohlenstoffhaltige Elektrodenpaste (36), die
dazu ausgelegt ist, beim Erwärmen zu einer festen Elektrode auszuhärten und an dem
mittigen Kern (32) zu haften.
2. In situ selbstabbrennende Elektrode (4) nach Anspruch 1, dadurch gekennzeichnet, dass der mittige Kern (32) aus miteinander verbundenen Kohlenstoffstäben gebildet ist.
3. In situ selbstabbrennende Elektrode (4) nach einem der Ansprüche 1 und 2, dadurch gekennzeichnet, dass der Mantel (30) aus einem Metall gefertigt ist, das aus der Gruppe bestehend aus
Kupfer, Messing und Aluminium ausgewählt ist.
4. In situ selbstabbrennende Elektrode (4) nach einem der Ansprüche 1 bis 3,
dadurch gekennzeichnet, dass der mindestens eine Rahmen (37) umfaßt:
ein Paar einander gegenüber angeordneter Stäbe (38), wobei jeder Stab (38) im Wesentlichen
horizontal verläuft und ein in den mittigen Kern (32) getriebenes erstes Ende (40)
und
ein an der Innenoberfläche des Mantels (30) gesichertes zweites Ende (42) hat;
eine sich durch den mittigen Kern (32) unterhalb der beiden Stäbe (38) hindurch erstreckende
Strebe (44), die entgegengesetzte äußere Enden (46) aufweist, welche aus dem mittigen
Kern (32) hervorstehen; und
zwei seitliche Rahmenteile (48), die jeweils das zweite Ende jedes Stabes (38) und
ein korrespondierendes äußeres Ende (46) der Strebe (44) miteinander verbinden.
5. In situ selbstabbrennende Elektrode (4) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der mittige Kern (32) hohl ausgebildet ist, um durch Einleiten von Kühlgasen eine
Innenkühlung zu ermöglichen.
6. Elektrischer Lichtbogenofen für die Herstellung von Siliziummetall und Siliziumlegierungen
(2), mit:
einem Ofenkörper (6), der einen zu erhitzenden Durchsatz enthält;
einer in situ selbstabbrennenden Elektrode (4), die aufweist:
- einen länglichen, an den Enden offenen, elektrisch leitfähigen Metallmantel (30),
welcher ein oberes Ende (31) und ein unteres Ende (33) hat, wobei der Mantel (30)
im Wesentlichen vertikal im Ofenkörper (6) verläuft und durch einen Gleitmechanismus
(24) frei vertikal zu verschieben ist, und wobei der Mantel (30) aus einem unlegierten
Material mit einem aus der Gruppe bestehend aus Titan, Vanadium, Tantal, Chrom, Zirkon
und Nickel ausgewählten Metall gefertigt ist, um eine Verunreinigung des in dem Ofen
herzustellenden Siliziummetalls und der in dem Ofen herzustellenden Siliziumlegierungen
durch eines dieser Metalle bei dem fortlaufenden Abbrand des Mantels (30) im Ofen
(2) zu verhindern;
- einen im und mit Abstand zum Mantel (30) angeordneten mittigen Kern (32), der aus
einem wärmeleitfähigen, kohlenstoffhaltigen Material gefertigt ist;
- mindestens einen Rahmen (37) im Mantel (30), wobei der Rahmen (37) den mittigen
Kern (32) an einer Innenoberfläche des Mantels (30) sichert, um den mittigen Kern
(32) im Mantel (30) mittig zu halten und um ein Ausstoßen des mittigen Kerns (32)
nach unten durch das untere Ende (33) des Mantels (30) zu verhindern;
- eine den mittigen Kern (32) umgebende, kohlenstoffhaltige Elektrodenpaste (36),
die dazu ausgelegt ist, beim Erwärmen zu einer festen Elektrode auszuhärten und an
dem mittigen Kern (32) zu haften;
Mitteln (22, 24) zum Halten des Mantels (30) in einer im Wesentlichen vertikalen Stellung
im Ofenkörper (6); und elektrischen Mitteln zum Erzeugen eines elektrischen Lichtbogens
im Ofen, wobei die elektrischen Mittel einen Kontakt am Mantel (30) aufweisen.
7. Elektrischer Lichtbogenofen (2) nach Anspruch 6, dadurch gekennzeichnet, dass der mittige Kern (32) aus miteinander verbundenen Kohlenstoffstäben gebildet ist.
8. Elektrischer Lichtbogenofen (2) nach einem der Ansprüche 6 und 7, dadurch gekennzeichnet, dass der Mantel (30) aus einem Metall gefertigt ist, das aus der Gruppe bestehend aus
Kupfer, Messing und Aluminium ausgewählt ist.
9. Elektrischer Lichtbogenofen (2) nach einem der Ansprüche 6 bis 8,
dadurch gekennzeichnet, dass der mindestens eine Rahmen (37) umfaßt:
ein Paar einander gegenüber angeordneter Stäbe (38), wobei jeder Stab (38) im Wesentlichen
horizontal verläuft und ein in den mittigen Kern (32) getriebenes erstes Ende (40)
und
ein an der Innenoberfläche des Mantels (30) gesichertes zweites Ende (42) hat;
eine sich durch den mittigen Kern (32) unterhalb der beiden Stäbe (38) erstreckende
Strebe (44), die entgegengesetzte äußere Enden (46) aufweist, welche aus dem mittigen
Kern (32) hervorstehen; und
zwei seitliche Rahmenteile (48), die jeweils das zweite Ende jedes Stabes (38) und
ein korrespondierendes äußeres Ende (46) der Strebe (44) miteinander verbinden.
10. Elektrischer Lichtbogenofen (2) nach einem der Ansprüche 6 bis 9, dadurch gekennzeichnet, dass der mittige Kern hohl ausgebildet ist, um durch Einleiten von Kühlgasen eine Innenkühlung
zu ermöglichen.
11. Verfahren zur in situ Bildung einer selbstabbrennenden Elektrode (4) für die Herstellung
von Siliziummetall und Siliziumlegierungen in einem elektrischen Lichtbogenofen (2),
wobei das Verfahren die Schritte umfaßt:
a) Bereitstellen eines länglichen, an den Enden offenen, elektrisch leitfähigen Metallmantels
(30), der aus einem unlegierten Material mit einem aus der Gruppe bestehend aus Titan,
Vanadium, Tantal, Chrom, Zirkon und Nickel ausgewählten Metall gefertigt ist, um eine
Verunreinigung des in dem Ofen herzustellenden Siliziummetalls und der in dem Ofen
herzustellenden Siliziumlegierungen durch eines dieser Metalle bei dem fortlaufenden
Abbrand des Mantels (30) im Ofen (2) zu verhindern;
b) Anordnen eines mittigen Kerns (32) aus einem kohlenstoffhaltigen, wärmeleitfähigen
Material im und mit Abstand zum Mantel (30);
c) Sichern des mittigen Kerns (32) an einer Innenoberfläche des Mantels (30) und mittiges
Halten desselben im Mantel (30) ;
d) im Wesentlichen vertikales Einschieben des länglichen, elektrisch leitfähigen Mantels
(30) in den Ofen (2) ;
e) Einfüllen einer Menge einer kohlenstoffhaltigen Elektrodenpaste (36) in den Mantel
(30), so dass die Paste (36) den mittigen Kern (32) umgibt, wobei die Paste (36) dazu
ausgelegt ist, bei Erwärmung zu einer festen Elektrode auszuhärten und an dem mittigen
Kern (32) zu haften; und
f) Verbinden des Mantels (30) mit einer elektrischen Stromquelle; und
g) Erzeugen eines elektrischen Lichtbogens mit der elektrischen Stromquelle in dem
Ofen (2).
12. Verfahren nach Anspruch 11, wobei der Schritt c) die Schritte umfaßt:
- jeweils ein erstes Ende (40) eines entsprechenden Stabes (38) eines Paares zweier
einander gegenüber angeordneter Stäbe (38) in zwei entgegengesetzte Seiten des mittigen
Kerns (32) zu treiben und ein zweites Endes (42) jedes der einander gegenüber angeordneten
Stäbe (38) an einer Innenoberfläche des Mantels (30) derart zu sichern, dass jeder
Stab (38) im Wesentlichen horizontal im Mantel (30) verläuft;
- eine Strebe (44) durch den mittigen Kern (32) unter den beiden Stäben (38) derart
einzuführen, dass die entgegengesetzten Enden der Strebe (44) aus dem mittigen Kern
(32) hervorstehen; und
- das zweite Ende (42) jedes Stabes (38) mit einem korrespondierenden äußeren Ende
(46) der Strebe (44) durch ein jeweiliges Seitenteil (48) miteinander zu verbinden.
13. Verfahren nach Anspruch 12, wobei
- in Schritt d) der Mantel (30) an der Spitze einer vorgeordneten selbstabbrennenden
Elektrode (49) des Söderberg-Typs, welche für die Herstellung von Ferrosilizium verwendet
wird, befestigt wird, wobei die Söderberg-Elektrode (49) einen Außenmantel (50) aufweist;
und bei dem
- der geformte Mantel (30) der Elektrode (4) im Wesentlichen denselben Durchmesser
hat wie der Außenmantel (50) der Söderberg-Elektrode (49).
1. Electrode (4) à autocuisson in situ convenant à la production de silicium métallique
et d'alliages de silicium pour une utilisation dans un four à arc (2), l'électrode
(4) étant
caractérisée en ce qu'elle comporte :
une enveloppe métallique (30) électriquement conductrice, allongée, ouverte aux extrémités,
destinée à s'étendre à peu près verticalement à l'intérieur du four (2) lors de l'utilisation,
l'enveloppe étant formée d'une matière non alliée avec un métal choisi dans le groupe
constitué du titane, du vanadium, du tantale, du chrome, du zirconium et du nickel,
grâce à quoi une contamination du silicium métallique et des alliages de silicium
devant être produits dans le four par l'un quelconque desdits métaux lors d'une consommation
progressive de l'enveloppe (30) dans le four (2) est évitée ;
une âme centrale (32) disposée à l'intérieur et à distance de l'enveloppe (30), l'âme
centrale (32) étant formée d'une matière carbonée conductrice de la chaleur ;
au moins une armature (37) à l'intérieur de l'enveloppe (30), l'armature (37) fixant
l'âme centrale (32) à une surface intérieure de l'enveloppe (30) pour maintenir centralement
l'âme centrale (32) à l'intérieur de l'enveloppe (30) et pour empêcher une extrusion
de l'âme centrale (32) vers le bas ; et
une pâte d'électrode carbonée (36) entourant l'âme centrale (32), la pâte (36) étant
conçue pour durcir en une électrode solide en étant chauffée et pour se lier à l'âme
centrale (32).
2. Electrode (4) à autocuisson in situ selon la revendication 1, caractérisée en ce que l'âme centrale (32) est formée de barres de carbone reliées entre elles.
3. Electrode (4) à autocuisson in situ selon l'une des revendications 1 et 2, caractérisée en ce que l'enveloppe (30) est formée d'un métal choisi dans le groupe constitué du cuivre,
du laiton et de l'aluminium.
4. Electrode (4) à autocuisson in situ selon l'une quelconque des revendications 1 à
3,
caractérisée en ce qu'au moins une armature (37) comporte :
deux tiges opposées (38), chaque tige (38) s'étendant à peu près horizontalement et
ayant une première extrémité (40) enfoncée dans l'âme centrale (32) et une seconde
extrémité (42) fixée à une surface intérieure de l'enveloppe (30) ;
une barre (44) s'étendant à travers l'âme centrale (32) en dessous des deux tiges
(38) et ayant des extrémités extérieures opposées (46) faisant saillie à l'extérieur
de l'âme centrale (32) ; et
deux éléments latéraux (48) d'armature, reliant chacun la seconde extrémité (42) de
chaque tige (38) à une extrémité extérieure correspondante (46) de la barre (44).
5. Electrode (4) à autocuisson in situ selon l'une quelconque des revendications 1 à
4, caractérisée en ce que l'âme (32) est creusée de façon à permettre un refroidissement intérieur par injection
de gaz de refroidissement.
6. Four à arc pour la production de silicium métallique et d'alliages de silicium (2),
comportant :
un corps (6) de four contenant une charge (14) devant être chauffée ;
une électrode (4) à autocuisson in situ comportant :
une enveloppe métallique (30) électriquement conductrice, allongée, ouverte aux extrémités,
ayant une extrémité supérieure (31) et une extrémité inférieure (33), ladite enveloppe
(30) s'étendant à peu près verticalement à l'intérieur du corps (6) du four et pouvant
coulisser librement verticalement à travers un mécanisme de coulissement (24), et
dans lequel ladite enveloppe (30) est formée d'une matière non alliée avec un métal
choisi dans le groupe constitué du titane, du vanadium, du tantale, du chrome, du
zirconium et du nickel pour empêcher une contamination du silicium métallique et des
alliages de silicium devant être produits dans le four par l'un quelconque desdits
métaux lors d'une consommation progressive de l'enveloppe (30) dans le four (2) ;
une âme centrale (32) disposée à l'intérieur et à distance de l'enveloppe (30), l'âme
centrale (32) étant formée d'une matière carbonée conductrice de la chaleur ;
au moins une armature (37) à l'intérieur de l'enveloppe (30), l'armature (37) fixant
l'âme centrale (32) à une surface intérieure de l'enveloppe (30) pour maintenir centralement
l'âme centrale (32) à l'intérieur de l'enveloppe (30) et pour empêcher une extrusion
de l'âme centrale (32) vers le bas à travers l'extrémité inférieure (33) de l'enveloppe
(30) ;
une pâte d'électrode carbonée (36) entourant l'âme centrale (32), la pâte (36) étant
conçue pour durcir en une électrode solide lors d'un chauffage et pour se lier à l'âme
centrale (32) ;
des moyens (22, 24) de retenue de l'enveloppe (30) dans une position à peu près verticale
à l'intérieur du corps (6) du four ; et
des moyens électriques destinés à générer un arc électrique dans le four, les moyens
électriques comprenant un contact (16) sur l'enveloppe (30).
7. Four à arc (2) selon la revendication 6, caractérisé en ce que l'âme centrale (32) est formée de barres de carbone reliées entre elles.
8. Four à arc (2) selon l'une des revendications 6 et 7, caractérisé en ce que l'enveloppe (30) est formée d'un métal choisi dans le groupe constitué du cuivre,
du laiton et de l'aluminium.
9. Four à arc (2) selon l'une quelconque des revendications 6 à 8,
caractérisé en ce qu'au moins une armature (37) comporte :
deux tiges opposées (38), chaque tige (38) s'étendant à peu près horizontalement et
ayant une première extrémité (40) enfoncée dans l'âme centrale (32) et une seconde
extrémité (42) fixée à une surface intérieure de l'enveloppe (30) ;
une barre (44) s'étendant à travers l'âme centrale (32) en dessous des deux tiges
(38) et ayant des extrémités extérieures opposées (46) faisant saillie à l'extérieur
de l'âme centrale (32) ; et
deux éléments latéraux (48) d'armature, reliant chacun la seconde extrémité (42) de
chaque tige (38) à une extrémité extérieure correspondante (46) de la barre (44).
10. Four à arc (2) selon l'une quelconque des revendications 6 à 9, caractérisé en ce que l'âme centrale (32) est creusée de façon à permettre un refroidissement intérieur
par une injection de gaz de refroidissement.
11. Procédé pour former in situ une électrode (4) à autocuisson pour la production de
silicium métallique et d'alliages de silicium dans un four à arc (2), le procédé comprenant
les étapes qui consistent :
a) à utiliser une enveloppe métallique (30) électriquement conductrice, allongée,
ouverte aux extrémités, formée d'une matière non alliée avec un métal choisi dans
le groupe constitué du titane, du vanadium, du tantale, du chrome, du zirconium et
du nickel pour empêcher une contamination du silicium métallique et des alliages de
silicium devant être produits dans le four par l'un quelconque desdits métaux lors
d'une consommation progressive de l'enveloppe (30) dans le four (2) ;
b) à disposer une âme centrale (32) en matière carbonée, conductrice de la chaleur,
à l'intérieur et à distance de l'enveloppe (30) ;
c) à fixer l'âme centrale (32) à une surface intérieure de l'enveloppe (30) et à la
maintenir centralement à l'intérieur de l'enveloppe (30) ;
d) à faire coulisser à peu près verticalement l'enveloppe allongée (30), électriquement
conductrice, à l'intérieur du four (2) ;
e) à introduire une quantité de pâte d'électrode carbonée (36) dans l'enveloppe (30)
afin que ladite pâte (36) entoure l'âme centrale (32), la pâte (36) étant conçue pour
durcir en une électrode solide en étant chauffée et pour se lier à l'âme centrale
(32) ; et
f) à mettre en contact l'enveloppe (30) avec une source d'énergie électrique ; et
g) à générer à l'aide de ladite source d'énergie électrique un arc électrique dans
le four (2).
12. Procédé selon la revendication 11, dans lequel l'étape c) comprend les étapes qui
consistent :
- à enfoncer, respectivement, dans deux côtés opposés de l'âme centrale (32) une première
extrémité (40) d'une tige correspondante (38) de deux tiges opposées (38) et à fixer
une seconde extrémité (42) de chacune desdites tiges opposées (38) à une surface intérieure
de l'enveloppe (30) de manière que chaque tige (38) s'étende à peu près horizontalement
à l'intérieur de l'enveloppe (30) ;
- à introduire une barre (44) à travers l'âme centrale (32) en dessous desdites deux
tiges (38) et de façon que des extrémités extérieures opposées (46) de ladite barre
(44) fassent saillie à l'extérieur de l'âme centrale (32) ; et
- à relier entre elles à l'aide d'un élément latéral respectif (48) la seconde extrémité
(42) de chaque tige (38) et une extrémité extérieure correspondante (46) de la barre
(44).
13. Procédé selon la revendication 12, dans lequel :
- dans l'étape d), l'enveloppe (30) est reliée à l'extrémité supérieure d'une électrode
(49) à autocuisson de type Söderberg antérieur utilisée pour la production de ferrosilicium,
ladite électrode Söderberg (49) comportant une enveloppe extérieure (50) ; et en ce
que
- l'enveloppe (30) de l'électrode (4) qui est formée a sensiblement le même diamètre
que ladite enveloppe extérieure (50) de l'électrode Söderberg (49).